Inhibitors of Transthyretin Amyloidosis: How to Rank Drug Candidates Using X-ray Crystallography Data
Abstract
:1. Introduction
2. Results and Discussion
2.1. Analysis of Crystal Structures of Selected TTR Mutants
2.2. Analysis of Crystal Structures of TTR/Kinetic Stabilizers
2.3. Analysis of the Top-Scored TTR Kinetic Stabilizers
# PDB | Structure | Description |
---|---|---|
#1 3imt [33] | (E)-4-(4-aminostyryl)-2,6-dibromophenol: The group of Jeffery Kelly proposed an efficacy score function (Equation (1) from [33]) integrating TTR amyloid inhibition efficacy and plasma TTR binding stoichiometry data. This compound reached the highest score (0.97) over the 92 stilbene and dihydrostilbene analogs synthesized. It exhibits an exceptional human plasma TTR binding stoichiometry (1.93) and a very strong inhibiting effect on fibril formation in vitro. Two binding orientations were observed in the electron density; in the most frequent position, the 3,5-dibromo-4-hydroxyphenyl ring occupies the T4 outer binding subsite, while the p-amino group from the other ring makes bridging hydrogen bonds with Ser117/Ser117′ side chains. | |
#2 3ipb [29] | A palindromic bivalent amyloid inhibitor: Ligand binding towards native TTR was irreversible under physiological conditions, stabilizing the tetrameric assembly and inhibiting amyloidogenic aggregation more potently than other known ligands, according to the authors. The binding mode is unique among the tested stabilizers as a single molecule extends over the TTR channel, occupying the two binding sites. The binding of this class of compounds agrees with the existence of a breathing mode of the protein, which could provide a potential route for ligand entry. | |
#3 3fc8 [34] | Iododiflunisal-betaAlaOMe: Salicylates look particularly interesting as drug candidates due to their long therapeutic tradition and wide clinical applications. Based on the diflunisal core structure, a salicylate drug with NSAID activity was selected for clinical trials against TTR amyloid diseases, and the authors designed around 40 iodinated derivatives; this one stood out due to the remarkable combined TTR binding vs. aggregation inhibition properties. | |
#4 3p3u [35] | 5-(2-ethoxyphenyl)-3-(pyridin-4-yl)-1,2,4-oxadiazole: A total of 33 compounds were investigated according to their TTR amyloidogenesis inhibition properties [35]. Three compounds were able to inhibit aggregation completely under the experimental conditions used. Among the three, this one exhibits the lowest IC50 value. | |
#5 3esn [36] | N-(3,5-Dibromo-4-hydroxyphenyl)-3,5-dimethyl-4-hydroxybenzamide: Many of the TTR kinetic stabilizers are composed of two aromatic rings and a linker. The authors have previously established optimal structures for one aromatic ring and the linker and, in this work, optimized the second ring substructure (the bottom ring in the figure). They observed that the 2,6-substituted aryls bearing small substituents (like this compound) generate the most potent and selective inhibitors. | |
#6a 3tct [37] | Tafamidis: Most of the TTR kinetic stabilizers emerge from structure-based design studies and thus do not have their pharmacokinetic and pharmacodynamic properties evaluated. Tafamidis was shown by the Kelly group to be a potent and selective transthyretin kinetic stabilizer. It was approved by the European Medicines Agency for the treatment of familial amyloidotic polyneuropathy (FAP) in 2011. Here, we show that tafamidis is also one of the top-ranked compounds for promoting the compactness of TTR. | |
#6b 3cn3 [32] | 1,3-Dibromo-2-hydroxy-5-phenoxybenzene: In this study, it was shown that the 3,5-dibromo-4-hydroxylphenyl ring strongly prefers to bind in the outer binding site, bridging monomers by making salt bridging interactions with the Lys-15/15′ ε-ammonium groups and maximizing the occupancy of halogen binding pockets (HBPs) 1 and 1′. | |
#6c 3ims [33] | 2,6-Dibromo-4-(2,6-dichlorophenethyl)phenol: This compound emerged from the same work as compound #1 and reached an efficacy score of 0.84 and a TTR binding stoichiometry of 1.61. The bromo-substituted ring occupies the outermost part of the binding site (as happens with 6b); the 2,6-dichlorophenyl ring occupies the inner binding subsite, directing the chloride atoms into HBP 3 and 3′. | |
#6d 4mas | 3,3′,5,5′-Tetrachloro-[1,1′-biphenyl]-4,4′diol: The structure of the complex of this compound with TTR was not included in a publication, and therefore, its efficacy is not known. One of the hydroxyl substituents is involved in salt bridge interactions with the Lys-15/15′ side chains, while the chloro atoms occupy the halogen binding pockets (HBPs) 1 and 1′. |
3. Materials and Methods
3.1. Transthyretin Structural Models
3.2. The Scoring Function
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Johnson, S.M.; Wiseman, R.L.; Sekijima, Y.; Green, N.S.; Adamski-Werner, S.L.; Kelly, J.W. Native state kinetic stabilization as a strategy to ameliorate protein misfolding diseases: A focus on the transthyretin amyloidoses. Acc. Chem. Res. 2005, 38, 911–921. [Google Scholar] [CrossRef]
- Gales, L.; Cardoso, I.; Fayard, B.; Quintanilha, A.; Saraiva, M.J.; Damas, A.M. X-ray absorption spectroscopy reveals a substantial increase of sulfur oxidation in transthyretin (TTR) upon fibrillization. J. Biol. Chem. 2003, 278, 11654–11660. [Google Scholar] [CrossRef]
- Gales, L.; Saraiva, M.J.; Damas, A.M. Structural basis for the protective role of sulfite against transthyretin amyloid formation. Biochim. Biophys. Acta Proteins Proteom. 2007, 1774, 59–64. [Google Scholar] [CrossRef]
- Serag, A.A.; Altenbach, C.; Gingery, M.; Hubbell, W.L.; Yeates, T.O. Arrangement of subunits and ordering of β-strands in an amyloid sheet. Nat. Struct. Biol. 2002, 9, 734–739. [Google Scholar] [CrossRef] [PubMed]
- Olofsson, B.O.; Backman, C.; Karp, K.; Suhr, O.B. Progression of cardiomyopathy after liver transplantation in patients with familial amyloidotic polyneuropathy, Portuguese type. Transplantation 2002, 73, 745–751. [Google Scholar] [CrossRef] [PubMed]
- Gales, L. Tegsedi (Inotersen): An antisense oligonucleotide approved for the treatment of adult patients with hereditary transthyretin amyloidosis. Pharmaceuticals 2019, 12, 78. [Google Scholar] [CrossRef]
- Johnson, S.M.; Connelly, S.; Fearns, C.; Powers, E.T.; Kelly, J.W. The transthyretin amyloidoses: From delineating the molecular mechanism of aggregation linked to pathology to a regulatory-agency-approved drug. J. Mol. Biol. 2012, 421, 185–203. [Google Scholar] [CrossRef] [PubMed]
- Almeida, M.R.; Gales, L.; Damas, A.M.; Cardoso, I.; Saraiva, M.J. Small transthyretin (TTR) ligands as possible therapeutic agents in TTR amyloidoses. Curr. Drug Targets CNS Neurol. Disord. 2005, 4, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Hagen, G.A.; Elliott, W.J. Transport of thyroid hormones in serum and cerebrospinal fluid. J. Clin. Endocrinol. Metab. 1973, 37, 415–422. [Google Scholar] [CrossRef]
- Wojtczak, A.; Cody, V.; Luft, J.R.; Pangborn, W. Structures of human transthyretin complexed with thyroxine at 2.0 A resolution and 3′,5′-dinitro-N-acetyl-L-thyronine at 2.2 A resolution. Acta Crystallogr. D Biol. Crystallogr. 1996, 52 Pt 4, 758–765. [Google Scholar] [CrossRef]
- Foss, T.R.; Wiseman, R.L.; Kelly, J.W. The pathway by which the tetrameric protein transthyretin dissociates. Biochemistry 2005, 44, 15525–15533. [Google Scholar] [CrossRef] [PubMed]
- Cotrina, E.Y.; Santos, L.M.; Rivas, J.; Blasi, D.; Leite, J.P.; Liz, M.A.; Busquets, M.A.; Planas, A.; Prohens, R.; Gimeno, A.; et al. Targeting transthyretin in Alzheimer’s disease: Drug discovery of small-molecule chaperones as disease-modifying drug candidates for Alzheimer’s disease. Eur. J. Med. Chem. 2021, 226, 113847. [Google Scholar] [CrossRef] [PubMed]
- Gales, L. Detection and clearance in Alzheimer’s disease: Leading with illusive chemical, structural and morphological features of the targets. Neural Regen. Res. 2024, 19, 497–498. [Google Scholar] [CrossRef] [PubMed]
- Blake, C.C.F.; Geisow, M.J.; Oatley, S.J.; Rérat, B.; Rérat, C. Structure of prealbumin: Secondary, tertiary and quaternary interactions determined by Fourier refinement at 1.8 Å. J. Mol. Biol. 1978, 121, 339–356. [Google Scholar] [CrossRef] [PubMed]
- Monaco, H.L.; Rizzi, M.; Coda, A. Structure of a complex of two plasma proteins: Transthyretin and retinol-binding protein. Science 1995, 268, 1039–1041. [Google Scholar] [CrossRef] [PubMed]
- Palaninathan, S.K. Nearly 200 X-ray crystal structures of transthyretin: What do they tell us about this protein and the design of drugs for TTR amyloidoses? Curr. Med. Chem. 2012, 19, 2324–2342. [Google Scholar] [CrossRef] [PubMed]
- Neto-Silva, R.M.; Macedo-Ribeiro, S.; Pereira, P.J.B.; Coll, M.; Saraiva, M.J.; Damas, A.M. X-ray crystallographic studies of two transthyretin variants: Further insights into amyloidogenesis. Acta Crystallogr. Sect. D Biol. Crystallogr. 2005, 61, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Redondo, C.; Damas, A.M.; Olofsson, A.; Lundgren, E.; Saraiva, M.J.M. Search for intermediate structures in transthyretin fibrillogenesis: Soluble tetrameric Tyr78Phe TTR expresses a specific epitope present only in amyloid fibrils. J. Mol. Biol. 2000, 304, 461–470. [Google Scholar] [CrossRef]
- Costa, P.P.; Figueira, A.S.; Bravo, F.R. Amyloid fibril protein related to prealbumin in familial amyloidotic polyneuropathy. Proc. Natl. Acad. Sci. USA 1978, 75, 4499–4503. [Google Scholar] [CrossRef]
- Hamilton, J.A.; Steinrauf, L.K.; Braden, B.C.; Liepnieks, J.; Benson, M.D.; Holmgren, G.; Sandgren, O.; Steen, L. The X-ray crystal structure refinements of normal human transthyretin and the amyloidogenic Val-30→Met variant to 1.7-Å resolution. J. Biol. Chem. 1993, 268, 2416–2424. [Google Scholar] [CrossRef]
- Jacobson, D.R.; McFarlin, D.E.; Kane, I.; Buxbaum, J.N. Transthyretin Pro55, a variant associated with early-onset, aggressive, diffuse amyloidosis with cardiac and neurologic involvement. Hum. Genet. 1992, 89, 353–356. [Google Scholar] [CrossRef]
- Cendron, L.; Trovato, A.; Seno, F.; Folli, C.; Alfieri, B.; Zanotti, G.; Berni, R. Amyloidogenic potential of transthyretin variants. Insights from structural and computational analyses. J. Biol. Chem. 2009, 284, 25832–25841. [Google Scholar] [CrossRef]
- Castro-Rodrigues, A.F.; Gales, L.; Saraiva, M.J.; Damas, A.M. Structural insights into a zinc-dependent pathway leading to Leu55Pro transthyretin amyloid fibrils. Acta Crystallogr. Sect. D Biol. Crystallogr. 2011, 67, 1035–1044. [Google Scholar] [CrossRef] [PubMed]
- Palaninathan, S.K.; Mohamedmohaideen, N.N.; Snee, W.C.; Kelly, J.W.; Sacchettini, J.C. Structural Insight into pH-Induced Conformational Changes within the Native Human Transthyretin Tetramer. J. Mol. Biol. 2008, 382, 1157–1167. [Google Scholar] [CrossRef]
- Leach, B.I.; Zhang, X.; Kelly, J.W.; Dyson, H.J.; Wright, P.E. NMR Measurements Reveal the Structural Basis of Transthyretin Destabilization by Pathogenic Mutations. Biochemistry 2018, 57, 4421–4430. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Cho, H.S.; Hoyt, D.W.; Nguyen, T.N.; Olds, P.; Kelly, J.W.; Wemmer, D.E. Deuterium-proton exchange on the native wild-type transthyretin tetramer identifies the stable core of the individual subunits and indicates mobility at the subunit interface. J. Mol. Biol. 2000, 303, 555–565. [Google Scholar] [CrossRef] [PubMed]
- Keetch, C.A.; Bromley, E.H.C.; McCammon, M.G.; Wang, N.; Christodoulou, J.; Robinson, C.V. L55P transthyretin accelerates subunit exchange and leads to rapid formation of hybrid tetramers. J. Biol. Chem. 2005, 280, 41667–41674. [Google Scholar] [CrossRef] [PubMed]
- Quintas, A.; Saraiva, M.J.M.; Britot, R.M.M. The tetrameric protein transthyretin dissociates to a non-native monomer in solution. A novel model for amyloidogenesis. J. Biol. Chem. 1999, 274, 32943–32949. [Google Scholar] [CrossRef] [PubMed]
- Kolstoe, S.E.; Mangione, P.P.; Bellotti, V.; Taylor, G.W.; Tennent, G.A.; Deroo, S.; Morrison, A.J.; Cobb, A.J.; Coyne, A.; McCammon, M.G.; et al. Trapping of palindromic ligands within native transthyretin prevents amyloid formation. Proc. Natl. Acad. Sci. USA 2010, 107, 20483–20488. [Google Scholar] [CrossRef] [PubMed]
- Cianci, M.; Folli, C.; Zonta, F.; Florio, P.; Berni, R.; Zanotti, G. Structural evidence for asymmetric ligand binding to transthyretin. Acta Crystallogr. Sect. D Biol. Crystallogr. 2015, 71, 1582–1592. [Google Scholar] [CrossRef]
- Florio, P.; Folli, C.; Cianci, M.; Del Rio, D.; Zanotti, G.; Berni, R. Transthyretin binding heterogeneity and antiamyloidogenic activity of natural polyphenols and their metabolites. J. Biol. Chem. 2015, 290, 29769–29780. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.M.; Connelly, S.; Wilson, I.A.; Kelly, J.W. Toward optimization of the linker substructure common to transthyretin amyloidogenesis inhibitors using biochemical and structural studies. J. Med. Chem. 2008, 51, 6348–6358. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Reixach, N.; Connelly, S.; Johnson, S.M.; Wilson, I.A.; Kelly, J.W. A substructure combination strategy to create potent and selective transthyretin kinetic stabilizers that prevent amyloidogenesis and cytotoxicity. J. Am. Chem. Soc. 2010, 132, 1359–1370. [Google Scholar] [CrossRef] [PubMed]
- Mairal, T.; Nieto, J.; Pinto, M.; Almeida, M.R.; Gales, L.; Ballesteros, A.; Barluenga, J.; Perez, J.J.; Vazquez, J.T.; Centeno, N.B.; et al. Iodine atoms: A new molecular feature for the design of potent transthyretin fibrillogenesis inhibitors. PLoS ONE 2009, 4, e4124. [Google Scholar] [CrossRef] [PubMed]
- Alhamadsheh, M.M.; Connelly, S.; Cho, A.; Reixach, N.; Powers, E.T.; Pan, D.W.; Wilson, I.A.; Kelly, J.W.; Graef, I.A. Potent kinetic stabilizers that prevent transthyretin-mediated cardiomyocyte proteotoxicity. Sci. Transl. Med. 2011, 3, 97ra81. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.M.; Connelly, S.; Wilson, I.A.; Kelly, J.W. Toward optimization of the second aryl substructure common to transthyretin amyloidogenesis inhibitors using biochemical and structural studies. J. Med. Chem. 2009, 52, 1115–1125. [Google Scholar] [CrossRef] [PubMed]
- Bulawa, C.E.; Connelly, S.; Devit, M.; Wang, L.; Weigel, C.; Fleming, J.A.; Packman, J.; Powers, E.T.; Wiseman, R.L.; Foss, T.R.; et al. Tafamidis, a potent and selective transthyretin kinetic stabilizer that inhibits the amyloid cascade. Proc. Natl. Acad. Sci. USA 2012, 109, 9629–9634. [Google Scholar] [CrossRef]
- Berk, J.L.; Suhr, O.B.; Obici, L.; Sekijima, Y.; Zeldenrust, S.R.; Yamashita, T.; Heneghan, M.A.; Gorevic, P.D.; Litchy, W.J.; Wiesman, J.F.; et al. Repurposing diflunisal for familial amyloid polyneuropathy: A randomized clinical trial. JAMA J. Am. Med. Assoc. 2013, 310, 2658–2667. [Google Scholar] [CrossRef]
- Burley, S.K.; Berman, H.M.; Bhikadiya, C.; Bi, C.; Chen, L.; Di Costanzo, L.; Christie, C.; Duarte, J.M.; Dutta, S.; Feng, Z.; et al. Protein Data Bank: The single global archive for 3D macromolecular structure data. Nucleic Acids Res. 2019, 47, D520–D528. [Google Scholar]
- Baranczak, A.; Connelly, S.; Liu, Y.; Choi, S.; Grimster, N.P.; Powers, E.T.; Wilson, I.A.; Kelly, J.W. Fluorogenic small molecules requiring reaction with a specific protein to create a fluorescent conjugate for biological imaging—What we know and what we need to learn. Biopolymers 2014, 101, 484–495. [Google Scholar] [CrossRef]
- Baranczak, A.; Liu, Y.; Connelly, S.; Du, W.G.; Greiner, E.R.; Genereux, J.C.; Wiseman, R.L.; Eisele, Y.S.; Bradbury, N.C.; Dong, J.; et al. A fluorogenic aryl fluorosulfate for intraorganellar transthyretin imaging in living cells and in Caenorhabditis elegans. J. Am. Chem. Soc. 2015, 137, 7404–7414. [Google Scholar] [CrossRef]
- Ciccone, L.; Nencetti, S.; Rossello, A.; Stura, E.A.; Orlandini, E. Synthesis and structural analysis of halogen substituted fibril formation inhibitors of Human Transthyretin (TTR). J. Enzym. Inhib. Med. Chem. 2016, 31 (Suppl. 1), 40–51. [Google Scholar] [CrossRef]
- Ciccone, L.; Tepshi, L.; Nencetti, S.; Stura, E.A. Transthyretin complexes with curcumin and bromo-estradiol: Evaluation of solubilizing multicomponent mixtures. New Biotechnol. 2015, 32, 54–64. [Google Scholar] [CrossRef]
- Gales, L.; Almeida, M.R.; Arsequell, G.; Valencia, G.; Saraiva, M.J.; Damas, A.M. Iodination of salicylic acid improves its binding to transthyretin. Biochim. Biophys. Acta 2008, 1784, 512–517. [Google Scholar] [CrossRef]
- Gales, L.; Macedo-Ribeiro, S.; Arsequell, G.; Valencia, G.; Saraiva, M.J.; Damas, A.M. Human transthyretin in complex with iododiflunisal: Structural features associated with a potent amyloid inhibitor. Biochem. J. 2005, 388 Pt 2, 615–621. [Google Scholar] [CrossRef]
- Iakovleva, I.; Begum, A.; Brannstrom, K.; Wijsekera, A.; Nilsson, L.; Zhang, J.; Andersson, P.L.; Sauer-Eriksson, A.E.; Olofsson, A. Tetrabromobisphenol A Is an Efficient Stabilizer of the Transthyretin Tetramer. PLoS ONE 2016, 11, e0153529. [Google Scholar] [CrossRef] [PubMed]
- Iakovleva, I.; Begum, A.; Pokrzywa, M.; Walfridsson, M.; Sauer-Eriksson, A.E.; Olofsson, A. The flavonoid luteolin, but not luteolin-7-O-glucoside, prevents a transthyretin mediated toxic response. PLoS ONE 2015, 10, e0128222. [Google Scholar] [CrossRef] [PubMed]
- Iakovleva, I.; Brannstrom, K.; Nilsson, L.; Gharibyan, A.L.; Begum, A.; Anan, I.; Walfridsson, M.; Sauer-Eriksson, A.E.; Olofsson, A. Enthalpic Forces Correlate with the Selectivity of Transthyretin-Stabilizing Ligands in Human Plasma. J. Med. Chem. 2015, 58, 6507–6515. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.M.; Connelly, S.; Wilson, I.A.; Kelly, J.W. Biochemical and structural evaluation of highly selective 2-arylbenzoxazole-based transthyretin amyloidogenesis inhibitors. J. Med. Chem. 2008, 51, 260–270. [Google Scholar] [CrossRef] [PubMed]
- Morais-de-Sa, E.; Neto-Silva, R.M.; Pereira, P.J.; Saraiva, M.J.; Damas, A.M. The binding of 2,4-dinitrophenol to wild-type and amyloidogenic transthyretin. Acta Crystallogr. D Biol. Crystallogr. 2006, 62 Pt 5, 512–519. [Google Scholar] [CrossRef] [PubMed]
- Morais-de-Sa, E.; Pereira, P.J.; Saraiva, M.J.; Damas, A.M. The crystal structure of transthyretin in complex with diethylstilbestrol: A promising template for the design of amyloid inhibitors. J. Biol. Chem. 2004, 279, 53483–53490. [Google Scholar] [CrossRef] [PubMed]
- Neumann, P.; Cody, V.; Wojtczak, A. Ligand binding at the transthyretin dimer-dimer interface: Structure of the transthyretin-T4Ac complex at 2.2 Angstrom resolution. Acta Crystallogr. D Biol. Crystallogr. 2005, 61 Pt 10, 1313–1319. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, L.; Larsson, A.; Begum, A.; Iakovleva, I.; Carlsson, M.; Brannstrom, K.; Sauer-Eriksson, A.E.; Olofsson, A. Modifications of the 7-Hydroxyl Group of the Transthyretin Ligand Luteolin Provide Mechanistic Insights into Its Binding Properties and High Plasma Specificity. PLoS ONE 2016, 11, e0153112. [Google Scholar] [CrossRef]
- Suh, E.H.; Liu, Y.; Connelly, S.; Genereux, J.C.; Wilson, I.A.; Kelly, J.W. Stilbene vinyl sulfonamides as fluorogenic sensors of and traceless covalent kinetic stabilizers of transthyretin that prevent amyloidogenesis. J. Am. Chem. Soc. 2013, 135, 17869–17880. [Google Scholar] [CrossRef]
- Zhang, J.; Begum, A.; Brannstrom, K.; Grundstrom, C.; Iakovleva, I.; Olofsson, A.; Sauer-Eriksson, A.E.; Andersson, P.L. Structure-Based Virtual Screening Protocol for in Silico Identification of Potential Thyroid Disrupting Chemicals Targeting Transthyretin. Environ. Sci. Technol. 2016, 50, 11984–11993. [Google Scholar] [CrossRef]
- Sant’Anna, R.; Almeida, M.R.; Varejao, N.; Gallego, P.; Esperante, S.; Ferreira, P.; Pereira-Henriques, A.; Palhano, F.L.; De Carvalho, M.; Foguel, D.; et al. Cavity filling mutations at the thyroxine-binding site dramatically increase transthyretin stability and prevent its aggregation. Sci. Rep. 2017, 7, 44709. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leite, J.P.; Costa-Rodrigues, D.; Gales, L. Inhibitors of Transthyretin Amyloidosis: How to Rank Drug Candidates Using X-ray Crystallography Data. Molecules 2024, 29, 895. https://doi.org/10.3390/molecules29040895
Leite JP, Costa-Rodrigues D, Gales L. Inhibitors of Transthyretin Amyloidosis: How to Rank Drug Candidates Using X-ray Crystallography Data. Molecules. 2024; 29(4):895. https://doi.org/10.3390/molecules29040895
Chicago/Turabian StyleLeite, José P., Diogo Costa-Rodrigues, and Luís Gales. 2024. "Inhibitors of Transthyretin Amyloidosis: How to Rank Drug Candidates Using X-ray Crystallography Data" Molecules 29, no. 4: 895. https://doi.org/10.3390/molecules29040895
APA StyleLeite, J. P., Costa-Rodrigues, D., & Gales, L. (2024). Inhibitors of Transthyretin Amyloidosis: How to Rank Drug Candidates Using X-ray Crystallography Data. Molecules, 29(4), 895. https://doi.org/10.3390/molecules29040895