Biospeciation of Oxidovanadium(IV) Imidazolyl–Carboxylate Complexes and Their Action on Glucose-Stimulated Insulin Secretion in Pancreatic Cells
Abstract
:1. Introduction
2. Results and Discussion
2.1. Potentiometry and HYPERQUAD
2.1.1. Speciation of Vanadyl Complexes with Small Bioligands
2.1.2. Speciation of Vanadyl Complexes with Proteins
2.2. HPLC, LC-MS and MALDI-TOF-MS
2.2.1. HPLC Studies
2.2.2. LC-MS Studies
2.2.3. Speciation of Vanadyl-l-HMM System Using MALDI-TOF-MS
2.3. Speciation of Vanadyl-l–Bioligands Using EPR
2.3.1. Speciation of Vanadyl-l–Small Bioligand Systems
2.3.2. Speciation of Vanadyl–Large Bioligand Systems
2.4. Cytotoxicity
2.5. Glucose-Stimulated Insulin Secretion
2.5.1. Chronic Insulin Release
2.5.2. Basal Insulin Secretion
2.5.3. Stimulated Insulin Secretion
2.5.4. Insulin Content
2.5.5. Stimulatory Index
3. Experimental Section
3.1. Materials and Instrumentation
3.2. Preparative Work
3.3. Potentiometric Studies
3.4. Electron Paramagnetic Resonance Spectroscopy
3.5. High-Performance Liquid Chromatography (HPLC) and Liquid Chromatography–Mass Spectrometry (LC-MS)
3.5.1. High-Performance Liquid Chromatography (HPLC)
3.5.2. Liquid Chromatography–Mass Spectrometry (LC-MS)
3.6. Matrix-Assisted Laser Desorption Ionisation–Time of Flight-Mass Spectrometry (MALDI-TOF-MS)
3.7. Biological Studies
3.7.1. Maintenance of Cells
3.7.2. Cytotoxicity (MTT) Assay
3.7.3. Glucose Stimulation Insulin Secretion
3.7.4. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thompson, K.H.; McNeill, J.H.; Orvig, C. Vanadium compounds as insulin mimics. Chem. Rev. 1999, 99, 2561–2571. [Google Scholar] [CrossRef] [PubMed]
- Available online: http://www.who.int/mediacentre/factsheets/fs312/en/ (accessed on 15 August 2023).
- Cheng, A.Y.Y.; Fantus, G. Oral antihyperglycemic therapy for type 2 diabetes mellitus. CMAJ 2005, 172, 213–226. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.dshs.texas.gov/sites/default/files/txdiabetes/toolkit/Treatment-Algorithms%2C-Protocols%2C-Guidelines-and-Recommendations.pdf (accessed on 15 August 2023).
- Nicholson, G.; Hall, G.M. Diabetes mellitus: New drugs for a new epidemic. J. Anaesth. 2011, 107, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Walmsley, R.S.; Tshentu, Z.R.; Fernandes, M.A.; Frost, C.L. Synthesis, characterization and anti-diabetic effect of bis[(1-R-imidazolinyl)phenolato]oxovanadium(IV) complexes. Inorg. Chim. Acta 2010, 363, 2215–2221. [Google Scholar] [CrossRef]
- Thompson, K.H.; Liboiron, B.D.; Sun, Y.; Bellman, K.D.D.; Setyawati, I.A.; Patrick, B.O.; Karunaratne, V.; Rawji, G.; Wheeler, J.; Sutton, K.; et al. Preparation and characterization of vanadyl complexes with bidentate maltol-type ligands; in vivo comparisons of anti-diabetic therapeutic potential. J. Biol. Inorg. Chem. 2003, 8, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, H.; Fujii, K.; Watanabe, H.; Tamura, H. Orally active and long-term acting insulin-mimetic vanadyl complex: Bis(picolinato)oxovanadium(IV). Biochem. Biophys. Res. Commun. 1995, 214, 1095–1101. [Google Scholar] [CrossRef] [PubMed]
- Gundhla, I.Z.; Ugirinema, V.; Walmsley, R.S.; Mnonopi, N.O.; Hosten, E.; Betz, R.; Frost, C.L.; Tshentu, Z.R. pH-metric chemical speciation modeling and in vitro anti-diabetic studies of bis[(imidazolyl)carboxylato]oxovanadium(IV) complexes. J. Inorg. Biochem. 2015, 145, 11–18. [Google Scholar] [CrossRef]
- Jasińska, A.; Szklarzewicz, J.; Jurowska, A.; Hodorowicz, M.; Kazek, G.; Mordyl, B.; Głuch-Lutwin, M. V(III) and V(IV) Schiff base complexes as potential insulin-mimetic compounds—Comparison, characterization and biological activity. Polyhedron 2022, 215, 115682. [Google Scholar] [CrossRef]
- Ugirinema, V. Biospeciation and Antidiabetic Effects of Oxidovanadium(IV) Complexes. Master’s Thesis, Nelson Mandela Metropolitan University, Gqeberha, South Africa, 2014. [Google Scholar]
- Maheshvare, M.D.; Raha, S.; König, M.; Pal, D. A pathway model of glucose-stimulated insulin secretion in the pancreatic β-cell. Front. Endocrinol. 2023, 14, 1185656. [Google Scholar] [CrossRef]
- Špaĉek, T.; Šantorova, J.; Zacharovová, K.; Berková, Z.; Hlavatá, L.; Saudek, F.; Ježek, P. Glucose-stimulated insulin secretion of insulinoma INS-1E cells is associated with elevation of both respiration and mitochondrial membrane potential. Int. J. Biochem. Cell Biol. 2008, 40, 1522–1535. [Google Scholar] [CrossRef]
- Liboiron, B.D.; Thompson, K.H.; Hanson, G.R.; Lam, E.; Aebischer, N.; Orvig, C. New insights into the interactions of serum proteins with bis(maltolato)oxovanadium(IV): transport and biotransformation of insulin-enhancing vanadium pharmaceuticals. J. Am. Chem. Soc. 2005, 127, 5104–5115. [Google Scholar] [CrossRef] [PubMed]
- Kiss, T.; Jakusch, T.; Hollenders, D.; Dornyei, A.; Enyedy, E.A.; Pessoa, J.C.; Sakurai, H.; Sanz-Medel, A. Biospeciation of antidiabetic VO(IV) complexes. Coord. Chem. Rev. 2008, 252, 1153–1163. [Google Scholar] [CrossRef]
- Jakusch, T.; Hollender, T.; Enyedy, D.; Gonzalez, E.A.; Montes-Bayon, C.S.; Sanz-Medel, M.; Pessoa, J.C.; Tomaz, I.; Kiss, T. Biospeciation of various antidiabetic VIVO compounds in serum. Dalton Trans. 2009, 2428–2437. [Google Scholar] [CrossRef] [PubMed]
- Zahirović, A.; Hadžalić, S.; Višnjevac, A.; Fočak, M.; Tüzün, B.; Žilić, D.; Roca, S.; Jurec, J.; Topčagić, A.; Osmanković, I. Vanadium(IV) complexes of salicylaldehyde-based furoic acid hydrazones: Synthesis, BSA binding and in vivo antidiabetic potential. J. Inorg. Biochem. 2023, 244, 112232. [Google Scholar] [CrossRef] [PubMed]
- Sciortino, G.; Ugone, V.; Sanna, D.; Lubinu, G.; Ruggiu, S.; Maréchal, J.-D.; Garribba, E. Biospeciation of potential vanadium drugs of acetylacetonate in the presence of proteins. Front. Chem. 2020, 8, 345. [Google Scholar] [CrossRef] [PubMed]
- Kiss, E.; Garribba, E.; Micera, G.; Kiss, T.; Sakurai, H. Ternary complex formation between VO(IV)–picolinic acid or VO(IV)–6-methylpicolinic acid and small blood serum bioligands. J. Inorg. Biochem. 2000, 78, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Cotter, J.R. Time-of-flight mass spectrometry for the structural analysis of biological molecules. Anal. Chem. 1992, 64, 1027–2039. [Google Scholar] [CrossRef]
- Chait, B.T.; Kent, S.B.H. Weighing naked proteins: Practical, high-accuracy mass measurement of peptides and proteins. Science 1992, 257, 1885–1893. [Google Scholar] [CrossRef]
- Rockenbauer, A.; Korecz, L. Automatic computer simulation of EPR spectra. Appl. Magn. Reson. 1996, 10, 29–43. [Google Scholar] [CrossRef]
- Cornman, C.R.; Zovinka, E.P.; Boyajian, Y.D.; Geiser-Bush, K.M.; Boyle, P.D.; Singh, P. Structural and EPR studies of vanadium complexes of deprotonated amide ligands: Effects on the 51V hyperfine coupling constant. Inorg. Chem. 1995, 34, 4213–4219. [Google Scholar] [CrossRef]
- Kiss, T.; Kiss, E.; Micera, G.; Sanna, D. The formation of ternary complexes between VO(maltolate)2 and small bioligands. Inorg. Chim. Acta 1998, 283, 202–2010. [Google Scholar] [CrossRef]
- Smith, T.S.; Brutto, R.L.; Pecoraro, V.L. Paramagnetic spectroscopy of vanadyl complexes and its applications to biological systems. Coord. Chem. Rev. 2002, 228, 1–18. [Google Scholar] [CrossRef]
- Mnonopi, N. The Anticoagulant and Antidiabetic Activity of Leonotis leonurus. Ph.D. Thesis, Nelson Mandela Metropolitan University, Gqeberha, South Africa, 2010. [Google Scholar]
- Gran, G. Determination of the equivalence point in potentiometric titrations. Part II. Analyst 1952, 77, 661–671. [Google Scholar] [CrossRef]
- Gans, P.; O’Sullivan, B. GLEE, a new computer program for glass electrode calibration. Talanta 2000, 51, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Bazzicalupi, C.; Bencini, A.; Bianchi, A.; Danesi, A.; Giorgi, C.; Valtancoli, B. Anion binding by protonated forms of the tripodal ligand tren. Inorg. Chem. 2009, 48, 2391–2398. [Google Scholar] [CrossRef] [PubMed]
- Henry, R.P.; Mitchell, P.C.H.; Prue, J.E.J. Hydrolysis of the oxovanadium(IV) ion and the stability of its complexes with the 1,2-dihydroxybenzenato(2–) ion. J. Chem. Soc. Dalton Trans. 1973, 1156–1159. [Google Scholar] [CrossRef]
- Gans, P.; Sabatini, A.; Vacca, A. Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta 1996, 43, 1739–1753. [Google Scholar] [CrossRef] [PubMed]
- Hillenkamp, F.; Karas, M.; Beavis, R.C.; Chait, B.T. Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Anal. Chem. 1991, 63, 1193–1203. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival. J. Immunol. 1983, 65, 55–63. [Google Scholar]
- Denizot, F.; Lang, R. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. 1986, 89, 271–277. [Google Scholar]
- Twentyman, P.R.; Luscombe, M. A study of some variables in a tetrazolium dye (MTT) based assay for cell growth and chemosensitivity. J. Cancer 1987, 56, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Oberhausen, K.J.; Richardson, J.F.; Buchanan, R.M.; Pierce, W. Synthesis, structure and properties of a N3 tridentate bis-imidazolyl ligand with copper (II). Polyhedron 1989, 8, 659. [Google Scholar] [CrossRef]
- Kruse, L.I.; Kaiser, C.; DeWolf, W.E.; Finkelstein, J.A.; Frazee, J.S.; Hilbert, E.L.; Ross, S.T.; Flaim, K.E.; Sawyer, J.L. Some benzyl-substituted imidazoles, triazoles, tetrazoles, pyridinethiones, and structural relatives as multisubstrate inhibitors of dopamine. beta.-hydroxylase. 4. Structure-activity relationships at the copper binding site. J. Med. Chem. 1990, 33, 781. [Google Scholar] [CrossRef]
- Kleyi, P.; Walmsley, R.S.; Gundhla, I.Z.; Walmsley, A.T.; Jauka, T.I.; Dames, J.; Walker, R.B.; Torto, N.; Tshentu, Z.R. Syntheses, protonation constants and antimicrobial activity of 2-substituted N-alkylimidazole derivatives. S. Afr. J. Chem. 2012, 65, 231. [Google Scholar]
- Buglyó, P.; Kiss, E.; Fábián, I.; Kiss, T.; Sanna, D.; Garribba, E.; Micera, G. Interaction between the low molecular mass components of blood serum and the VO(IV)–DHP system (DHP = 1,2-dimethyl-3- hydroxy-4(1H)-pyridinone). Inorg. Chim. Acta 2000, 34, 174. [Google Scholar] [CrossRef]
- Lewis, J.K.; Wei, J.; Siuzdak, G. Matrix-assisted Laser Desorption/Ionization Mass Spectrometry in Peptide and Protein Analysis. In Encyclopedia of Analytical Chemistry; Meyers, R.A., Ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2000; p. 5880. [Google Scholar]
- Jakusch, T.; Hollender, D.; Enyedy, E.A.; Gonzalez, C.S.; Bayon, M.M.; Medel, A.S.; Pessoa, J.C.; Kiss, T.T. Vanadium in Biological Action: Chemical, Pharmacological Aspects, and Metabolic Implications in Diabetes Mellitus. J. Inorg. Anal. Chem. 2009, 13, 2428. [Google Scholar]
VO2+, L, bL, H | Im4COOH | Im2COOH | MeIm2COOH | Mal † | Mepic † | Pic † | |
---|---|---|---|---|---|---|---|
Oxalate | 1,1,1,1 | 18.9(0.1) | 18.79(0.07) | 19.86(0.03) | – | – | – |
1,1,1,0 | 12.2(0.1) | 12.1(0.6) | 12.89(0.04) | 13.92(0.0) | 11.22(0.02) | 12.38(0.02) | |
1,1,1,−1 | 5.4(0.1) | 5.8(0.1) | 5.79(0.07) | – | – | – | |
Citrate | 1,1,1,1 | 16.7(0.1) | 16.39(0.07) | 16.36(0.03) | – | – | – |
1,1,1,0 | 9.5(0.1) | 9.3(0.6) | 9.79(0.04) | – | – | – | |
1,1,1,−1 | 3.5(0.1) | 3.8(0.1) | 3.69(0.07) | – | – | – | |
Phosphate | 1,1,1,1 | 27.35(0.02) | 24.16(0.03) | 27.42(0.04) | 25.00(2) | 20.94(4) | 22.73(11) |
1,1,1,0 | 20.37(0.07) | 18.26(0.04) | 18.80(0.02) | 18.81(2) | 15.40(2) | 15.52(34) | |
1,1,1,−1 | 13.53(0.01) | 10.09(0.04) | 10.80(0.08) | – | – | – | |
Lactate | 1,1,1,1 | 21.83(0.04) | 20.98(0.04) | 22.27(0.03) | – | – | – |
1,1,1,0 | 17.88(0.03) | 17.11(0.04) | 17.54(0.03) | – | – | – | |
1,1,1,−1 | 12.78(0.04) | 12.78(0.04) | 13.86(0.09) | – | – | – |
VO2+,L,hTf | Im4COOH | Im2COOH | MeIm2COOH | Mal † |
---|---|---|---|---|
1,1,1 | 19.5 | 19.9 | - | 17.7 |
2,2,1 | 31.1 | 30.8 | 36.4 | 34.8 |
2,1,1 | 27.4 | 25.7 | 27.6 | 30.3 |
VO,L,HSA | Im4COOH | Im2COOH | MeIm2COOH | |
1,1,1 | 17.3 | 17.4 | - | |
2,2,1 | 28.5 | 27.9 | 32.5 | |
2,1,1 | 24.3 | 23.7 | 24.7 |
Mode of Speciation | g⊥ | g׀׀ | A⊥ (10−4 cm−1) | A׀׀ (10−4 cm−1) |
---|---|---|---|---|
VO2+-Im4COOH | 1.936 | 1.936 | 60.1 | 167.0 |
VO2+-Im2COOH | 1.936 | 1.936 | 60.1 | 165.0 |
VO2+-MeIm2COOH | 1.938 | 1.935 | 58.9 | 167.0 |
VO2+-Im4COO-Cit | 1.980 | 1.943 | 59.7 | 170.6 |
VO2+-Im2COO-Cit | 1.982 | 1.943 | 58.5 | 171.2 |
VO2+-MeIm2COO-Cit | 1.980 | 1.941 | 60.1 | 174.0 |
VO2+-Im4COOH-Ox | 1.938 | 1.966 | 98.0 | 172.0 |
VO2+-Im2COOH-Ox | 1.938 | 1.966 | 98.0 | 172.0 |
VO2+-MeIm2COOH-Ox | 1.939 | 1.967 | 98.0 | 171.0 |
VO2+-Im4COOH-Lact | 1.972 | 1.950 | - | 161.1 |
VO2+-Im2COOH-Lact | 1.972 | 1.951 | - | 161.7 |
VO2+-MeIm2COOH-Lact | 1.974 | 1.951 | - | 162.1 |
VO2+-Im4COOH-Phos | 1.980 | 1.940 | - | 171.0 |
VO2+-Im2COOH-Phos | 1.980 | 1.940 | - | 171.7 |
VO2+-MeIm2COOH-Phos | 1.981 | 1.938 | - | 170.8 |
Mode of Speciation | g⊥ | g׀׀ | A⊥ (104 cm−1) | A׀׀ (104 cm−1) |
---|---|---|---|---|
VO2+-Im4COOH-HSA | 1.980 | 1.938 | 62.0 | 168.1 |
VO2+-Im2COOH-HSA | 1.980 | 1.938 | 61.0 | 168.0 |
VO2+-MeIm2COOH-HSA | 1.981 | 1.938 | 62.0 | 169.0 |
VO2+-Im4COOH-hTf | 1.985 | 1.940 | 63.0 | 169.0 |
VO2+-Im2COOH-hTf | 1.985 | 1.940 | 63.0 | 169.0 |
VO2+-MeIm2COOH-hTf | 1.987 | 1.941 | 63.0 | 170.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ugirinema, V.; Odei-Addo, F.; Frost, C.L.; Tshentu, Z.R. Biospeciation of Oxidovanadium(IV) Imidazolyl–Carboxylate Complexes and Their Action on Glucose-Stimulated Insulin Secretion in Pancreatic Cells. Molecules 2024, 29, 724. https://doi.org/10.3390/molecules29030724
Ugirinema V, Odei-Addo F, Frost CL, Tshentu ZR. Biospeciation of Oxidovanadium(IV) Imidazolyl–Carboxylate Complexes and Their Action on Glucose-Stimulated Insulin Secretion in Pancreatic Cells. Molecules. 2024; 29(3):724. https://doi.org/10.3390/molecules29030724
Chicago/Turabian StyleUgirinema, Vital, Frank Odei-Addo, Carminita L. Frost, and Zenixole R. Tshentu. 2024. "Biospeciation of Oxidovanadium(IV) Imidazolyl–Carboxylate Complexes and Their Action on Glucose-Stimulated Insulin Secretion in Pancreatic Cells" Molecules 29, no. 3: 724. https://doi.org/10.3390/molecules29030724
APA StyleUgirinema, V., Odei-Addo, F., Frost, C. L., & Tshentu, Z. R. (2024). Biospeciation of Oxidovanadium(IV) Imidazolyl–Carboxylate Complexes and Their Action on Glucose-Stimulated Insulin Secretion in Pancreatic Cells. Molecules, 29(3), 724. https://doi.org/10.3390/molecules29030724