Ionic Liquid Modified Polymer Gel for Arsenic Speciation
Abstract
:1. Introduction
- -
- Separation of As species without using reagents for reduction or oxidation and any subtraction from total amount;
- -
- Low determination limits achieved due to enrichment factors obtained;
- -
- Low matrix interferences result in practical analytical procedure useful for monitoring campaigns for all types of surface waters.
2. Results
2.1. Synthesis and Characterization of Poly(MIA)
2.2. Extraction Efficiency of Poly(MIA) toward Four Arsenic Species
Effect of pH of Sample Media on the Retention of as Species
2.3. Effect of Initial As(V), DMAs, and MMAs Concentrations and Adsorption Isotherms
2.4. Effect of Contact Time and Modeling of the Adsorption Kinetics
2.5. Analytical Application
2.6. Comparison with Other Methods
3. Materials and Methods
3.1. Reagents and Materials
3.2. Apparatus
3.3. Synthesis of Poly(MIA)
3.4. Optimization of SPE Conditions
3.5. Isotherm and Kinetic Studies
3.6. Analytical Procedure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, N.; Ye, Z.; Huang, L.; Zhang, C.; Guo, Y.; Zhang, W. Arsenic Occurrence and Cycling in the Aquatic Environment: A Comparison between Freshwater and Seawater. Water 2023, 15, 147. [Google Scholar] [CrossRef]
- Hughes, M.F. Arsenic toxicity and potential mechanisms of action. Toxicol. Lett. 2002, 133, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Hughes, M.F.; Beck, B.D.; Chen, Y.; Lewis, A.S.; Thomas, D.J. Arsenic Exposure and Toxicology: A Historical Perspective. Toxicol. Sci. 2011, 123, 305–332. [Google Scholar] [CrossRef] [PubMed]
- Villaescusa, I.; Bollinger, J.-C. Arsenic in drinking water: Sources, occurrence and health effects (a review). Rev. Environ. Sci. Bio/Technol. 2008, 7, 307–323. [Google Scholar] [CrossRef]
- Nordstrom, D.K. Worldwide Occurrences of Arsenic in Ground Water. Science 2002, 296, 2143–2145. [Google Scholar] [CrossRef] [PubMed]
- Ardini, F.; Dan, G.; Grotti, M. Arsenic speciation analysis of environmental samples. J. Anal. Atom. Spectroem. 2020, 35, 215–237. [Google Scholar] [CrossRef]
- Hu, B.; Chen, B.; He, M.; Nan, K.; Xu, Y.; Xu, C. Separation methods applied to arsenic speciation. Compr. Anal. Chem. 2019, 85, 89–144. [Google Scholar]
- Yu, H.; Li, C.; Tian, Y.; Jiang, X. Recent developments in determination and speciation of arsenic in environmental and biological samples by atomic spectrometry. Microchem. J. 2020, 152, 104312. [Google Scholar] [CrossRef]
- Chen, M.-L.; Ma, L.-Y.; Chen, X.-W. New procedures for arsenic speciation: A review. Talanta 2014, 125, 78–86. [Google Scholar] [CrossRef]
- Jinadasa, K.K.; Peña-Vázquez, E.; Bermejo-Barrera, P.; Moreda-Piñeiro, A. New adsorbents based on imprinted polymers and composite nanomaterials for arsenic and mercury screening/speciation: A review. Microchem. J. 2020, 156, 104886. [Google Scholar] [CrossRef]
- Welna, M.; Szymczycha-Madeja, A.; Pohl, P. Non-Chromatographic Speciation of as by HG Technique—Analysis of Samples with Diferent Matrices. Molecules 2020, 25, 4944. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Zhou, J.; Li, Q.; Guo, H.; Chen, J. The recent advances and applications of arsenic speciation in water. Adv. Mater. Res. 2014, 955–959, 1384–1392. [Google Scholar] [CrossRef]
- Nearing, M.M.; Koch, I.; Reimer, K.J. Complementary arsenic speciation methods: A review. Spectrochim. Acta B 2014, 99, 150–162. [Google Scholar] [CrossRef]
- Yalçin, S.; Le, X.C. Speciation of arsenic using solid phase extraction cartridges. J. Environ. Monit. 2001, 3, 81–85. [Google Scholar] [CrossRef]
- Yu, C.; Cai, Q.; Guo, Z.-X.; Yang, Z.; Khoo, S.B. Inductively coupled plasma mass spectrometry study of the retention behavior of arsenic species on various solid phase extraction cartridges and its application in arsenic speciation. Spectrochim. Acta B 2003, 58, 1335–1349. [Google Scholar] [CrossRef]
- Sanchez, W.M.; Zwicker, B.; Chatt, A. Determination of As(III), As(V), MMA and DMA in drinking water by solid phase extraction and neutron activation. J. Radioanal. Nucl. Chem. 2009, 282, 133–138. [Google Scholar] [CrossRef]
- Rahman, I.M.M.; Begum, Z.A.; Nakano, M.; Furusho, Y.; Maki, T.; Hasegawa, H. Selective separation of arsenic species from aqueous solutions with immobilized macrocyclic material containing solid phase extraction columns. Chemosphere 2011, 82, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Issa, N.B.; Rajakovic-Ognjanovic, V.N.; Marinkovic, A.D.; Rajakovic, L.V. Separation and determination of arsenic species in water by selective exchange and hybrid resins. Anal. Chim. Acta 2011, 706, 191–198. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, B.; He, M.; Hu, B. Magnetic metal-organic framework composites for dual-column solid-phase microextraction combined with ICP-MS for speciation of trace levels of arsenic. Microchim. Acta 2020, 187, 48. [Google Scholar] [CrossRef]
- Jia, X.; Gong, D.; Wang, J.; Huang, F.; Duan, T.; Zhang, X. Arsenic speciation in environmental waters by a news specific phosphine modified polymer microsphere preconcentration and HPLC–ICP-MS determination. Talanta 2016, 160, 437–443. [Google Scholar] [CrossRef]
- Montoro-Leal, P.; García-Mesa, J.C.; Morales-Benítez, I.; García de Torres, A.; Vereda Alonso, E. Semiautomatic method for the ultra-trace arsenic speciation in environmental and biological samples via magnetic solid phase extraction prior to HPLC-ICP-MS determination. Talanta 2021, 235, 122769. [Google Scholar] [CrossRef] [PubMed]
- Shirkhanloo, H.; Ghazaghi, M.; Rashidi, A.; Vahid, A. Arsenic speciation based on amine-functionalized bimodal mesoporous silica nanoparticles by ultrasound assisted-dispersive solid-liquid multiple phase microextraction. Microchem. J. 2017, 130, 137–146. [Google Scholar] [CrossRef]
- López-García, I.; Marín-Hernández, J.J.; Hernández-Córdoba, M. Magnetic ferrite particles combined with electrothermal atomic absorption spectrometry for the speciation of low concentrations of arsenic. Talanta 2018, 181, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Sultana, S.; Ahmed, K.; Jiwanti, P.K.; Wardhana, B.Y.; Shiblee, M.D.N.I. Ionic Liquid-Based Gels for Applications in Electrochemical Energy Storage and Conversion Devices: A Review of Recent Progress and Future Prospects. Gels 2022, 8, 2. [Google Scholar] [CrossRef]
- Qian, W.; Texter, J.; Yan, F. Frontiers in poly(ionic liquid)s: Syntheses and applications. Chem. Soc. Rev. 2017, 46, 1124–1159. [Google Scholar] [CrossRef]
- Barrulas, R.V.; Zanatta, M.; Casimiro, T.; Corvo, M.C. Advanced porous materials from poly(ionic liquid)s: Challenges, applications and opportunities. Chem. Eng. J. 2021, 411, 128528. [Google Scholar] [CrossRef]
- Cordella, D.; Kermagoret, A.; Debuigne, A.; Riva, R.; German, I.; Isik, M.; Jérôme, C.; Mecerreyes, D.; Taton, D.; Detrembleur, C. Direct Route to Well-Defined Poly(ionic liquid)s by Controlled Radical Polymerization in Water. ACS Macro Lett. 2014, 3, 1276–1280. [Google Scholar] [CrossRef]
- Mei, M.; Huang, X.; Chen, L. Recent development and applications of poly (ionic liquid)s in microextraction techniques. Trends Anal. Chem. 2019, 112, 123–134. [Google Scholar] [CrossRef]
- Nie, L.; Bai, L.; Chen, J.; Jin, J.; Mi, J. Grafting Poly(ethyleneimine) on the Pore Surface of Poly(glycidyl methacrylate-trimethylolpropane triacrylate) for Preparation of the CO2 Sorbent. Energy Fuels 2019, 33, 12610–12620. [Google Scholar] [CrossRef]
- Tian, M.; Yan, H.; Row, K.H. Solid-Phase Extraction of Caffeine and Theophylline from Green Tea by a New Ionic Liquid-Modified Functional Polymer Sorbent. Anal. Lett. 2010, 43, 110–118. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010, 56, 2–10. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Da’ana, D.A. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef] [PubMed]
- Parmanbek, N.; Sütekin, D.S.; Barsbay, M.; Mashentseva, A.A.; Zheltov, D.A.; Aimanova, N.A.; Jakupova, Z.Y.; Zdorovets, M.V. Hybrid PET Track-Etched Membranes Grafted by Well-Defined Poly(2-(dimethylamino)ethyl methacrylate) Brushes and Loaded with Silver Nanoparticles for the Removal of As(III). Polymers 2022, 14, 4026. [Google Scholar] [CrossRef] [PubMed]
- Humelnicu, D.; Ignat, M.; Dinu, M.V.; Dragan, E.S. Optimization of Arsenic Removal from Aqueous Solutions Using Amidoxime Resin Hosted by Mesoporous Silica. ACS Omega 2022, 7, 31069–31080. [Google Scholar] [CrossRef] [PubMed]
- Puccia, V.; Avena, M.J. On the use of the Dubinin-Radushkevich equation to distinguish between physical and chemical adsorption at the solid-water interface. Colloid Interface Sci. Commun. 2021, 41, 100376. [Google Scholar] [CrossRef]
- Hu, Q.; Lan, R.; He, L.; Liu, H.; Pei, X. A critical review of adsorption isotherm models for aqueous contaminants: Curve characteristics, site energy distribution and common controversies. J. Environ. Manag. 2023, 329, 117104. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Guo, X. Adsorption kinetic models: Physical meanings, applications, and solving methods. J. Hazard. Mater. 2020, 390, 122156. [Google Scholar] [CrossRef]
- Lăcrămioara, N.; Bulgariu, L. Optimization of process parameters for heavy metals biosorption onto mustard waste biomass. Open Chem. 2016, 14, 175–187. [Google Scholar]
- Cheung, W.H.; Szeto, Y.S.; McKay, G. Intra-particle diffusion processes during acid dye adsorption onto chitosan. Biores. Technol. 2007, 98, 2897–2904. [Google Scholar] [CrossRef]
- An, B. Cu(II) and As(V) Adsorption Kinetic Characteristic of the Multifunctional Amino Groups in Chitosan. Processes 2020, 8, 1194. [Google Scholar] [CrossRef]
- Zhang, M.; Ma, X.; Li, J.; Huang, R.; Guo, L.; Zhang, X.; Fan, Y.; Xie, X.; Zeng, G. Enhanced removal of As(Ⅲ) and As(Ⅴ) from aqueous solution using ionic liquid-modified magnetic graphene oxide. Chemosphere 2019, 234, 196–203. [Google Scholar] [CrossRef]
- Yin, F.; Mo, Y.; Liu, X.; Pang, Y.; Wu, X.; Hao, L.; Yu, J.; Xu, F. Surface-imprinted polymer microspheres for rapid and selective adsorption of As(V) ions from the aqueous phase. Mater. Chem. Phys. 2022, 281, 125687. [Google Scholar] [CrossRef]
- Dakova, I.; Yordanova, T.; Karadjova, I. Synthesis and characterization of As(V)-imprinted smart polymer gel for selective adsorption of As(V) ions. In Proceedings of the SPIE 11332, International Conference on Quantum, Nonlinear, and Nanophotonics 2019 (ICQNN 2019), 113320 D, Sofia, Bulgaria, 30 December 2019. [Google Scholar]
Eluent Solution | DE, % | ||
---|---|---|---|
As(V) | DMAs | MMAs | |
0.5 mol/L CH3COOH | <3 | 86 ± 3 | 87 ± 2 |
1.0 mol/L CH3COOH | <3 | 99 ± 2 | 99 ± 2 |
0.5 mol/L HCl | 65 ± 3 | 99 ± 2 | 98 ± 2 |
1.0 mol/L HCl | 77 ± 3 | 99 ± 2 | 99 ± 2 |
2.0 mol/L HCl | 99 ± 2 | 99 ± 2 | 99 ± 2 |
3.0 mol/L HCl | 99 ± 2 | 99 ± 2 | 99 ± 2 |
Adsorption Isotherm Model | Parameters | As(V) | DMAs | MMAs |
---|---|---|---|---|
Experimental adsorption capacity | Qmax,exp (mg/g) | 20.78 | 9.58 | 14.50 |
Langmuir | Qmax (mg/g) | 20.53 | 9.64 | 14.45 |
b (L/mg) | 0.45 | 0.76 | 0.69 | |
R2 | 0.9931 | 0.9981 | 0.9937 | |
RL | 0.03–0.10 | 0.02–0.12 | 0.02–0.13 | |
Freundlich | kF | 6.78 | 8.02 | 6.37 |
n | 2.74 | 9.92 | 4.00 | |
R2 | 0.9755 | 0.9505 | 0.9086 | |
Dubinin–Radushkevich | Qmax (mg/g) | 14.65 | 8.76 | 12.12 |
β (mol2/kJ2) | 0.11 | 0.36 | 0.18 | |
EDR (kJ/mol) | 2.16 | 1.18 | 1.67 | |
R2 | 0.8355 | 0.9218 | 0.9003 |
Model | Parameters | As(V) | DMAs | MMAs |
---|---|---|---|---|
Experimental adsorption capacity | qe,exp (mg/g) | 0.7936 | 0.7640 | 0.7816 |
Pseudo-first-order model | qe,calc (mg/g) | 0.2988 | 0.3175 | 0.3103 |
k1 (1/min) | 0.1292 | 0.0882 | 0.1135 | |
R2 | 0.9647 | 0.9320 | 0.9629 | |
Pseudo-second-order model | qe,calc (mg/g) | 0.8317 | 0.8095 | 0.8244 |
k2 (g/mg∙min) | 0.7222 | 0.4479 | 0.5860 | |
R2 | 0.9936 | 0.9994 | 0.9995 | |
Intra-particle diffusion model Region 1 (from 5 to 20 min) | kdiff (mg/g∙min1/2) | 0.0650 | 0.0895 | 0.0757 |
C (mg/g) | 0.4886 | 0.3285 | 0.4240 | |
R2 | 0.9973 | 0.9854 | 0.9990 | |
Intra-particle diffusion model Region 2 (from 20 to 35 min) | kdiff (mg/g∙min1/2) | 0.0035 | 0.0086 | 0.0154 |
C (mg/g) | 0.7683 | 0.7395 | 0.6556 | |
R2 | 0.9355 | 0.8304 | 0.7701 |
Determination Limit, ng/L | Relative Standard Deviation, % Concentration Range 0.01–20 µg/L | ||||
---|---|---|---|---|---|
As(V) | As(III) | (DMAs + MMAs) | As(V) | As(III) | (DMAs + MMAs) |
1 | 10 | 1 | 4–10 | 5–8 | 5–10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dakova, I.; Karadjova, I. Ionic Liquid Modified Polymer Gel for Arsenic Speciation. Molecules 2024, 29, 898. https://doi.org/10.3390/molecules29040898
Dakova I, Karadjova I. Ionic Liquid Modified Polymer Gel for Arsenic Speciation. Molecules. 2024; 29(4):898. https://doi.org/10.3390/molecules29040898
Chicago/Turabian StyleDakova, Ivanka, and Irina Karadjova. 2024. "Ionic Liquid Modified Polymer Gel for Arsenic Speciation" Molecules 29, no. 4: 898. https://doi.org/10.3390/molecules29040898
APA StyleDakova, I., & Karadjova, I. (2024). Ionic Liquid Modified Polymer Gel for Arsenic Speciation. Molecules, 29(4), 898. https://doi.org/10.3390/molecules29040898