Exploration of the Diversity of Vicine and Convicine Derivatives in Faba Bean (Vicia faba L.) Cultivars: Insights from LC-MS/MS Spectra
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Plants and Sampling
4.2. Metabolite Extraction
4.3. UPLC-MS/MS and Identification
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Usman, M.; Khan, W.R.; Yousaf, N.; Akram, S.; Murtaza, G.; Kudus, K.A.; Ditta, A.; Rosli, Z.; Rajpar, M.N.; Nazre, M. Exploring the Phytochemicals and Anti-Cancer Potential of the Members of Fabaceae Family: A Comprehensive Review. Molecules 2022, 27, 3863. [Google Scholar] [CrossRef]
- Moreno-Valdespino, C.A.; Luna-Vital, D.; Camacho-Ruiz, R.M.; Mojica, L. Bioactive proteins and phytochemicals from legumes: Mechanisms of action preventing obesity and type-2 diabetes. Food Res. Int. 2020, 130, 108905. [Google Scholar] [CrossRef]
- Grygier, A.; Chakradhari, S.; Ratusz, K.; Rudzińska, M.; Patel, K.S.; Lazdiņa, D.; Górnaś, P. Seven underutilized species of the Fabaceae family with high potential for industrial application as alternative sources of oil and lipophilic bioactive compounds. Ind. Crops Prod. 2022, 186, 115251. [Google Scholar] [CrossRef]
- Ritchie, H.; Rosado, P.; Roser, M. Environmental impacts of food production. Our World Data 2021. Available online: https://ourworldindata.org/environmental-impacts-of-food (accessed on 3 October 2023).
- Wang, Q.; Ge, X.; Tian, X.; Zhang, Y.; Zhang, J.; Zhang, P. Soy isoflavone: The multipurpose phytochemical (Review). Biomed. Rep. 2013, 1, 697–701. [Google Scholar] [CrossRef] [PubMed]
- Gupta, Y.P. Anti-nutritional and toxic factors in food legumes: A review. Plant Foods Hum. Nutr. 1987, 37, 201–228. [Google Scholar] [CrossRef]
- Banti, M.; Bajo, W. Review on Nutritional Importance and Anti-nutritional Factors of Legumes. Int. J. Nutr. Food Sci. 2020, 9, 138–149. [Google Scholar] [CrossRef]
- Zaynab, M.; Sharif, Y.; Abbas, S.; Afzal, M.Z.; Qasim, M.; Khalofah, A.; Ansari, M.J.; Khan, K.A.; Tao, L.; Li, S. Saponin toxicity as key player in plant defense against pathogens. Toxicon 2021, 193, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Hussien, F.M.; Dagnaw, M.M.; Ahmed, A.Y.; Hassen, H.Y. Lathyrism and socioeconomic disparities: A neglected public health problem in Northeast Ethiopia. Am. J. Trop. Med. Hyg. 2021, 104, 1889–1894. [Google Scholar] [CrossRef]
- Lambein, F.; Travella, S.; Kuo, Y.H.; Van Montagu, M.; Heijde, M. Grass pea (Lathyrus sativus L.): Orphan crop, nutraceutical or just plain food? Planta 2019, 250, 821–838. [Google Scholar] [CrossRef]
- Pavlík, M.; Váňová, M.; Laudová, V.; Harmatha, J. Fungitoxicity of natural heterocycle glucoside vicine obtained from Vicia faba L. against selected microscopic filamentous fungi. Rostl. Vyroba 2002, 48, 543–547. [Google Scholar] [CrossRef]
- Björnsdotter, E.; Nadzieja, M.; Chang, W.; Escobar-Herrera, L.; Mancinotti, D.; Angra, D.; Xia, X.; Tacke, R.; Khazaei, H.; Crocoll, C.; et al. VC1 catalyses a key step in the biosynthesis of vicine in faba bean. Nat. Plants 2021, 7, 923–931. [Google Scholar] [CrossRef] [PubMed]
- Rizzello, C.G.; Losito, I.; Facchini, L.; Katina, K.; Palmisano, F.; Gobbetti, M.; Coda, R. Degradation of vicine, convicine and their aglycones during fermentation of faba bean flour. Sci. Rep. 2016, 6, 32452. [Google Scholar] [CrossRef]
- McMillan, D.C.; Bolchoz, L.J.C.; Jollow, D.J. Favism: Effect of divicine on rat erythrocyte sulfhydryl status, hexose monophosphate shunt activity, morphology, and membrane skeletal proteins. Toxicol. Sci. 2001, 62, 353–359. [Google Scholar] [CrossRef]
- Naber, E.C.; Vogt, H.; Harnish, S.; Krieg, R.; Ueberschaer, K.H.; Rauch, H.W. Reproductive performance of hens fed field beans and potential relationships to vicine metabolism. Poult. Sci. 1988, 67, 455–462. [Google Scholar] [CrossRef]
- Crépon, K.; Marget, P.; Peyronnet, C.; Carrouée, B.; Arese, P.; Duc, G. Nutritional value of faba bean (Vicia faba L.) seeds for feed and food. F. Crop. Res. 2010, 115, 329–339. [Google Scholar] [CrossRef]
- Mejri, F.; Selmi, S.; Martins, A.; Benkhoud, H.; Baati, T.; Chaabane, H.; Njim, L.; Serralheiro, M.L.M.; Rauter, A.P.; Hosni, K. Broad bean (Vicia faba L.) pods: A rich source of bioactive ingredients with antimicrobial, antioxidant, enzyme inhibitory, anti-diabetic and health-promoting properties. Food Funct. 2018, 9, 2051–2069. [Google Scholar] [CrossRef] [PubMed]
- Köpke, U.; Nemecek, T. Ecological services of faba bean. F. Crop. Res. 2010, 115, 217–233. [Google Scholar] [CrossRef]
- Multari, S.; Stewart, D.; Russell, W.R. Potential of Fava Bean as Future Protein Supply to Partially Replace Meat Intake in the Human Diet. Compr. Rev. Food Sci. Food Saf. 2015, 14, 511–522. [Google Scholar] [CrossRef]
- Khazaei, H.; Purves, R.W.; Hughes, J.; Link, W.; O’Sullivan, D.M.; Schulman, A.H.; Björnsdotter, E.; Geu-Flores, F.; Nadzieja, M.; Andersen, S.U.; et al. Eliminating vicine and convicine, the main anti-nutritional factors restricting faba bean usage. Trends Food Sci. Technol. 2019, 91, 549–556. [Google Scholar] [CrossRef]
- Pulkkinen, M.; Coda, R.; Lampi, A.M.; Varis, J.; Katina, K.; Piironen, V. Possibilities of reducing amounts of vicine and convicine in faba bean suspensions and sourdoughs. Eur. Food Res. Technol. 2019, 245, 1507–1518. [Google Scholar] [CrossRef]
- Larcher, R.; Nardin, T. Suspect screening of glycoalkaloids in plant extracts using neutral loss—High resolution mass spectrometry. J. Chromatogr. A 2019, 1596, 59–68. [Google Scholar] [CrossRef]
- Collier, H. The Estimation of Vicine in Fababeans by an Ultraviolet Spectrophotometric Method. Can. Inst. Food Sci. Technol. J. 1976, 9, 155–159. [Google Scholar] [CrossRef]
- Marquardt, R.R.; Frohlich, A.A. Rapid reversed-phase high-performance liquid chromatography method for the quantitation of vicine, convicine and related compounds. J. Chromatogr. A 1981, 208, 373–379. [Google Scholar] [CrossRef]
- Aydoğan, C. Recent advances and applications in LC-HRMS for food and plant natural products: A critical review. Anal. Bioanal. Chem. 2020, 412, 1973–1991. [Google Scholar] [CrossRef]
- Elkins, A.C.; Rochfort, S.J.; Maharjan, P.; Panozzo, J. A Simple High-Throughput Method for the Analysis of Vicine and Convicine in Faba Bean. Molecules 2022, 27, 6288. [Google Scholar] [CrossRef]
- Purves, R.W.; Khazaei, H.; Vandenberg, A. Quantification of vicine and convicine in faba bean seeds using hydrophilic interaction liquid chromatography. Food Chem. 2018, 240, 1137–1145. [Google Scholar] [CrossRef] [PubMed]
- Purves, R.W.; Khazaei, H.; Vandenberg, A. Toward a high-throughput method for determining vicine and convicine levels in faba bean seeds using flow injection analysis combined with tandem mass spectrometry. Food Chem. 2018, 256, 219–227. [Google Scholar] [CrossRef]
- Kowalczyk, M.; Rolnik, A.; Adach, W.; Kluska, M.; Juszczak, M.; Grabarczyk, Ł.; Wozniak, K.; Olas, B.; Stochmal, A. Multifunctional compounds in the extract from mature seeds of Vicia faba var. minor: Phytochemical profiling, antioxidant activity and cellular safety in human selected blood cells in in vitro trials. Biomed. Pharmacother. 2021, 139, 111718. [Google Scholar] [CrossRef] [PubMed]
- Valente, I.M.; Cabrita, A.R.J.; Malushi, N.; Oliveira, H.M.; Papa, L.; Rodrigues, J.A.; Fonseca, A.J.M.; Maia, M.R.G. Unravelling the phytonutrients and antioxidant properties of European Vicia faba L. seeds. Food Res. Int. 2019, 116, 888–896. [Google Scholar] [CrossRef]
- Quéméner, B.; Ralet, M. Evidence for linkage position determination in known feruloylated mono- and disaccharides using electrospray ion trap mass spectrometry. J. Mass Spectrom. 2004, 39, 1153–1160. [Google Scholar] [CrossRef] [PubMed]
- Kokotou, M.G.; Mantzourani, C.; Babaiti, R.; Kokotos, G. Study of the royal jelly free fatty acids by liquid chromatography-high resolution mass spectrometry (LC-HRMS). Metabolites 2020, 10, 40. [Google Scholar] [CrossRef]
- Wojakowska, A.; Piasecka, A.; García-lópez, P.M.; Zamora-natera, F.; Krajewski, P.; Marczak, Ł.; Kachlicki, P.; Stobiecki, M. Phytochemistry Structural analysis and profiling of phenolic secondary metabolites of Mexican lupine species using LC—MS techniques. Phytochemistry 2013, 92, 71–86. [Google Scholar] [CrossRef]
- Shi, X.; Yang, W.; Huang, Y.; Hou, J.; Qiu, S.; Yao, C.; Feng, Z.; Wei, W.; Wu, W.; Guo, D. Direct screening of malonylginsenosides from nine Ginseng extracts by an untargeted profiling strategy incorporating in-source collision-induced dissociation, mass tag, and neutral loss scan on a hybrid linear ion-trap/Orbitrap mass spectrometer coupled t. J. Chromatogr. A 2018, 1571, 213–222. [Google Scholar] [CrossRef]
- Desmet, S.; Saeys, Y.; Verstaen, K.; Dauwe, R.; Kim, H.; Niculaes, C.; Fukushima, A.; Goeminne, G.; Vanholme, R.; Ralph, J.; et al. Maize specialized metabolome networks reveal organ-preferential mixed glycosides. Comput. Struct. Biotechnol. J. 2021, 19, 1127–1144. [Google Scholar] [CrossRef]
- Neugart, S.; Rohn, S.; Schreiner, M. Identification of complex, naturally occurring flavonoid glycosides in Vicia faba and Pisum sativum leaves by HPLC-DAD-ESI-MSn and the genotypic effect on their flavonoid profile. Food Res. Int. 2015, 76, 114–121. [Google Scholar] [CrossRef]
- Schmidt, S.; Zietz, M.; Schreiner, M.; Rohn, S.; Kroh, L.W.; Krumbein, A. Identification of complex, naturally occurring flavonoid glycosides in kale (Brassica oleracea var. sabellica) by high-performance liquid chromatography diode-array detection/electrospray ionization multi-stage mass spectrometry. Rapid Commun. Mass Spectrom. 2022, 24, 2009–2022. [Google Scholar] [CrossRef]
- Gould, K.S.; Jay-Allemand, C.; Logan, B.A.; Baissac, Y.; Bidel, L.P.R. When are foliar anthocyanins useful to plants? Re-evaluation of the photoprotection hypothesis using Arabidopsis thaliana mutants that differ in anthocyanin accumulation. Environ. Exp. Bot. 2018, 154, 11–22. [Google Scholar] [CrossRef]
- Dambrova, M.; Makrecka-Kuka, M.; Kuka, J.; Vilskersts, R.; Nordberg, D.; Attwood, M.M.; Smesny, S.; Sen, Z.D.; Guo, A.C.; Oler, E.; et al. Acylcarnitines: Nomenclature, Biomarkers, Therapeutic Potential, Drug Targets, and Clinical Trials. Pharmacol. Rev. 2022, 74, 506–551. [Google Scholar] [CrossRef] [PubMed]
- Ramsay, G.; Griffiths, D.W. Accumulation of vicine and convicine in Vicia faba and V. narbonensis. Phytochemistry 1996, 42, 63–67. [Google Scholar] [CrossRef]
- Duan, S.; Kwon, S.J.; Lim, Y.J.; Gil, C.S.; Jin, C.; Eom, S.H. L-3,4-dihydroxyphenylalanine accumulation in faba bean (Vicia faba L.) tissues during different growth stages. Agronomy 2021, 11, 502. [Google Scholar] [CrossRef]
- Griffiths, D.W.; Ramsay, G. The distribution of pyrimidinone glucosides in developing seedlings of Vicia faba and Vicia narbonensis. J. Sci. Food Agric. 1996, 72, 469–475. [Google Scholar] [CrossRef]
- Desroches, P.; El Shazly, E.; Mandon, N.; Duc, G.; Huignard, J. Development of Callosobruchus chinensis (L.) and C. maculatus (F.) (Coleoptera: Bruchidae) in seeds of Vicia faba L. differing in their tannin, vicine and convicine contents. J. Stored Prod. Res. 1995, 31, 83–89. [Google Scholar] [CrossRef]
- Bjerg, B.; Heide, M.; Nørgaard Knudsen, J.C.; Sørensen, H. Inhibitory effects of convicine, vicine and dopa from Vicia faba on the in vitro growth rates of fungal pathogens. J. Plant Dis. Prot. 1984, 91, 483–487. [Google Scholar]
- Backes, A.; Charton, S.; Planchon, S.; Esmaeel, Q.; Sergeant, K.; Hausman, J.-F.; Renaut, J.; Barka, E.A.; Jacquard, C.; Guerriero, G. Gene expression and metabolite analysis in barley inoculated with net blotch fungus and plant growth-promoting rhizobacteria. Plant Physiol. Biochem. 2021, 168, 488–500. [Google Scholar] [CrossRef] [PubMed]
- Ruttkies, C.; Schymanski, E.L.; Wolf, S.; Hollender, J.; Neumann, S. MetFrag relaunched: Incorporating strategies beyond in silico fragmentation. J. Cheminform. 2016, 8, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Allen, D.; Tian, S.; Oler, E.; Gautam, V.; Greiner, R.; Metz, T.O.; Wishart, D.S.; Cfm-id, T. CFM-ID 4. 0—A web server for accurate MS-based metabolite identification. Nucleic Acids Res. 2022, 50, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Salek, R.M.; Steinbeck, C.; Viant, M.R.; Goodacre, R.; Dunn, W.B. The role of reporting standards for metabolite annotation and identification in metabolomic studies. Gigascience 2013, 2, 13. [Google Scholar] [CrossRef]
# | RT a | m/z b | Formula | FC c | Max d | Min d | ID | ΔM e | Derivative f |
---|---|---|---|---|---|---|---|---|---|
mother compounds and short-chain acid (# C from 3 to 6) derivatives | |||||||||
1 | 0.71 | 303.094 | C10H16N4O7 | 7.5 | B | E | VC | −0.8 | |
2 | 0.71 | 304.079 | C10H15N3O8 | 5.7 | B | E | CV | 2.3 | |
3 | 1.10 | 466.131 | C16H25N3O13 | 9.6 | C | D | CV Hex | −1.9 | |
4 | 1.14 | 465.145 | C16H26N4O12 | 7.6 | C | D | VC Hex | −5.8 | |
5 | 1.49 | 390.078 | C13H17N3O11 | 104.3 | B | E | malonyl CV | −1.7 | |
6 | 1.69 | 389.093 | C13H18N4O10 | 54.5 | B | E | malonyl VC | −4.6 | |
7 | 3.64 | 448.120 | C16H23N3O12 | 254.0 | B | E | hydroxyadipoyl CV | −2.9 | |
8 | 4.19 | 447.136 | C16H24N4O11 | 96.6 | B | E | hydroxyadipoyl VC | −2.1 | |
9 | 4.62 | 448.118 | C16H23N3O12 | 487.5 | B | E | hydroxyadipoyl CV | −5.9 | |
10 | 5.64 | 409.097 | C16H18N4O9 | 3.2 | B | D | CV + C6H3NO | −7.9 | nicotinic acid |
11 | 6.19 | 404.130 | C15H23N3O10 | 4.1 | A | E | CV + C5H8O2 | −3.8 | hydroxy-valerate |
12 | 6.42 | 360.104 | C13H19N3O9 | 3.4 | A | D | CV + C3H4O | −3.2 | propionic acid |
13 | 6.54 | 408.114 | C16H19N5O8 | 5.4 | B | E | VC + C6H3NO | −5.1 | nicotinic acid |
14 | 7.01 | 403.145 | C15H24N4O9 | 4.0 | A | E | VC + C5H8O2 | −5.0 | hydroxy-valerate |
15 | 8.30 | 403.145 | C15H24N4O9 | 4.9 | B | E | VC + C5H8O2 | −4.5 | hydroxy-valerate |
16 | 8.50 | 585.170 | C23H30N4O14 | 9.6 | A | E | VC + hydroxybenzoic acid Hex | 1.6 | |
17 | 11.04 | 424.099 | C17H19N3O10 | 4.3 | A | B | CV + hydroxybenzoic acid | −2.4 | |
18 | 11.63 | 374.120 | C14H21N3O9 | 3.8 | C | E | butyryl CV | −0.5 | |
19 | 12.02 | 423.112 | C17H20N4O9 | 2.5 | A | E | VC + hydroxybenzoic acid | −8.1 | |
20 | 12.76 | 373.136 | C14H22N4O8 | 4.0 | C | E | butyryl VC | −1.1 | |
21 | 15.77 | 386.119 | C15H21N3O9 | 3.9 | A | D | CV + C5H6O | −4.2 | pentenoic acid |
22 | 17.44 | 385.134 | C15H22N4O8 | 2.7 | B | E | VC + C5H6O | −5.2 | pentenoic acid |
23 | 17.21 | 388.136 | C15H23N3O9 | 2.8 | C | D | (iso)valeryl CV | −0.4 | |
24 | 18.23 | 387.152 | C15H24N4O8 | 3.1 | C | E | (iso)valeryl VC | 0.7 | |
25 | 19.48 | 387.150 | C15H24N4O8 | 3.5 | B | C | (iso)valeryl VC | −4.6 | |
derivatives with phenylpropanoids and guaiacylglycerol | |||||||||
26 | 14.05 | 612.167 | C25H31N3O15 | 8.8 | A | D | CV coumaroyl Hex | −2.0 | |
27 | 14.59 | 611.181 | C25H32N4O14 | 20.1 | B | D | VC coumaroyl Hex | −4.7 | |
28 | 15.57 | 466.109 | C19H21N3O11 | 4.1 | A | D | CV caffeic acid | −2.4 | |
29 | 16.43 | 465.124 | C19H22N4O10 | 4.4 | B | E | VC caffeic acid | −4.1 | |
30 | 16.70 | 642.178 | C26H33N3O16 | 8.7 | A | D | CV feruloyl Hex | −1.2 | |
31 | 17.36 | 641.193 | C26H34N4O15 | 9.9 | A | D | VC feruloyl Hex | −3.5 | |
32 | 17.99 | 672.189 | C27H35N3O17 | 3.9 | C | D | CV sinapoyl Hex | −1.3 | |
33 | 18.42 | 671.203 | C27H36N4O16 | 2.4 | B | E | VC sinapoyl Hex | −4.2 | |
34 | 18.42 | 450.113 | C19H21N3O10 | 8.0 | C | E | CV coumaric acid | −4.8 | |
35 | 18.89 | 554.162 | C23H29N3O13 | 3.9 | A | D | CV + C13H14O5 | −1.0 | glyceryl ferulate |
36 | 19.25 | 553.177 | C23H30N4O12 | 3.3 | A | D | VC + C13H14O5 | −3.0 | glyceryl ferulate |
37 | 19.48 | 500.151 | C20H27N3O12 | 6.8 | E | D | CV + C10H12O4 | −1.7 | guaiacylglycerol |
38 | 19.60 | 480.126 | C20H23N3O11 | 2.9 | A | E | CV ferulic acid | 0.1 | |
39 | 19.99 | 479.141 | C20H24N4O10 | 7.4 | A | E | VC ferulic acid | −2.9 | |
40 | 20.03 | 499.166 | C20H28N4O11 | 6.7 | B | D | VC + C10H12O4 | −4.2 | guaiacylglycerol |
41 | 20.14 | 510.135 | C21H25N3O12 | 3.5 | C | E | CV sinapinic acid | −3.9 | |
42 | 20.53 | 509.150 | C21H26N4O11 | 5.4 | B | E | VC sinapinic acid | −4.0 | |
43 | 20.97 | 676.197 | C30H35N3O15 | 4.2 | A | E | feruloyl CV + C10H12O4 | −3.1 | guaiacylglycerol |
44 | 21.32 | 675.213 | C30H36N4O14 | 7.8 | A | E | feruloyl VC + C10H12O4 | −3.3 | guaiacylglycerol |
45 | 22.57 | 1142.329 | C48H61N3O29 | 9.1 | A | E | CV diferuloyl triHex | −2.4 | |
46 | 22.60 | 980.278 | C42H51N3O24 | 8.1 | A | E | CV diferuloyl diHex | −1.3 | |
47 | 22.76 | 1141.345 | C48H62N4O28 | 5.1 | A | E | VC diferuloyl triHex | −2.3 | |
48 | 22.84 | 979.292 | C42H52N4O23 | 12.9 | A | E | VC diferuloyl diHex | −2.9 | |
49 | 22.96 | 818.224 | C36H41N3O19 | 16.9 | A | E | CV diferuloyl Hex | −2.8 | |
50 | 23.66 | 817.236 | C36H42N4O18 | 2.8 | B | E | VC diferuloyl Hex | −7.5 | |
51 | 25.04 | 1156.323 | C52H59N3O27 | 3.3 | A | D | CV triferuloyl diHex | −2.8 | |
52 | 25.23 | 1155.337 | C52H60N4O26 | 3.7 | A | E | VC triferuloyl diHex | −4.2 | |
Medium-chain acid (# C above 6) derivatives | |||||||||
53 | 15.61 | 446.140 | C17H25N3O11 | 3.6 | A | D | CV + C7H10O3 | −3.7 | pimelic acid |
54 | 16.62 | 445.156 | C17H26N4O10 | 5.1 | B | E | VC + C7H10O3 | −4.7 | pimelic acid |
55 | 18.07 | 732.234 | C27H39N7O17 | 10.5 | B | E | CV + C7H10O3 VC | 1.7 | pimelic acid |
56 | 19.32 | 789.247 | C30H42N6O19 | 4.0 | C | D | CV + C10H14O4 CV | 4.3 | hydroxy decenedioic acid |
57 | 19.52 | 746.248 | C28H41N7O17 | 2.0 | A | D | VC + C8H12O3 CV | −1.5 | suberic acid |
58 | 19.83 | 788.261 | C30H43N7O18 | 31.2 | C | D | CV + C10H14O4 VC | 2.9 | hydroxy decenedioic acid |
59 | 19.95 | 502.168 | C20H29N3O12 | 6.6 | C | D | CV + C10H14O4 | 0.3 | hydroxy decenedioic acid |
60 | 20.30 | 504.183 | C20H31N3O12 | 16.1 | C | D | CV + C10H16O4 | −1.2 | hydroxy sebacic acid |
61 | 20.50 | 501.184 | C20H30N4O11 | 9.4 | C | D | VC + C10H14O4 | −0.4 | hydroxy decenedioic acid |
62 | 20.61 | 572.211 | C24H35N3O13 | 3.2 | A | B | CV + C14H20O5 | 1.8 | Dihydroxy-tetra-decadienedioic acid |
63 | 20.77 | 503.199 | C20H32N4O11 | 15.9 | C | D | VC + C10H16O4 | −0.7 | hydroxy sebacic acid |
64 | 20.85 | 472.156 | C19H27N3O11 | 4.9 | A | D | CV + C9H12O3 | −2.1 | nonenedioic acid |
65 | 20.97 | 814.274 | C32H45N7O18 | 24.4 | A | E | VC + C12H16O4 CV | −1.5 | hydroxy-dodecadienedioic acid |
66 | 21.08 | 571.224 | C24H36N4O12 | 2.8 | A | B | VC + C14H20O5 | −2.7 | Dihydroxy-tetra-decadienedioic acid |
67 | 21.24 | 474.173 | C19H29N3O11 | 49.6 | C | E | CV + C9H14O3 | 0.3 | azelaic acid |
68 | 21.28 | 813.288 | C32H46N8O17 | 35.8 | A | E | VC + C12H16O4 VC | −3.7 | hydroxy-dodecadienedioic acid |
69 | 21.43 | 471.171 | C19H28N4O10 | 13.8 | A | D | VC + C9H12O3 | −5.0 | nonenedioic acid |
70 | 21.43 | 773.244 | C30H42N6O18 | 6.5 | A | D | CV + C10H14O3 CV | −5.3 | decenedioic acid |
71 | 21.47 | 528.180 | C22H31N3O12 | 5.6 | C | E | CV + C12H16O4 | −6.8 | hydroxy-dodecadienedioic acid |
72 | 21.63 | 859.330 | C34H52N8O18 | 10.7 | B | E | VC + C14H22O5 VC | −3.1 | dihydroxy-tetra-decenedioic acid |
73 | 21.67 | 775.266 | C30H44N6O18 | 4.1 | A | B | CV C10H16O3 CV | 2.7 | sebacic acid |
74 | 21.71 | 530.198 | C22H33N3O12 | 2.5 | C | E | CV + C12H18O4 | −2.0 | hydroxy-dodecenedioic acid |
75 | 21.71 | 473.188 | C19H30N4O10 | 2.5 | C | E | VC + C9H14O3 | −3.5 | azelaic acid |
76 | 21.94 | 772.265 | C30H43N7O17 | 2.7 | A | D | VC + C10H14O3 CV | 0.4 | decenedioic acid |
77 | 22.02 | 527.198 | C22H32N4O11 | 3.6 | A | E | VC + C12H16O4 | −3.3 | hydroxy-dodecadienedioic acid |
78 | 22.14 | 574.224 | C24H37N3O13 | 2.9 | A | E | CV + C14H22O5 | −2.8 | dihydroxy-tetra-decenedioic acid |
79 | 22.17 | 774.281 | C30H45N7O17 | 3.2 | A | D | VC + C10H16O3 CV | 1.0 | sebacic acid |
80 | 22.17 | 771.279 | C30H44N8O16 | 3.0 | A | E | VC + C10H14O3 VC | −2.1 | decenedioic acid |
81 | 22.17 | 529.213 | C22H34N4O11 | 3.3 | C | E | VC + C12H18O4 | −3.8 | hydroxy-dodecenedioic acid |
82 | 22.37 | 573.239 | C24H38N4O12 | 3.5 | A | E | VC + C14H22O5 | −3.7 | dihydroxy-tetra-decenedioic acid |
83 | 22.41 | 773.295 | C30H46N8O16 | 4.1 | A | D | VC + C10H16O3 VC | −1.2 | sebacic acid |
84 | 22.49 | 486.172 | C20H29N3O11 | 3.0 | A | B | CV + C10H14O3 | −1.3 | decenedioic acid |
85 | 22.92 | 485.186 | C20H30N4O10 | 2.1 | A | E | VC + C10H14O3 | −5.5 | decenedioic acid |
86 | 23.07 | 488.187 | C20H31N3O11 | 5.3 | A | D | CV + C10H16O3 | −2.2 | sebacic acid |
87 | 23.27 | 485.187 | C20H30N4O10 | 3.3 | A | C | VC + C10H14O3 | −3.2 | decenedioic acid |
88 | 23.58 | 487.203 | C20H32N4O10 | 5.1 | A | D | VC + C10H16O3 | −3.2 | sebacic acid |
Code | Genotype | Registration GER | Color | Vicine | Type |
---|---|---|---|---|---|
A | Taifun | 2011 | Zt | HVC | Spring |
B | Augusta | 2018 | Bb | HVC | Winter |
C | Trumpet | 2017 | Bb | HVC | Spring |
D | Allison | 2019 | Bb | LVC | Spring |
E | Breeding line | Zt | LVC | Spring |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sergeant, K.; Goertz, S.; Halime, S.; Tietgen, H.; Heidt, H.; Minestrini, M.; Jacquard, C.; Zimmer, S.; Renaut, J. Exploration of the Diversity of Vicine and Convicine Derivatives in Faba Bean (Vicia faba L.) Cultivars: Insights from LC-MS/MS Spectra. Molecules 2024, 29, 1065. https://doi.org/10.3390/molecules29051065
Sergeant K, Goertz S, Halime S, Tietgen H, Heidt H, Minestrini M, Jacquard C, Zimmer S, Renaut J. Exploration of the Diversity of Vicine and Convicine Derivatives in Faba Bean (Vicia faba L.) Cultivars: Insights from LC-MS/MS Spectra. Molecules. 2024; 29(5):1065. https://doi.org/10.3390/molecules29051065
Chicago/Turabian StyleSergeant, Kjell, Simon Goertz, Salma Halime, Hanna Tietgen, Hanna Heidt, Martina Minestrini, Cédric Jacquard, Stephanie Zimmer, and Jenny Renaut. 2024. "Exploration of the Diversity of Vicine and Convicine Derivatives in Faba Bean (Vicia faba L.) Cultivars: Insights from LC-MS/MS Spectra" Molecules 29, no. 5: 1065. https://doi.org/10.3390/molecules29051065
APA StyleSergeant, K., Goertz, S., Halime, S., Tietgen, H., Heidt, H., Minestrini, M., Jacquard, C., Zimmer, S., & Renaut, J. (2024). Exploration of the Diversity of Vicine and Convicine Derivatives in Faba Bean (Vicia faba L.) Cultivars: Insights from LC-MS/MS Spectra. Molecules, 29(5), 1065. https://doi.org/10.3390/molecules29051065