Substitution Effect of a Single Nitrogen Atom on π-Electronic Systems of Linear Polycyclic Aromatic Hydrocarbons (PAHs): Theoretically Visualized Coexistence of Mono- and Polycyclic π-Electron Delocalization
Abstract
:1. Introduction
2. Results and Discussion
2.1. Aromaticity Indices of Monocycles
2.2. Visualized Diatropic Ring Currents of Bi- and Tricyclic N-PAHs
2.3. How to Quantify the Bifurcated Diatropic Ring Currents
2.4. Structural Disparities between the N-5MR and C-6MR
2.5. Graphitic N Atom in Linear N-PAHs
2.6. Coexistence of Mono- and Polycyclic π-Electronic Systems in Linear N-PAHs
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, L.; Cao, Y.; Colella, N.S.; Liang, Y.; Brédas, J.-L.; Houk, K.N.; Briseno, A.L. Unconventional, Chemically Stable, and Soluble Two-Dimensional Angular Polycyclic Aromatic Hydrocarbons: From Molecular Design to Device Applications. Acc. Chem. Res. 2015, 48, 500–509. [Google Scholar] [CrossRef]
- Schulze, M.; Philipp, M.; Waigel, W.; Schmidt, D.; Würthner, F. Library of Azabenz-Annulated Core-Extended Perylene Derivatives with Diverse Substitution Patterns and Tunable Electronic and Optical Properties. J. Org. Chem. 2016, 81, 8394–8405. [Google Scholar] [CrossRef]
- Sun, X.; James, T.D.; Anslyn, E.V. Arresting “Loose Bolt” Internal Conversion from −B(OH)2 Groups Is the Mechanism for Emission Turn-on in Ortho-Aminomethylphenylboronic Acid-Based Saccharide Sensors. J. Am. Chem. Soc. 2018, 140, 2348–2354. [Google Scholar] [CrossRef]
- Bayn, A.; Feng, X.; Müllen, K.; Haick, H. Field Effect Transistors Based on Polycyclic Aromatic Hydrocarbons for the Detection and Classification of Volatile Organic Compounds. ACS Appl. Mater. Interfaces 2013, 5, 3431–3440. [Google Scholar] [CrossRef]
- Dias, J.R. A Periodic Table for Polycyclic Aromatic Hydrocarbons. Acc. Chem. Res. 1985, 18, 241–248. [Google Scholar] [CrossRef]
- Nguyen, L.H.; Truong, T.N. Quantitative Structure–Property Relationships for the Electronic Properties of Polycyclic Aromatic Hydrocarbons. ACS Omega 2018, 3, 8913–8922. [Google Scholar] [CrossRef] [PubMed]
- Gutzler, R.; Perepichka, D.F. Π-Electron Conjugation in Two Dimensions. J. Am. Chem. Soc. 2013, 135, 16585–16594. [Google Scholar] [CrossRef] [PubMed]
- Randić, M. Aromaticity of Polycyclic Conjugated Hydrocarbons. Chem. Rev. 2003, 103, 3449–3606. [Google Scholar] [CrossRef] [PubMed]
- Menon, A.; Dreyer, J.A.H.; Martin, J.W.; Akroyd, J.; Robertson, J.; Kraft, M. Optical Band Gap of Cross-Linked, Curved, and Radical Polyaromatic Hydrocarbons. Phys. Chem. Chem. Phys. 2019, 21, 16240–16251. [Google Scholar] [CrossRef] [PubMed]
- Borissov, A.; Maurya, Y.K.; Moshniaha, L.; Wong, W.-S.; Żyła-Karwowska, M.; Stępień, M. Recent Advances in Heterocyclic Nanographenes and Other Polycyclic Heteroaromatic Compounds. Chem. Rev. 2022, 122, 565–788. [Google Scholar] [CrossRef]
- Alam, K.; Hong, S.W.; Oh, K.H.; Park, J.K. Divergent C–H. Annulation for Multifused N-Heterocycles: Regio- and Stereospecific Cyclizations of N-Alkynylindoles. Angew. Chem. Int. Ed. 2017, 56, 13387–13391. [Google Scholar] [CrossRef]
- Stassen, D.; Demitri, N.; Bonifazi, D. Extended O-Doped Polycyclic Aromatic Hydrocarbons. Angew. Chem. Int. Ed. 2016, 55, 5947–5951. [Google Scholar] [CrossRef]
- Delaunay, W.; Szűcs, R.; Pascal, S.; Mocanu, A.; Bouit, P.A.; Nyulászi, L.; Hissler, M. Synthesis and Electronic Properties of Polycyclic Aromatic Hydrocarbons Doped with Phosphorus and Sulfur. Dalton Trans. 2016, 45, 1896–1903. [Google Scholar] [CrossRef]
- Ashraf, R.S.; Meager, I.; Nikolka, M.; Kirkus, M.; Planells, M.; Schroeder, B.C.; McCulloch, I. Chalcogenophene Comonomer Comparison in Small Band Gap Diketopyrrolopyrrole-Based Conjugated Polymers for High-Performing Field-Effect Transistors and Organic Solar Cells. J. Am. Chem. Soc. 2015, 137, 1314–1321. [Google Scholar] [CrossRef]
- Kumar, G.J.; Bogoslavsky, B.; Debnath, S.; Bedi, A. Effect of Chalcogenophenes on Chiroptical Activity of Twisted Tetracenes: Computational Analysis, Synthesis and Crystal Structure Thereof. Molecules 2023, 28, 5074. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Shoyama, K.; Würthner, F. Nitrogen-Doped Polycyclic Aromatic Hydrocarbons by a One-Pot Suzuki Coupling/Intramolecular Snar Reaction. Chem. Sci. 2023, 14, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Boas, C.R.S.V.; Focassio, B.; Marinho, E.; Larrude, D.G.; Salvadori, M.C.; Leão, C.R.; dos Santos, D.J. Characterization of Nitrogen Doped Graphene Bilayers Synthesized by Fast, Low Temperature Microwave Plasma-Enhanced Chemical Vapour Deposition. Sci. Rep. 2019, 9, 13715. [Google Scholar] [CrossRef] [PubMed]
- Yen, P.-J.; Ilango, P.R.; Chiang, Y.-C.; Wu, C.-W.; Hsu, Y.-C.; Chueh, Y.-L.; Wei, K.-H. Tunable Nitrogen-Doped Graphene Sheets Produced with in Situ Electrochemical Cathodic Plasma at Room Temperature for Lithium-Ion Batteries. Mater. Today Energy 2019, 12, 336–347. [Google Scholar] [CrossRef]
- Sarkar, S.; Sudolská, M.; Dubecký, M.; Reckmeier, C.J.; Rogach, A.L.; Zbořil, R.; Otyepka, M. Graphitic Nitrogen Doping in Carbon Dots Causes Red-Shifted Absorption. J. Phys. Chem. C 2016, 120, 1303–1308. [Google Scholar] [CrossRef]
- Zhuang, S.; Lee, E.S.; Lei, L.; Nunna, B.B.; Kuang, L.; Zhang, W. Synthesis of Nitrogen-Doped Graphene Catalyst by High-Energy Wet Ball Milling for Electrochemical Systems. Int. J. Energy Res. 2016, 40, 2136–2149. [Google Scholar] [CrossRef]
- Chen, Z.; Wannere, C.S.; Corminboeuf, C.; Puchta, R.; Schleyer, P.v.R. Nucleus-Independent Chemical Shifts (Nics) as an Aromaticity Criterion. Chem. Rev. 2005, 105, 3842–3888. [Google Scholar] [CrossRef] [PubMed]
- Gershoni-Poranne, R.; Stanger, A. The Nics-Xy-Scan: Identification of Local and Global Ring Currents in Multi-Ring Systems. Chem. A Eur. J. 2014, 20, 5673–5688. [Google Scholar] [CrossRef] [PubMed]
- Pino-Rios, R.; Solà, M. The Relative Stability of Indole Isomers Is a Consequence of the Glidewell-Lloyd Rule. J. Phys. Chem. A 2021, 125, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Pauling, L. Atomic Radii and Interatomic Distances in Metals. J. Am. Chem. Soc. 1947, 69, 542–553. [Google Scholar] [CrossRef]
- Becke, A.D. A New Mixing of Hartree–Fock and Local Density-Functional Theories. J. Chem. Phys. 1993, 98, 1372–1377. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Cho, S.; Yoon, Z.S.; Kim, K.S.; Yoon, M.-C.; Cho, D.-G.; Sessler, J.L.; Kim, D. Defining Spectroscopic Features of Heteroannulenic Antiaromatic Porphyrinoids. J. Phys. Chem. Lett. 2010, 1, 895–900. [Google Scholar] [CrossRef]
- Geuenich, D.; Hess, K.; Köhler, F.; Herges, R. Anisotropy of the Induced Current Density (Acid), a General Method to Quantify and Visualize Electronic Delocalization. Chem. Rev. 2005, 105, 3758–3772. [Google Scholar] [CrossRef]
- Stanger, A. Nucleus-Independent Chemical Shifts (Nics): Distance Dependence and Revised Criteria for Aromaticity and Antiaromaticity. J. Org. Chem. 2006, 71, 883–893. [Google Scholar] [CrossRef]
- POVRAY, version 3.7 beta; Persistence of Vision Raytracer Pty: Williamstown, Australia, 2006.
- Krygowski, T.M.; Cyrański, M.K. Structural Aspects of Aromaticity. Chem. Rev. 2001, 101, 1385–1420. [Google Scholar] [CrossRef] [PubMed]
Compound | HOMA | ACID Critical Isosurface Value | NICS(0) | NICS(1) | NICS(2) | NICS(3) |
---|---|---|---|---|---|---|
Benzene (C-6MR) | 0.999 | 0.082 | −8.44 | −10.9 | −5.01 | −1.96 |
Pyridine (N-6MR) | 1.000 | 0.082 | −7.11 | −10.6 | −4.93 | −1.93 |
Pyrrole (N-5MR) | 0.872 | 0.066 | −14.0 | −11.0 | −4.22 | −1.51 |
Compound | Location | HOMA | ACID Critical Isosurface Value | NICS(2) |
---|---|---|---|---|
Naphthalene | C-6MR | 0.812 | 0.076 | −5.50 |
C-10MR | 0.857 | 0.085 | ||
Indole | N-5MR | 0.747 | 0.056 | −4.51 |
C-6MR | 0.937 | 0.065 | −5.39 | |
N-9MR | 0.871 | 0.069 | ||
Isoindole | N-5MR | 0.787 | 0.078 | −5.35 |
C-6MR | 0.679 | 0.072 | −4.57 | |
N-9MR | 0.865 | 0.079 | ||
Indolizine | N-5MR | 0.840 | 0.081 | −5.30 |
N-6MR | 0.737 | 0.072 | −3.71 | |
N-9MR | 0.863 | 0.072 | ||
Quinoline | N-6MR | 0.845 | 0.072 | −5.43 |
C-6MR | 0.822 | 0.070 | −5.50 | |
N-10MR | 0.877 | 0.084 | ||
Isoquinoline | N-6MR | 0.850 | 0.078 | −5.42 |
C-6MR | 0.837 | 0.078 | −5.55 | |
N-10MR | 0.873 | 0.082 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, J.M.; Shim, S.; Bui, H.T.; Kim, J.; Kim, H.-J.; Hwa, Y.; Cho, S. Substitution Effect of a Single Nitrogen Atom on π-Electronic Systems of Linear Polycyclic Aromatic Hydrocarbons (PAHs): Theoretically Visualized Coexistence of Mono- and Polycyclic π-Electron Delocalization. Molecules 2024, 29, 784. https://doi.org/10.3390/molecules29040784
Lim JM, Shim S, Bui HT, Kim J, Kim H-J, Hwa Y, Cho S. Substitution Effect of a Single Nitrogen Atom on π-Electronic Systems of Linear Polycyclic Aromatic Hydrocarbons (PAHs): Theoretically Visualized Coexistence of Mono- and Polycyclic π-Electron Delocalization. Molecules. 2024; 29(4):784. https://doi.org/10.3390/molecules29040784
Chicago/Turabian StyleLim, Jong Min, Sangdeok Shim, Hoa Thi Bui, Jimin Kim, Ho-Joong Kim, Yoon Hwa, and Sung Cho. 2024. "Substitution Effect of a Single Nitrogen Atom on π-Electronic Systems of Linear Polycyclic Aromatic Hydrocarbons (PAHs): Theoretically Visualized Coexistence of Mono- and Polycyclic π-Electron Delocalization" Molecules 29, no. 4: 784. https://doi.org/10.3390/molecules29040784
APA StyleLim, J. M., Shim, S., Bui, H. T., Kim, J., Kim, H. -J., Hwa, Y., & Cho, S. (2024). Substitution Effect of a Single Nitrogen Atom on π-Electronic Systems of Linear Polycyclic Aromatic Hydrocarbons (PAHs): Theoretically Visualized Coexistence of Mono- and Polycyclic π-Electron Delocalization. Molecules, 29(4), 784. https://doi.org/10.3390/molecules29040784