Bioactive Potential of Carrot-Based Products Enriched with Lactobacillus plantarum
Abstract
:1. Introduction
2. Results and Discussion
2.1. Survival of L. plantarum in Carrot-Based Products
2.2. Scanning Electron Microscopy
2.3. Confocal Laser Scanning Microscopy
2.4. Carotenoid Quantification, Total Polyphenol Content, Total Flavonoid Content, and Antioxidant Activity
2.5. The Chromatographic Analysis of the Biologically Active Compounds from the Carrot Extract
2.6. The Impact of Gastric and Intestinal Digestion on the Total Content of Carotenoids and β-Carotene from the Carrot Products
3. Materials and Methods
3.1. Materials
3.2. Lactic Acid Bacteria Strain
3.3. Sample Preparation
3.4. The Count of L. plantarum MIUG BL4
3.5. Scanning Electron Microscopy (SEM)
3.6. Confocal Laser Scanning Microscopy
3.7. Carotenoids Quantification
3.8. Total Phenolic Content
3.9. Proanthocyanidin Content
3.10. Saponin Content
3.11. Chromatographic Analysis of the Biologically Active Compounds in the Freeze-Dried Carrot Sample by UHPLC-MS/MS
3.12. Antioxidant Activity
3.13. The In Vitro Gastric and Intestinal Digestion Effect on the Total Content of Carotenoids and β-Carotene from the Carrot Products
3.14. Statistical Analysis of Data
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, K.D.; Karki, S.; Thakur, N.S.; Attri, S. Chemical composition, functional properties and processing of carrot—A review. J. Food Sci. Technol. 2012, 49, 22–32. [Google Scholar] [CrossRef]
- Nguyen, V.; Scarlett, C. Mass proportion, bioactive compounds and antioxidant capacity of carrot peel as affected by various solvents. Technologies 2016, 4, 36. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Vuong, Q.V.; Bowyer, M.C.; van Altena, I.A.; Scarlett, C.J. Effects of different drying methods on bioactive compound yield and antioxidant capacity of Phyllanthus amarus. Dry. Technol. 2015, 33, 1006–1017. [Google Scholar] [CrossRef]
- Clementz, A.; Torresi, P.A.; Molli, J.S.; Cardell, D.; Mammarella, E.; Yori, J.C. Novel method for valorization of by-products from carrot discards. LWT 2019, 100, 374–380. [Google Scholar] [CrossRef]
- Singh, B.K.; Koley, T.K.; Maurya, A.; Singh, P.M.; Singh, B. Phytochemical and antioxidative potential of orange, red, yellow, rainbow and black coloured tropical carrots (Daucus carota subsp. sativus Schubl. & Martens). Physiol. Mol. Biol. Plants 2018, 24, 899–907. [Google Scholar]
- Available online: http://www.fao.org/faostat/en/#data (accessed on 8 July 2021).
- Turksoy, S.; Özkaya, B. Pumpkin and carrot pomace powders as a source of dietary fiber and their effects on the mixing properties of wheat flour dough and cookie quality. Food Sci. Technol. Res. 2011, 17, 545–553. [Google Scholar] [CrossRef]
- Encalada, A.M.I.; Pérez, C.D.; Flores, S.K.; Rossetti, L.; Fissore, E.N.; Rojas, A.M. Antioxidant pectin enriched fractions obtained from discarded carrots (Daucus carota L.) by ultrasound-enzyme assisted extraction. Food Chem. 2019, 289, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Vodnar, D.C.; Calinoiu, L.F.; Dulf, F.V.; Ştefanescu, B.E.; Crisan, G.; Socaciu, C. Identification of the bioactive compounds and antioxidant, antimutagenic and antimicrobial activities of thermally processed agro-industrial waste. Food Chem. 2017, 231, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, E.M.; Pinheiro, J.; Abreu, M.; Brandao, T.R.S.; Silva, C.L.M. Carrot (Daucus carota L.) peroxidase inactivation, phenolic content and physical changes kinetics due to blanching. J. Food Eng. 2010, 97, 574–581. [Google Scholar] [CrossRef]
- Arscott, S.A.; Tanumihardjo, S.A. Carrots of many colors provide basic nutrition and bioavailable phytochemicals acting as a functional food. Compr. Rev. Food Sci. Food Saf. 2010, 9, 223–239. [Google Scholar] [CrossRef]
- Otoni, C.G.; Lodi, B.D.; Lorevice, M.V.; Leitão, R.C.; Ferreira, M.D.; Moura, M.R.D.; Mattoso, L.H.C. Optimized and scaled-up production of cellulose-reinforced biodegradable composite films made up of carrot processing waste. Ind. Crops Prod. 2018, 121, 66–72. [Google Scholar] [CrossRef]
- Rosales-Mendoza, S.; Tello-Olea, M.A. Carrot cells: A pioneering platform for biopharmaceuticals production. Mol. Biotechnol. 2015, 57, 219–232. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.T.; Pham, N.M.Q.; Vuong, Q.V.; Bowyer, M.C.; van Altena, I.A.; Scarlett, C.J. Phytochemical retention and antioxidant capacity of Xao tam phan (Paramignya trimera) root as prepared by different drying methods. Dry. Technol. 2016, 34, 324–334. [Google Scholar] [CrossRef]
- Chantaro, P.; Devahastin, S.; Chiewchan, N. Production of antioxidant high dietary fiber powder from carrot peels. LWT—Food Sci. Technol. 2008, 41, 1987–1994. [Google Scholar] [CrossRef]
- Liu, S.; Jia, M.; Chen, J.; Wan, H.; Dong, R.; Nie, S.; Xie, M.; Yu, Q. Removal of bound polyphenols and its effect on antioxidant and prebiotics properties of carrot dietary fiber. Food Hydrocoll. 2019, 93, 284–292. [Google Scholar] [CrossRef]
- Chiboub, W.; Sassi, A.B.; Amina, C.M.; Souilem, F.; El Ayeb, A.; Djlassi, B.; Ascrizzi, R.; Flamini, G.; Harzallah-Skhiri, F. Valorization of the green waste from two varieties of fennel and carrot cultivated in tunisia by identification of the phytochemical profile and evaluation of the antimicrobial activities of their essentials oils. Chem. Biodivers. 2019, 16, e1800546. [Google Scholar] [CrossRef]
- Lisa, E.L.; Dragostin, O.M.; Petroaie, A.D.; Gurau, G.; Cristea, A.; Pavel, A.; Bonifate, F.; Popa, P.S.; Matei, M. The Effect of the New Imidazole Derivatives Complexation with Betacyclodextrin, on the Antifungal Activity in Oropharyngeal Infections. Processes 2022, 10, 2697. [Google Scholar] [CrossRef]
- Maftei, N.-M.; Bogdan Goroftei, E.R.; Boev, M.; Marin, D.B.; Ramos-Villarroel, A.Y.; Iancu, A.-V. Innovative Fermented Soy Drink with the Sea Buckthorn Syrup and the Probiotics Co-Culture of Lactobacillus Paracasei ssp. Paracasei (L. Casei® 431) and Bifidobacterium Animalis ssp. Lactis (Bb-12®). Fermentation 2023, 9, 806. [Google Scholar] [CrossRef]
- Aron, N.M.; Boev, M.; Bahrim, G. Probiotics and therapeutic effect in clinical practice—Review. Rom. Biotechnol. Lett. 2015, 20, 10162–10175. [Google Scholar]
- Kandylis, P.; Pissaridi, K.; Bekatorou, A.; Kanellaki, M.; Koutinas, A.A. Dairy and non-dairy probiotic beverages. Curr. Opin. Food Sci. 2016, 7, 58–63. [Google Scholar] [CrossRef]
- Lillo-Pérez, S.; Guerra-Valle, M.; Orellana-Palma, P.; Petzold, G. Probiotics in fruit and vegetable matrices: Opportunities for nondairy consumers. LWT 2021, 151, 112106. [Google Scholar] [CrossRef]
- Shigematsu, E.; Dorta, C.; Rodrigues, F.J.; Cedran, M.F.; Giannoni, J.A.; Oshiiwa, M. Edible coating with probiotic as a quality factor for minimally processed carrots. J. Food Sci. Technol. 2018, 55, 3712–3720. [Google Scholar] [CrossRef]
- De Oliveira, P.M.; Júnior, B.R.D.C.L.; Martins, E.M.F.; Martins, M.L.; Vieira, E.N.R.; de Barros, F.A.R. Mango and carrot mixed juice: A new matrix for the vehicle of probiotic lactobacilli. J. Food Sci. Technol. 2021, 58, 98–109. [Google Scholar] [CrossRef]
- Barbu, V.; Cotarlet, M.; Bolea, C.A.; Cantaragiu, A.; Andronoiu, D.G.; Bahrim, G.E.; Enachi, E. Three Types of Beetroot Products Enriched with Lactic Acid Bacteria. Foods 2020, 9, 786. [Google Scholar] [CrossRef] [PubMed]
- Akman, P.K.; Uysal, E.; Ozkaya, G.U.; Tornuk, F.; Durak, M.Z. Development of probiotic carrier dried apples for consumption as snack food with the impregnation of Lactobacillus paracasei. LWT—Food Sci. Technol. 2019, 103, 60–68. [Google Scholar] [CrossRef]
- Lewis, K. Riddle of biofilm resistance. Antimicrob. Agents Chemother. 2001, 45, 999–1007. [Google Scholar] [CrossRef]
- Cui, L.; Niu, L.Y.; Li, D.J.; Liu, C.G.; Liu, Y.P.; Liu, C.J.; Song, J.F. Effects of different drying methods on quality, bacterial viability and storage stability of probiotic enriched apple snacks. J. Integr. Agric. 2018, 17, 247–255. [Google Scholar] [CrossRef]
- Salas-Jara, M.J.; Ilabaca, A.; Vega, M.; García, A. Biofilm Forming Lactobacillus: New Challenges for the Development of Probiotics. Microorganisms 2016, 4, 35. [Google Scholar] [CrossRef] [PubMed]
- Konopacka, D.; Cybulska, J.; Zdunek, A.; Dyki, B.; Machlańska, A.; Celejewska, K. The combined effect of ultrasound and enzymatic treatment on the nanostructure, carotenoid retention and sensory properties of ready-to-eat carrot chips. LWT—Food Sci. Technol. 2017, 85, 427–433. [Google Scholar] [CrossRef]
- Cui, Z.W.; Li, C.Y.; Song, C.F.; Song, Y. Combined Microwave-Vacuum and Freeze Drying of Carrot and Apple Chips. Dry. Technol. Int. J. 2008, 26, 1517–1523. [Google Scholar] [CrossRef]
- Lau, W.K.; Van Chuyen, H.; Vuong, Q.V. Physical Properties, Carotenoids and Antioxidant Capacity of Carrot (Daucus carota L.) Peel as Influenced by Different Drying Treatments. Int. J. Food Eng. 2018, 14, 20170042. [Google Scholar] [CrossRef]
- Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal 2013, 18, 1818–1892. [Google Scholar] [CrossRef] [PubMed]
- Sparg, S.G.; Light, M.E.; Van Staden, J. Biological activities and distribution of plant saponins. J. Ethnopharmacol. 2004, 94, 219–243. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.T.; Le, M.D. Influence of various drying conditions on phytochemical compounds and antioxidant activity of carrot peel. Beverages 2018, 4, 80. [Google Scholar] [CrossRef]
- Maurer, M.M.; Mein, J.R.; Swapan, K.; Chaudhuri, S.K.; Constant, H.L. An improved UHPLC-UV method for separation and quantification of carotenoids in vegetable crops. Food Chem. 2014, 165, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Cilla, A.; Bosch, L.; Barberá, R.; Alegría, A. Effect of Processing on the Bioaccessibility of Bioactive Compounds—A Review Focusing on Carotenoids, Minerals, Ascorbic Acid, Tocopherols and Polyphenols. J. Food Compos. Anal. 2018, 68, 3–15. [Google Scholar] [CrossRef]
- Courraud, J.; Berger, J.; Cristol, J.-P.; Avallone, S. Stability and Bioaccessibility of Different Forms of Carotenoids and Vitamin A during in Vitro Digestion. Food Chem. 2013, 136, 871–877. [Google Scholar] [CrossRef] [PubMed]
- Hedrén, E.; Diaz, V.; Svanberg, U. Estimation of Carotenoid Accessibility from Carrots Determined by an in Vitro Digestion Method. Eur. J. Clin. Nutr. 2002, 56, 425–430. [Google Scholar] [CrossRef]
- De Carvalho, L.M.J.; Gomes, P.B.; de Oliveira Godoy, R.L.; Pacheco, S.; do Monte, P.H.F.; de Carvalho, J.L.V.; Nutti, M.R.; Neves, A.C.L.; Vieira, A.C.R.A.; Ramos, S.R.R. Total carotenoid content, α-carotene and β-carotene, of landrace pumpkins (Cucurbita moschata Duch): A preliminary study. Food Res. Int. 2012, 47, 337–340. [Google Scholar] [CrossRef]
- Gheonea (Dima), I.; Aprodu, I.; Cîrciumaru, A.; Râpeanu, G.; Bahrim, G.E.; Stănciuc, N. Microencapsulation of lycopene from tomatoes peels by complex coacervation and freeze-drying: Evidences on phytochemical profile, stability and food applications. J. Food Eng. 2021, 288, 110166. [Google Scholar] [CrossRef]
Variant | TC (mg/g DW) | BC (mg/g DW) | TPC (mg GA/g DW) | TFC (mg CE/g DW) | AA (%) | PC (mg CE/g DW) | SP (mg EE/g DW) |
---|---|---|---|---|---|---|---|
Control FCCs | 4.466 ± 0.012 a | 4.163 ± 0.031 a | 0.044 ± 0.002 a | 0.030 ± 0.001 a | 76.21 ± 0.004 a | 0.089 ± 0.006 a | 281.304 ± 0.054 a |
FCC sample | 4.899 ± 0.017 b | 4.620 ± 0.021 b | 0.056 ± 0.001 b | 0.042 ± 0.001 b | 78.44 ± 0.001 a | 0.094 ± 0.004 b | 282.345 ± 0.043 a |
Control DCCs | 0.222 ± 0.023 a | 0.210 ± 0.029 a | 0.082 ± 0.003 a | 0.028 ± 0.002 a | 85.23 ± 1.714 a | 0.138 ± 0.013 a | 283.13 ± 4.962 a |
DCC sample | 0.534 ± 0.011 b | 0.492 ± 0.013 b | 0.097 ± 0.002 b | 0.041 ± 0.001 b | 89.02 ± 0.001 a | 0.33 ± 0.012 b | 316.459 ± 0.059 b |
Control FDCP | 21.609 ± 1.673 a | 20.705 ± 1.501 a | 0.0866 ± 0.005 a | 0.061 ± 0.001 a | 81.12 ± 6.502 a | 0.188 ± 0.002 a | 372.902 ± 0.387 a |
FDCP sample | 26.977 ± 0.130 b | 22.075 ± 0.14 a | 0.091 ± 0.001 a | 0.066 ± 0.002 b | 91.74 ± 0.003 b | 0.209 ± 0.024 b | 423.33 ± 0.067 b |
No. Crt. | Retention Time | Compound | Chemical Structure | Molecular Mass | Concentration (μg/g DW) |
---|---|---|---|---|---|
1. | 0.63 | Inulin | C18H34O17 | 521.17235 | nd |
2. | 1.23 | Gallic acid | C7H6O5 | 169.01427 | 3.27 ± 0.09 |
3. | 5.42 | Catechin | C15H14O6 | 289.07176 | 63.45 ± 7.22 |
4. | 6.01 | Chlorogenic/neochlorogenic acid | C16H18O9 | 353.08783 | 148.75 ± 13.24 |
4. | 6.24 | Sinapic acid | C11H12O5 | 223.06122 | nd |
5. | 6.41 | Caffeic acid | C9H8O4 | 179.03501 | 16.89 ± 0.56 |
6. | 7.86 | Coumaroylquinic acid derivative | C16H18O8 | 337.09292 | nd |
7. | 7.80 | Epicatechin | C15H14O6 | 289.07176 | 17.3 6 ± 2.49 |
8. | 8.71 | Hidroxyferulic acid | C16H20O10 | 371.09839 | nd |
9. | 10.01 | Ferulic acid | C10H10O4 | 193.05066 | 85.24 ± 1.09 |
10. | p-coumaric acid | C9H8O3 | 163.03954 | 8.65 ± 0.05 | |
11. | 12.37 | Rutin (quercetin 3-rutinoside) | C27H30O16 | 609.14613 | 102.45 ± 12.36 |
12. | 12.78 | Naringin | C27H32O14 | 579.17185 | 92.77 ± 5.33 |
13. | 13.49 | Luteolin-O-glucoside derivative | C21H20O11 | 447.09331 | nd |
14. | 15.02 | Quercetin | C15H10O7 | 301.03540 | 74.12 ± 13.99 |
15. | 15.47 | Naringenin | C15H12O5 | 271.06122 | 14.58 ± 3.45 |
16. | 16.19 | Procyanidine B1/B2 | C30H26O12 | 577.13515 | nd |
17. | 16.65 | Kaempferol | C15H10O6 | 285.04049 | 54.63 ± 10.54 |
18. | 20.56 | Procyanidine | C30H26O13 | 593.13006 | nd |
19. | 24.22 | β-carotene | C40H56 | 537.44548 | 67.66 ± 8.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boev, M.; Stănescu, C.; Turturică, M.; Cotârleţ, M.; Batîr-Marin, D.; Maftei, N.; Chiţescu, C.; Grigore-Gurgu, L.; Barbu, V.; Enachi, E.; et al. Bioactive Potential of Carrot-Based Products Enriched with Lactobacillus plantarum. Molecules 2024, 29, 917. https://doi.org/10.3390/molecules29040917
Boev M, Stănescu C, Turturică M, Cotârleţ M, Batîr-Marin D, Maftei N, Chiţescu C, Grigore-Gurgu L, Barbu V, Enachi E, et al. Bioactive Potential of Carrot-Based Products Enriched with Lactobacillus plantarum. Molecules. 2024; 29(4):917. https://doi.org/10.3390/molecules29040917
Chicago/Turabian StyleBoev, Monica, Cristina Stănescu, Mihaela Turturică, Mihaela Cotârleţ, Denisa Batîr-Marin, Nicoleta Maftei, Carmen Chiţescu, Leontina Grigore-Gurgu, Vasilica Barbu, Elena Enachi, and et al. 2024. "Bioactive Potential of Carrot-Based Products Enriched with Lactobacillus plantarum" Molecules 29, no. 4: 917. https://doi.org/10.3390/molecules29040917
APA StyleBoev, M., Stănescu, C., Turturică, M., Cotârleţ, M., Batîr-Marin, D., Maftei, N., Chiţescu, C., Grigore-Gurgu, L., Barbu, V., Enachi, E., & Lisă, E. L. (2024). Bioactive Potential of Carrot-Based Products Enriched with Lactobacillus plantarum. Molecules, 29(4), 917. https://doi.org/10.3390/molecules29040917