The Influence of Arabinoxylans on the Properties of Wheat Bread Baked Using the Postponed Baking Method
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Isolation and Modification of Water-Soluble Non-Modified Rye Arabinoxylans
3.1.1. Isolation of Arabinoxylans
3.1.2. Modification of Isolated Rye Arabinoxylans Using Cross-Linking
3.1.3. Modification of Isolated Rye Arabinoxylans Ssing Partial Enzymatic Hydrolysis
3.2. Determination of the Monosaccharide Composition of Arabinoxylans
3.3. Determination of Molecular Properties of Arabinoxylans
3.4. Baking Bread Using the Postponed Baking Method and Determination of Bread Parameters
3.4.1. Volume
3.4.2. Moisture
3.4.3. Texture
3.4.4. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Majzoobi, M.; Farahnaky, A.; Agah, S. Properties and Shelf-life of Part-and Full-baked Flat Bread (Barbari) at Ambient and Frozen Storage. J. Agr. Sci. Tech. 2011, 13, 1077–1090. [Google Scholar]
- Mikulec, A.; Kowalski, S.; Lukasiewicz, M. The impact of postponed bread baking technology on the quality properties of Kaiser rolls and in vitro starch digestibility. J. Food Process Eng. 2017, 41, e12628. [Google Scholar] [CrossRef]
- Suchintita Das, R.; Tiwari, B.K.; Garcia-Vaquero, M. The Fundamentals of Bread Making: The Science of Bread. In Traditional European Breads; Garcia-Vaquero, M., Pastor, K., Orhun, G.E., McElhatton, A., Rocha, J.M.F., Eds.; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Rosell, C.M. Trends in breadmaking: Low and subzero temperatures. In Innovation in Food Engineering: New Techniques and Products; Passos, M.L., Ribeiro, C.L., Eds.; Taylor and Francis: Abingdon, UK; CRC Press: Boca Raton, FL, USA, 2009; pp. 59–79. [Google Scholar]
- Rosell, C.M.; Santos, E. Impact of fibers on physical characteristics of fresh and staled bake off bread. J. Food Eng. 2010, 98, 273–281. [Google Scholar] [CrossRef]
- Mandala, I.; Polaki, A.; Yanniotis, S. Influence of frozen storage on bread enriched with different ingredients. J. Food Eng. 2009, 92, 137–145. [Google Scholar] [CrossRef]
- Almeida, E.L.; Steel, C.J.; Chang, Y.K. Par-baked Bread Technology: Formulation and Process Studies to Improve Quality. Crit. Rev. Food Sci. Nutr. 2014, 56, 70–81. [Google Scholar] [CrossRef]
- Bárcenas, M.E.; Haros, M.; Benedito, C.; Rosell, C.M. Effect of freezing and frozen storage on the staling of part-baked bread. Food Res. Int. 2003, 36, 863–869. [Google Scholar] [CrossRef]
- Ribotta, P.D.; Le Bail, A. Thermo-physical and thermo-mechanical assessment of partially baked bread during chilling and freezing process. J. Food Eng. 2017, 78, 913–921. [Google Scholar] [CrossRef]
- Bárcenas, M.E.; Benedito, C.; Rosell, C.M. Use of hydrocolloids as bread improvers in interrupted baking process with frozen storage. Food Hydrocoll. 2004, 18, 769–774. [Google Scholar] [CrossRef]
- Nivelle, M.A.; Bosmans, G.M.; Delcour, J.A. The Impact of Parbaking on the Crumb Firming Mechanism of Fully Baked Tin Wheat Bread. J. Agric. Food Chem. 2017, 65, 10074–10083. [Google Scholar] [CrossRef]
- Bárcenas, M.E.; Rosell, C.M. Different approaches for increasing the shelf life of partially baked bread: Low temperatures and hydrocolloid addition. Food Chem. 2007, 100, 1594–1601. [Google Scholar] [CrossRef]
- Rayas-Duarte, P.; Murtini, E.S. Bread staling. In Woodhead Publishing Series in Food Science. Technology and Nutrition, Breadmaking, 3rd ed.; Cauvain, S.P., Ed.; Woodhead Publishing: Cambridge, UK, 2020; pp. 561–585. [Google Scholar] [CrossRef]
- Marcotuli, I.; Hsieh, Y.S.Y.; Lahnstein, J.; Yap, K.; Burton, R.A.; Blanco, A.; Gadaleta, A. Structural Variation and Content of Arabinoxylans in Endosperm and Bran of Durum Wheat (Triticum turgidum L.). J. Agric. Food Chem. 2016, 64, 2883–2892. [Google Scholar] [CrossRef]
- Andersson, R.; Fransson, G.; Tietjen, M.; Åman, P. Content and Molecular-Weight Distribution of Dietary Fiber Components in Whole-Grain Rye Flour and Bread. J. Agric. Food Chem. 2009, 57, 2004–2008. [Google Scholar] [CrossRef]
- Buksa, K.; Ziobro, R.; Nowotna, A.; Praznik, W.; Gambuś, H. Isolation, modification and characterization of soluble arabinoxylan fractions from rye grain. Eur. Food Res. Technol. 2012, 235, 385–395. [Google Scholar] [CrossRef]
- Buksa, K.; Praznik, W.; Loeppert, R.; Nowotna, A. Characterization of water and alkali extractable arabinoxylan from wheat and rye under standardized conditions. J. Food Sci. Technol. 2016, 53, 1389–1398. [Google Scholar] [CrossRef]
- Guo, X.N.; Yang, S.; Zhu, K.X. Impact of arabinoxylan with different molecular weight on the thermo-mechanical, rheological, water mobility and microstructural characteristics of wheat dough. Int. J. Food Sci. Technol. 2018, 53, 2150–2158. [Google Scholar] [CrossRef]
- Li, S.; Chen, H.; Cheng, W.; Yang, K.; Cai, L.; He, L.; Li, C. Impact of arabinoxylan on characteristics, stability and lipid oxidation of oil-in-water emulsions: Arabinoxylan from wheat bran, corn bran, rice bran, and rye bran. Food Chem. 2021, 358, 129813. [Google Scholar] [CrossRef]
- Buksa, K.; Nowotna, A.; Ziobro, R. Application of cross-linked and hydrolyzed arabinoxylans in baking of model rye bread. Food Chem. 2016, 192, 991–996. [Google Scholar] [CrossRef]
- Saeed, F.; Arshad, M.U.; Pasha, I.; Suleria, H.A.R.; Arshad, M.S.; Qamar, A.; Ullah, A.; Sultan, S. Effect of arabinoxylan and arabinogalactan on textural attributes of bread: Arabinoxylan and arabinogalactan and textural study. J. Food Process. Preserv. 2014, 39, 1070–1088. [Google Scholar] [CrossRef]
- Goesaert, H.; Brijs, K.; Veraverbeke, W.S.; Courtin, C.M.; Gebruers, K.; Delcour, J.A. Wheat flour constituents: How they impact bread quality, and how to impact their functionality. Trends Food Sci. Technol. 2005, 16, 12–30. [Google Scholar] [CrossRef]
- Oghbaei, M.; Prakash, J. Effect of Fractional Milling of Wheat on Nutritional Quality of Milled Fractions. Trends Carbohydr. Res. 2013, 5, 52–58. [Google Scholar]
- Tharise, N.; Julianti, E.; Nurminah, M. Evaluation of physico-chemical and functional properties of composite flour from cassava, rice, potato, soybean and xanthan gum as alternative of wheat flour. Int. Food Res. J. 2014, 21, 1641–1649. [Google Scholar]
- Kurek, M.A.; Wyrwisz, J.; Piwińska, M.; Wierzbicka, A. Influence of the wheat flour extraction degree in the quality of bread made with high proportions of β-glucan. Food Sci. Technol. 2015, 35, 273–278. [Google Scholar] [CrossRef]
- Pastuszka, D.; Gambuś, H.; Ziobro, R.; Mickowska, B.; Buksa, K.; Sabat, R. Quality and nutritional value of wheat bread with a preparation of oat proteins. JMBFS 2012, 1, 980–987. [Google Scholar]
- Prasadi, N.P.V.; Joye, I.J. Dietary Fibre from Whole Grains and Their Benefits on Metabolic Health. Nutrients 2020, 12, 3045. [Google Scholar] [CrossRef]
- Saulnier, L.; Sado, P.E.; Branlard, G.; Charmet, G.; Guillon, F. Wheat arabinoxylans: Exploiting variation in amount and composition to develop enhanced varieties. J. Cereal Sci. 2007, 46, 261–281. [Google Scholar] [CrossRef]
- Izydorczyk, M.S.; Biliaderis, C.G. Cereal arabinoxylans: Advances in structure and physicochemical properties. Carbhydr. Polym. 1995, 28, 33–48. [Google Scholar] [CrossRef]
- Hartmann, G.; Piber, M.; Koehler, P. Isolation and chemical characterization of water-extractable arabinoxylans from wheat and rye during breadmaking. Eur. Food Res. Technol. 2005, 221, 487–492. [Google Scholar] [CrossRef]
- Buksa, K. Application of model bread baking in the examination of arabinoxylan—protein complexes in rye bread. Carbohydr. Polym. 2016, 148, 281–289. [Google Scholar] [CrossRef]
- Courtin, C.M.; Delcour, J.A. Arabinoxylans and Endoxylanases in Wheat Flour Bread-making. J. Cereal Sci. 2002, 35, 225–243. [Google Scholar] [CrossRef]
- Bieniek, A.; Buksa, K. Properties and Functionality of Cereal Non-Starch Polysaccharides in Breadmaking. Appl. Sci. 2023, 13, 2282. [Google Scholar] [CrossRef]
- Buksa, K.; Nowotna, A.; Gambuś, H. Wpływ dodatku arabinoksylanów o różnej masie cząsteczkowej na właściwości chlebów żytnich wypieczonych metodą odroczonego wypieku. PTTZ 2016, 1, 14–22. [Google Scholar]
- Biliaderis, C.G.; Izydorczyk, M.S.; Rattan, O. Effect of arabinoxylans on bread-making quality of wheat flours. Food Chem. 1995, 53, 165–171. [Google Scholar] [CrossRef]
- Koegelenberg, D.; Chimphango, A.F.A. Effects of wheat-bran arabinoxylan as partial flour replacer on bread properties. Food Chem. 2017, 221, 1606–1613. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; van Boven, A.; Mulder, J.; Grandia, J.; Chen, X.D.; Boom, R.M.; Schutyser, M.A.I. Arabinoxylans-enriched fractions: From dry fractionation of wheat bran to the investigation on bread baking performance. J. Cereal Sci. 2019, 87, 1–8. [Google Scholar] [CrossRef]
- Henriksson, Y. Wheat bran arabinoxylans in breadmaking—Their effect on staling and other quality aspects. Master’s Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2020. [Google Scholar]
- Li, W.; Hu, H.; Wang, Q.; Brennan, C. Molecular Features of Wheat Endosperm Arabinoxylan Inclusion in Functional Bread. Foods. 2013, 2, 225–237. [Google Scholar] [CrossRef]
- Murat Karaoğlu, M.; Gürbüz Kotancilar, H. Effect of partial baking, storage and rebaking process on the quality of white pan bread. Int. J. Food Sci. Technol. 2006, 41, 108–114. [Google Scholar] [CrossRef]
- Buksa, K. Effect of pentoses, hexoses and hydrolysed arabinoxylan on the most abundant sugar, organic acid and alcohol contents during rye sourdough bread production. Cereal Chem. 2020. [Google Scholar] [CrossRef]
- Ureta, M.M.; Diascorn, Y.; Cambert, M.; Flick, D.; Salvadori, V.O.; Lucas, T. Water transport during bread baking: Impact of the baking temperature and the baking time. Food Sci. Technol. Int. 2019, 25, 187–197. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, F.; Wang, Y.; Li, J.; Teng, C.; Wang, C.; Li, X. Effects of different molecular weight water-extractable arabinoxylans on the physicochemical properties and structure of wheat gluten. JFST J. Food Sci. Technol. 2019, 56, 340–349. [Google Scholar] [CrossRef]
Component | Wheat Flour Type 750 |
---|---|
Starch [%] | 72.2 ± 1.1 |
Protein [%] | 12.6 ± 0.4 |
Fat [%] | 1.8 ± 0.0 |
Total dietary fiber—TDF [%] | 3.6 ± 0.3 |
Soluble dietary fiber—SDF [%] | 1.7 ± 0.1 |
Insoluble dietary fiber—IDF [%] | 1.9 ± 0.1 |
Arabinoxylans [%] | 2.8 ± 0.1 |
Arabinose/Xylose ratio | 0.57 ± 0.03 |
Ash [%] | 0.73 ± 0.01 |
Component | AX_NM * | AX_HYD * | AX_CR * |
---|---|---|---|
Glucose [%] | 9.9 ± 0.4 | 9.4 ± 0.5 | 9.5 ± 0.2 |
Xylose [%] | 53.7 ± 0.5 | 52.6 ± 0.5 | 54.1 ± 1.3 |
Galactose [%] | 2.2 ± 0.4 | 2.2 ± 0.6 | 2.1 ± 0.4 |
Arabinose [%] | 32.6 ± 0.6 | 32.6 ± 0.5 | 31.9 ± 1.1 |
Mannose [%] | 0.6 ± 0.1 | 0.7 ± 0.1 | 0.7 ± 0.1 |
AX [%] | 76.0 ± 1.0 | 75.0 ± 0.8 | 75.7 ± 0.2 |
Arabinose/Xylose ratio | 0.61 ± 0.01 | 0.62 ± 0.01 | 0.59 ± 0.03 |
Glucan [%] | 8.9 ± 0.3 | 8.4 ± 0.5 | 8.5 ± 0.2 |
Total sugar content [%] | 99.0 ± 1.7 | 97.5 ± 1.3 | 98.3 ± 0.1 |
Protein [%] | 7.2 ± 0.5 | 7.4 ± 0.6 | 7.5 ± 0.7 |
Molecular parameters of AX | |||
Mw [g/mol] ** | 413,800 | 192,320 | 535,630 |
Mn [g/mol] ** | 6980 | 4560 | 8460 |
Ð ** | 59.3 | 42.2 | 63.3 |
Parameters ** | Control * | AX_NM * | AX_HYD * | AX_CR * | |||
---|---|---|---|---|---|---|---|
0% | 1% | 2% | 1% | 2% | 1% | 2% | |
WBC [%] | 57.6 ± 0.3 a | 61.0 ± 0.2 c | 65.1 ± 0.1 f | 60.2 ± 0.4 b | 62.1 ± 0.2 d | 63.4 ± 0.1 e | 66.4 ± 0.2 g |
DY [%] | 157.6 a | 161.0 c | 165.1 f | 160.2 b | 162.1 d | 163.4 e | 166.4 g |
BL [%] | 14.0 ± 0.3 a | 14.2 ± 0.0 a | 14.9 ± 0.6 a | 14.4 ± 0.2 a | 14.8 ± 0.5 ab | 15.8 ± 0.7 b | 14.6 ± 0.5 a |
TBL [%] | 15.6 ± 0.3 ab | 15.8 ± 0.0 ab | 16.4 ± 0.6 bc | 15.9 ± 0.3 ab | 16.3 ± 0.0 b | 17.1 ± 0.5 c | 15.8 ± 0.5 ab |
BV [cm3] | 151.5 ± 1.5 c | 151.0 ± 1.0 c | 137.0 ± 0.0 a | 162.0 ± 1.0 e | 153.5 ± 1.5 d | 150.0 ± 0.0 c | 146.5 ± 0.5 b |
SBV (cm3/100 g of Flour) | 397.9 ± 3.9 b | 405.2 ± 2.7 c | 376.8 ± 2.8 a | 432.0 ± 2.7 g | 414.5 ± 4.1 f | 408.5 ± 0.0 e | 406.3 ± 1.4 cd |
Crumb Hardness (N) | 7.6 ± 0.3 c | 6.5 ± 0.2 b | 8.6 ± 0.3 d | 6.0 ± 0.2 a | 5.9 ± 0.3 a | 6.8 ± 0.1 b | 7.2 ± 0.1 c |
AX Preparation * | Crumb Moisture—Central Part (%) | Crumb Moisture—Peripheral Part (%) | ||||
---|---|---|---|---|---|---|
0% | 1% | 2% | 0% | 1% | 2% | |
Control | 43.7 ± 0.03 c | 43.6 ± 0.1 bc | ||||
AX_NM | 42.9 ± 0.6 ab | 44.3 ± 0.4 cd | 42.5 ± 0.1 a | 43.8 ± 0.2 bc | ||
AX_HYD | 42.3 ± 0.2 a | 43.5 ± 0.4 bc | 42.4 ± 1.0 ab | 43.2 ± 0.7 abc | ||
AX_CR | 43.2 ± 0.8 b | 45.03 ± 0.2 e | 43.4 ± 0.5 bc | 45.6 ± 0.1 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bieniek, A.; Buksa, K. The Influence of Arabinoxylans on the Properties of Wheat Bread Baked Using the Postponed Baking Method. Molecules 2024, 29, 904. https://doi.org/10.3390/molecules29040904
Bieniek A, Buksa K. The Influence of Arabinoxylans on the Properties of Wheat Bread Baked Using the Postponed Baking Method. Molecules. 2024; 29(4):904. https://doi.org/10.3390/molecules29040904
Chicago/Turabian StyleBieniek, Angelika, and Krzysztof Buksa. 2024. "The Influence of Arabinoxylans on the Properties of Wheat Bread Baked Using the Postponed Baking Method" Molecules 29, no. 4: 904. https://doi.org/10.3390/molecules29040904
APA StyleBieniek, A., & Buksa, K. (2024). The Influence of Arabinoxylans on the Properties of Wheat Bread Baked Using the Postponed Baking Method. Molecules, 29(4), 904. https://doi.org/10.3390/molecules29040904