Investigation on Gold Dissolution Performance and Mechanism in Imidazolium Cyanate Ionic Liquids
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Imidazolium Cyanate Ionic Liquid
2.2. The Gold Dissolution Performance of Imidazolium Cyanate Ionic Liquid
2.3. Investigation into the Gold Dissolution Mechanism of Imidazolium Cyanate Ionic Liquid
3. Materials and Methods
3.1. Materials and Reagents
3.2. The Synthesis of Imidazolium Cyanate Ionic Liquids
3.2.1. Synthesis of 1-Ethyl-3-methylimidazolium Bromide
3.2.2. Synthesis of Silver Cyanate
3.2.3. Synthesis of 1-Ethyl-3-methylimidazole Cyanate
3.3. FTIR Spectroscopy
3.4. TG-DTG Analysis
3.5. Dissolution Test
3.6. Scanning Electron Microscopy Investigation
3.7. Nuclear Magnetic Resonance Spectroscopy
3.8. Electrospray Mass Spectrometry
4. Conclusions
- (1)
- The synthesized imidazolyl cyanate ionic liquids ([C2MIM][OCN], [C3MIM][OCN] and [C4MIM][OCN]) were characterized by NMR, FTIR and TG-DTG analysis. The three ILs were stable when under 200 °C, and the water contents in the synthesized ILs were less than 2 wt. %;
- (2)
- All three imidazolyl cyanate ionic liquids had a gold dissolution ability, and [C2MIM][OCN] showed the best performance because of its low viscosity and small steric hindrance. The increase in temperature promoted the gold dissolution rate by promoting the mass transfer rate. The increase in solvent content in the imidazolyl cyanate solution decreased its gold dissolution ability, for the ions in the ionic liquid was surrounded by H2O molecules, and this prohibited the gold-solubilizing process. The polarity of the solvent also affected the gold dissolution capability of imidazolyl cyanate, and the weaker the polarity of the solvent, the more conducive it was to the gold dissolution reaction;
- (3)
- The mechanism of gold dissolution by imidazolium cyanate was investigated by NMR and ESI-MS. The mechanism of the gold dissolution reaction in imidazolyl cyanate solution was presented as a hypothesis. The gold dissolution in imidazolium cyanate [C4MIM][OCN] involved deprotonation in the C2 position of the imidazole ring and the forming of NHCs. Au was oxidized by oxygen to Au+ and combined with NHC ligands to form carbene gold complexes, which enabled the gold dissolution. However, the mechanism needs to be further explored.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aylmore, M.G.; Muir, D.M. Thiosulfate leaching of gold—A review. Miner. Eng. 2001, 14, 135–174. [Google Scholar] [CrossRef]
- Yue, C.; Sun, H.; Liu, W.J.; Guan, B.; Deng, X.; Zhang, X.; Yang, P. Environmentally benign, rapid, and selective extraction of gold from ores and waste electronic materials. Angew. Chem. 2017, 129, 9459–9463. [Google Scholar] [CrossRef]
- Sun, C.-b.; Zhang, X.-l.; Kou, J.; Xing, Y. A review of gold extraction using noncyanide lixiviants: Fundamentals, advancements, and challenges toward alkaline sulfur-containing leaching agents. Int. J. Miner. Metall. Mater. 2020, 27, 417–431. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, C.; Xing, Y.; Kou, J.; Su, M. Thermal decomposition behavior of pyrite in a microwave field and feasibility of gold leaching with generated elemental sulfur from the decomposition of gold-bearing sulfides. Hydrometallurgy 2018, 180, 210–220. [Google Scholar] [CrossRef]
- Zhang, N.; Kou, J.; Sun, C. Investigation on Gold-Ligand Interaction for Complexes from Gold Leaching: A DFT Study. Molecules 2023, 28, 1508. [Google Scholar] [CrossRef] [PubMed]
- Lei, Z.; Chen, B.; Koo, Y.-M.; MacFarlane, D.R. Introduction: Ionic Liquids. Chem. Rev. 2017, 117, 6633–6635. [Google Scholar] [CrossRef] [PubMed]
- Freemantle, M. An Introduction to Ionic Liquids; Royal Society of Chemistry: London, UK, 2010. [Google Scholar]
- Forsyth, S.A.; Pringle, J.M.; MacFarlane, D.R. Ionic liquids—An overview. Aust. J. Chem. 2004, 57, 113–119. [Google Scholar] [CrossRef]
- Cao, F.; Wang, W.; Wei, D.-z.; Liu, W.-g. Separation of tungsten and molybdenum with solvent extraction using functionalized ionic liquid tricaprylmethylammonium bis(2,4,4-trimethylpentyl)phosphinate. Int. J. Miner. Metall. Mater. 2021, 28, 1769–1776. [Google Scholar] [CrossRef]
- Uerdingen, M.; Treber, C.; Balser, M.; Schmitt, G.; Werner, C. Corrosion behaviour of ionic liquids. Green Chem. 2005, 7, 321–325. [Google Scholar] [CrossRef]
- Bardi, U.; Chenakin, S.P.; Caporali, S.; Lavacchi, A.; Perissi, I.; Tolstogouzov, A. Surface modification of industrial alloys induced by long-term interaction with an ionic liquid. Surf. Interface Anal. 2006, 38, 1768–1772. [Google Scholar] [CrossRef]
- Kim, B.-K.; Lee, E.J.; Kang, Y.; Lee, J.-J. Application of ionic liquids for metal dissolution and extraction. J. Ind. Eng. Chem. 2018, 61, 388–397. [Google Scholar] [CrossRef]
- Teimouri, S.; Potgieter, J.H.; Simate, G.S.; Dyk, L.V.; Dworzanowski, M. Oxidative leaching of refractory sulphidic gold tailings with an ionic liquid. Miner. Eng. 2020, 156, 106484. [Google Scholar] [CrossRef]
- Whitehead, J.A.; Lawrance, G.A.; McCluskey, A. ‘Green’ leaching: Recyclable and selective leaching of gold-bearing ore in an ionic liquid. Green Chem. 2004, 6, 313–315. [Google Scholar] [CrossRef]
- Whitehead, J.A.; Zhang, J.; McCluskey, A.; Lawrance, G.A. Comparative leaching of a sulfidic gold ore in ionic liquid and aqueous acid with thiourea and halides using Fe(III) or HSO5− oxidant. Hydrometallurgy 2009, 98, 276–280. [Google Scholar] [CrossRef]
- Whitehead, J.A.; Zhang, J.; Pereira, N.; McCluskey, A.; Lawrance, G.A. Application of 1-alkyl-3-methyl-imidazolium ionic liquids in the oxidative leaching of sulphidic copper, gold and silver ores. Hydrometallurgy 2007, 88, 109–120. [Google Scholar] [CrossRef]
- Chiarotto, I.; Feroci, M.; Inesi, A. First direct evidence of N-heterocyclic carbene in BMIm acetate ionic liquids. An electrochemical and chemical study on the role of temperature. New J. Chem. 2017, 41, 7840–7843. [Google Scholar] [CrossRef]
- Frey, G.D.; Dewhurst, R.D.; Kousar, S.; Donnadieu, B.; Bertrand, G. Cyclic (Alkyl)(amino)carbene Gold(I) complexes: A Synthetic and Structural Investigation. J. Organomet. Chem. 2008, 693, 1674–1682. [Google Scholar] [CrossRef] [PubMed]
- Feroci, M.; Chiarotto, I.; Inesi, A. Electrolysis of ionic liquids. A possible keystone for the achievement of green solvent-catalyst systems. Curr. Org. Chem. 2013, 17, 204–219. [Google Scholar]
- Stang, P.J.; Fox, D.P. Alkylidene carbene generation from tosylazoalkenes and silylvinyl triflates. J. Org. Chem. 1977, 42, 1667–1669. [Google Scholar] [CrossRef]
- Jain, P.; Chaudhari, V.R.; Kumar, A. Water-assisted stability of carbene: Cyclic voltammetric investigation of 1-ethyl-3-methylimidazolium ethylsulfate ionic liquid. Phys. Chem. Chem. Phys. 2019, 21, 24126–24131. [Google Scholar] [CrossRef]
- Frémont, P.d.; Scott, N.M.; Stevens, E.D.; Nolan, S.P. Synthesis and Structural Characterization of N-Heterocyclic Carbene Gold(I) Complexes. Organometallics 2005, 24, 2411–2418. [Google Scholar] [CrossRef]
- Gaillard, S.; Cazin, C.S.J.; Nolan, S.P. N-Heterocyclic Carbene Gold(I) and Copper(I) Complexes in C-H Bond Activation. Acc. Chem. Res. 2012, 45, 778–787. [Google Scholar] [CrossRef]
- Gaillard, S.; Slawin, A.M.; Nolan, S.P. A N-heterocyclic carbene gold hydroxide complex: A golden synthon. Chem. Commun. 2010, 46, 2742–2744. [Google Scholar] [CrossRef]
- Nahra, F.; Tzouras, N.V.; Collado, A.; Nolan, S.P. Synthesis of N-heterocyclic carbene gold(I) complexes. Nat. Protoc. 2021, 16, 1476–1493. [Google Scholar] [CrossRef] [PubMed]
- Vicente, R.; Escuer, A.; El Fallah, M.S.; Solans, X.; Font-Bardia, M. Three new mononuclear nickel (II) cyanate and isocyanate compounds derived from macrocyclic ligands: [Ni(TMCY)(NCO)](ClO4), [Ni(m-CTH)(OCN)1.5(ClO4)0.5]. Inorganica Chim. Acta 1997, 261, 227–232. [Google Scholar] [CrossRef]
- Escuer, A.; Vicente, R.; El Fallah, M.S.; Solans, X.; Font-Bardía, M. Structure and magnetic behaviour of the first singly bridged nickel cyanate chain and a new dinuclear complex: An approximation to the superexchange mechanism for the nickel pseudohalide system. J. Chem. Soc. Dalton Trans. 1996, 6, 1013–1019. [Google Scholar] [CrossRef]
- Janikowski, J.; Forsyth, C.; MacFarlane, D.R.; Pringle, J.M. Novel ionic liquids and plastic crystals utilizing the cyanate anion. J. Mater. Chem. 2011, 21, 19219–19225. [Google Scholar] [CrossRef]
- Kuroda, K. A simple overview of toxicity of ionic liquids and designs of biocompatible ionic liquids. New J. Chem. 2022, 46, 20047–20052. [Google Scholar] [CrossRef]
- Burr, S.A. Cyanide. In Encyclopedia of Toxicology, 4th ed.; Wexler, P., Ed.; Academic Press: Oxford, UK, 2024; pp. 369–373. [Google Scholar]
- Schultz, P.W.; Leroi, G.E.; Popov, A.I. The Structure and Thermodynamics of Hydrogen Bonding Interactions of OCN- with Methanol, Formamide, and N-methylformamide. J. Am. Chem. Soc. 1995, 117, 10735–10742. [Google Scholar] [CrossRef]
- Handy, S.T. Room temperature ionic liquids: Different classes and physical properties. Curr. Org. Chem. 2005, 9, 959–988. [Google Scholar] [CrossRef]
- Kosmulski, M.; Gustafsson, J.; Rosenholm, J.B. Thermal stability of low temperature ionic liquids revisited. Thermochim. Acta 2004, 412, 47–53. [Google Scholar] [CrossRef]
- Zhong, X.; Fan, Z.; Liu, Z.; Cao, D. Local Structure Evolution and its Connection to Thermodynamic and Transport Properties of 1-Butyl-3-methylimidazolium Tetrafluoroborate and Water Mixtures by Molecular Dynamics Simulations. J. Phys. Chem. B 2012, 116, 3249–3263. [Google Scholar] [CrossRef] [PubMed]
- Marx, D.; Tuckerman, M.E.; Hutter, J.; Parrinello, M. The nature of the hydrated excess proton in water. Nature 1999, 397, 601–604. [Google Scholar] [CrossRef]
- Wijaya, Y.P.; Smith, K.J.; Kim, C.S.; Gyenge, E.L. Hydrodeoxygenation of lignin related phenolic monomers in polar organic electrolyte via electrocatalysis in a stirred slurry catalytic reactor. Green Chem. 2022, 24, 7469–7480. [Google Scholar] [CrossRef]
- Xu, L.; Chen, W.; Xiao, J. Heck Reaction in Ionic Liquids and the in Situ Identification of N-Heterocyclic Carbene Complexes of Palladium. Organometallics 2000, 19, 1123–1127. [Google Scholar] [CrossRef]
- Herrmann, W.A.; Böhm, V.P.W.; Reisinger, C.-P. Application of palladacycles in Heck type reactions. J. Organomet. Chem. 1999, 576, 23–41. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, W. Synthesis and Characterization of Square-Planar Tetranuclear Silver and Gold Clusters Supported by a Pyrazole-Linked Bis(N-heterocyclic carbene) Ligand. Organometallics 2007, 26, 2742–2746. [Google Scholar] [CrossRef]
- Jeffrey, M.I.; Linda, L.; Breuer, P.L.; Chu, C.K. A kinetic and electrochemical study of the ammonia cyanide process for leaching gold in solutions containing copper. Miner. Eng. 2002, 15, 1173–1180. [Google Scholar] [CrossRef]
Name | Chemical Formula | Specification | Application | Suppliers |
---|---|---|---|---|
Sodium cyanate | NaOCN | >97% | IL synthesis | Yuanye Biological Technology Co., Ltd. (Shanghai, China) |
N-ethylimidazole | C4H6N2 | Analytical grade | IL synthesis | Dibo Chemical Technology Co., Ltd. (Shanghai, China) |
Silver nitrate | AgNO3 | Analytical grade | IL synthesis | Tongguang Fine Chemical Company (Beijing, China) |
Bromoethane | C2H5Br | Analytical grade | IL synthesis | Yinuokai Technology Co., Ltd. (Beijing, China) |
Bromopropane | C3H7Br | Analytical grade | IL synthesis | Yinuokai Technology Co., Ltd. |
Bromobutane | C4H9Br | Analytical grade | IL synthesis | Yinuokai Technology Co., Ltd. |
Acetonitrile | CH3CN | Analytical grade | IL synthesis/Solvent | Yinuokai Technology Co., Ltd. |
Ethyl acetate | CH3COOC2H5 | Analytical grade | IL synthesis | Yinuokai Technology Co., Ltd. |
Dimethyl sulfoxide (DMSO) | (CH3)2SO | Analytical grade | Solvent | Yinuokai Technology Co., Ltd. |
Dimethylformamide (DMF) | HCON(CH3)2 | Analytical grade | Solvent | Yinuokai Technology Co., Ltd. |
Gold leaf (1 cm × 1 cm) | Au | >99.99% | Dissolution test | Yinuokai Technology Co., Ltd. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, N.; Zhang, Y.; Liu, Z.; Liu, Z.; Sun, C.; Altun, N.E.; Kou, J. Investigation on Gold Dissolution Performance and Mechanism in Imidazolium Cyanate Ionic Liquids. Molecules 2024, 29, 897. https://doi.org/10.3390/molecules29040897
Zhang N, Zhang Y, Liu Z, Liu Z, Sun C, Altun NE, Kou J. Investigation on Gold Dissolution Performance and Mechanism in Imidazolium Cyanate Ionic Liquids. Molecules. 2024; 29(4):897. https://doi.org/10.3390/molecules29040897
Chicago/Turabian StyleZhang, Na, Yuxin Zhang, Zhengyu Liu, Ziyuan Liu, Chunbao Sun, N. Emre Altun, and Jue Kou. 2024. "Investigation on Gold Dissolution Performance and Mechanism in Imidazolium Cyanate Ionic Liquids" Molecules 29, no. 4: 897. https://doi.org/10.3390/molecules29040897
APA StyleZhang, N., Zhang, Y., Liu, Z., Liu, Z., Sun, C., Altun, N. E., & Kou, J. (2024). Investigation on Gold Dissolution Performance and Mechanism in Imidazolium Cyanate Ionic Liquids. Molecules, 29(4), 897. https://doi.org/10.3390/molecules29040897