Phytochemical Profiling by UHPLC–Q-TOF/MS and Chemopreventive Effect of Aqueous Extract of Moringa oleifera Leaves and Benzyl Isothiocyanate on Murine Mammary Carcinogenesis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phytochemical Analysis of MoAE
N° | Compound Name | Formula | Theoretical Mass (m/z) | Experimental Mass (m/z) | Error (ppm) | RT (min) | Ref. |
---|---|---|---|---|---|---|---|
1 | Gluconic acid | C6H12O7 | 195.0510 | 195.0514 | 2.07 | 0.72 | [22] |
2 | D-Arabinonic acid | C5H10O6 | 165.0405 | 165.0407 | 1.62 | 0.72 | [22] |
3 | D-Fructose | C6H12O6 | 179.0561 | 179.0565 | 2.06 | 0.73 | [23] |
4 | Threonic acid | C4H8O5 | 135.0299 | 135.0301 | 1.28 | 0.74 | [24] |
6 | Quinic acid | C7H12O6 | 191.0561 | 191.0565 | 1.82 | 0.77 | [25] |
7 | Sucrose | C12H22O11 | 341.1089 | 341.1096 | 1.95 | 0.78 | [23] |
8 | Malic acid | C4H6O5 | 133.0142 | 133.0144 | 1.45 | 0.86 | [22] |
9 | Malonic acid | C3H4O4 | 103.0037 | 103.0038 | 1.05 | 0.90 | [26] |
10 | 3-Aminobutanoic acid | C4H9NO2 | 102.0561 | 102.0561 | 0.67 | 0.96 | [27] |
11 | Uric acid | C5H4N4O3 | 167.0211 | 167.0214 | 2.01 | 1.02 | [22] |
12 | Citric acid | C6H8O7 | 191.0197 | 191.0202 | 2.59 | 1.03 | [22] |
13 | Pyromucic acid | C5H4O3 | 111.0088 | 111.0089 | 1.55 | 1.03 | [28] |
14 | Succinic acid | C4H6O4 | 117.0193 | 117.0195 | 1.18 | 1.31 | [29] |
15 | L-Phenylalanine | C9H11NO2 | 164.0717 | 164.0720 | 2.00 | 1.86 | [22] |
16 | 2,5-dihydroxybenzoic acid | C7H6O4 | 153.0193 | 153.0196 | 1.62 | 2.09 | [30] |
17 | Neochlorogenic acid | C16H18O9 | 353.0878 | 353.0886 | 2.16 | 2.18 | [24] |
18 | Hydroxyphenyllactic acid | C9H10O4 | 181.0506 | 181.0510 | 1.98 | 2.27 | [31] |
19 | 2-Isopropylmalic acid | C7H12O5 | 175.0612 | 175.0616 | 2.07 | 2.50 | [32] |
20 | Caffeoylquinic acid | C16H18O9 | 353.0878 | 353.0885 | 2.05 | 2.55 | [33] |
21 | Saponarin | C27H30O15 | 593.1512 | 593.1523 | 1.78 | 2.94 | [34] |
22 | Rutin | C27H30O16 | 609.1461 | 609.1469 | 1.28 | 3.19 | [35] |
23 | Vitexin | C21H20O10 | 431.0984 | 431.0992 | 1.83 | 3.27 | [32] |
24 | Quercetin 3-glucoside | C21H20O12 | 463.0882 | 463.0890 | 1.66 | 3.32 | [35] |
25 | 3-phenyllactic acid | C9H10O3 | 165.0557 | 165.0560 | 1.47 | 3.39 | [31] |
26 | Quercetin 3-(6″-malonylglucoside) | C24H22O15 | 549.0886 | 549.0896 | 1.78 | 3.44 | [35] |
27 | Quercetin 3-(6″-acetylglucoside) | C23H22O13 | 505.0988 | 505.0997 | 1.77 | 3.44 | [31] |
28 | Kaempferol 3-alpha-D-galactoside | C21H20O11 | 447.0933 | 447.0941 | 1.87 | 3.56 | [35] |
29 | Kaempherol 3-O-(6-malonylgalactopyranoside) | C24H22O14 | 533.0937 | 533.0946 | 1.63 | 3.72 | [35] |
30 | Azelaic acid | C9H16O4 | 187.0976 | 187.0980 | 1.96 | 3.82 | [31] |
31 | Hieracin | C15H10O7 | 301.0354 | 301.0361 | 2.27 | 4.37 | [36] |
32 | Kaempferol | C15H10O6 | 285.0405 | 285.0411 | 2.17 | 4.87 | [37] |
33 | Kaempferide | C16H12O6 | 299.0561 | 299.0571 | 3.40 | 4.93 | [38] |
34 | 6-Methoxyluteolin | C16H12O7 | 315.0510 | 315.0517 | 2.17 | 4.98 | [39] |
35 | Pinolenic Acid | C18H30O2 | 277.2173 | 277.2178 | 1.64 | 8.54 | [40] |
N° | Compound Name | Formula | Theoretical Mass (m/z) | Experimental Mass (m/z) | Error (ppm) | RT (min) | Ref. |
---|---|---|---|---|---|---|---|
1 | D-Arginine | C6H14N4O2 | 175.1190 | 175.1186 | 2.01 | 0.66 | [22] |
2 | Choline | C5H13NO | 104.1070 | 104.1069 | 0.86 | 0.69 | [31] |
3 | L-Glutamic acid | C5H9NO4 | 148.0604 | 148.0604 | 0.23 | 0.69 | [22] |
4 | Betaine | C5H11NO2 | 118.0863 | 118.0861 | 1.31 | 0.70 | [41] |
5 | Muramic acid | C9H17NO7 | 252.1078 | 252.1073 | 1.90 | 0.70 | [42] |
6 | Glucosamine | C6H13NO5 | 180.0866 | 180.0863 | 1.94 | 0.71 | [43] |
7 | D-Proline | C5H9NO2 | 116.0706 | 116.0705 | 0.90 | 0.75 | [26] |
8 | Trigonelline | C7H7NO2 | 138.0550 | 138.0547 | 1.99 | 0.76 | [44] |
9 | Furfural | C5H4O2 | 97.0284 | 97.0284 | 0.06 | 0.76 | [45] |
10 | N2-Acetyl-L-ornithine | C7H14N2O3 | 175.1077 | 175.1079 | 1.03 | 0.8 | [46] |
11 | Proline betaine | C7H13NO2 | 144.1019 | 144.1016 | 2.12 | 0.83 | [47] |
12 | 4-Hydroxypyridine | C5H5NO | 96.0444 | 96.0444 | 0.10 | 0.87 | |
13 | Glu Ala | C8H14N2O5 | 219.0975 | 219.0977 | 0.69 | 0.91 | |
14 | L-Valine | C5H11NO2 | 118.0863 | 118.0861 | 1.31 | 0.93 | [26] |
15 | D-Pipecolic acid | C6H11NO2 | 130.0863 | 130.0861 | 1.19 | 0.97 | [48] |
16 | Isonicotinic acid | C6H5NO2 | 124.0393 | 124.0391 | 1.65 | 1.01 | [31] |
17 | 3-Aminosalicylic acid | C7H7NO3 | 154.0499 | 154.0496 | 1.75 | 1.15 | [49] |
18 | D-Pyroglutamic acid | C5H7NO3 | 130.0499 | 130.0496 | 2.08 | 1.21 | [50] |
19 | Pyridoxine (Vitamin B6) | C8H11NO3 | 170.0812 | 170.0812 | 0.18 | 1.21 | [31] |
20 | Phenacylamine | C8H9NO | 136.0757 | 136.0753 | 2.87 | 1.27 | |
21 | Salsolinol | C10H13NO2 | 180.1019 | 180.1015 | 2.25 | 1.32 | [51] |
22 | Tropone | C7H6O | 107.0491 | 107.0490 | 1.32 | 1.34 | [52] |
23 | Euparin | C13H12O3 | 217.0859 | 217.0855 | 1.94 | 1.34 | [53] |
24 | 2,6-Dihydroxynaphthalene | C10H8O2 | 161.0597 | 161.0594 | 1.90 | 1.34 | |
25 | D-Isoleucine | C6H13NO2 | 132.1019 | 132.1017 | 1.55 | 1.39 | [26] |
26 | Vidarabine | C10H13N5O4 | 268.1040 | 268.1035 | 1.98 | 1.39 | [54] |
27 | N-(1-Deoxy-D-fructos-1-yl)-D-leucine | C12H23NO7 | 294.1547 | 294.1540 | 2.48 | 1.44 | |
28 | L-Leucine | C6H13NO2 | 132.1019 | 132.1016 | 2.31 | 1.46 | [26] |
29 | 2-Pyrrolidinone | C4H7NO | 86.0600 | 86.0599 | 1.63 | 1.48 | [55] |
30 | Cryptochlorogenic acid | C16H18O9 | 355.1024 | 353.0882 | 1.10 | 1.69 | [24] |
31 | Pantothenic acid | C9H17NO5 | 220.1179 | 220.1173 | 2.95 | 1.92 | [32] |
32 | Caffeate | C9H6O3 | 163.0390 | 163.0385 | 2.89 | 2.17 | [56] |
33 | (±)-Furaneol | C6H8O3 | 129.0546 | 129.0543 | 2.49 | 2.32 | [57] |
34 | Chlorogenic acid | C16H18O9 | 355.1024 | 355.1016 | 2.14 | 2.53 | [24] |
35 | Glu Phe | C14H18N2O5 | 295.1288 | 295.1293 | 1.53 | 2.55 | [22] |
36 | 6-Methylquinoline | C10H9N | 144.0808 | 144.0804 | 2.61 | 2.74 | [58] |
37 | Riboflavin (Vitamin B2) | C17H20N4O6 | 377.1456 | 377.1449 | 1.75 | 2.86 | [32] |
38 | Coumarin | C9H6O2 | 147.0441 | 147.0438 | 2.08 | 2.87 | [59] |
39 | Corchoionol C 9-glucoside | C19H30O8 | 387.2013 | 387.2003 | 2.70 | 2.90 | |
40 | Saponarin | C27H30O15 | 595.1657 | 595.1649 | 1.42 | 2.94 | [60] |
41 | Isoorientin | C21H20O11 | 449.1078 | 449.1072 | 1.42 | 2.96 | [60] |
42 | 5-O-Feruloylquinic acid | C17H20O9 | 369.1180 | 369.1174 | 1.65 | 3.07 | [61] |
43 | Rutin | C27H30O16 | 611.1607 | 611.1592 | 2.39 | 3.20 | [25] |
44 | Vitexin | C21H20O10 | 433.1129 | 433.1120 | 2.13 | 3.28 | [32] |
45 | Quercetin 3-O-glucoside | C21H20O12 | 465.1028 | 465.1016 | 2.48 | 3.33 | [25] |
46 | Quercetin | C15H10O7 | 303.0499 | 303.0492 | 2.50 | 3.54 | [35] |
47 | Kaempferol 3-alpha-D-galactoside | C21H20O11 | 449.1078 | 449.1068 | 2.31 | 3.58 | [35] |
48 | Isorhamnetin 3-glucoside | C22H22O12 | 479.1184 | 479.1173 | 2.30 | 3.64 | [25] |
49 | Quercetin 3-(6″-malonylgalactoside) | C24H22O15 | 551.1031 | 551.1022 | 1.70 | 3.65 | [35] |
50 | Viscidulin I | C15H10O7 | 303.0499 | 303.0493 | 2.08 | 3.65 | [37] |
51 | Quercetin 3-(6″-acetylglucoside) | C23H22O13 | 507.1133 | 507.1124 | 1.81 | 3.68 | [31] |
52 | Methyl cinnamate | C10H10O2 | 163.0754 | 163.0751 | 1.57 | 3.71 | [62] |
53 | Kaempferol | C15H10O6 | 287.0550 | 287.0543 | 2.38 | 3.74 | [37] |
54 | loliolide | C11H16O3 | 197.1172 | 197.1168 | 2.14 | 3.75 | [63] |
55 | 3,4-Dimethylstyrene | C10H12 | 133.1012 | 133.1008 | 2.83 | 3.77 | |
56 | Isorhamnetin | C16H12O7 | 317.0656 | 317.0648 | 2.43 | 3.82 | [61] |
57 | Cyanidin 3-(6″-acetylglucoside) | C23H22O12 | 491.1184 | 491.1176 | 1.64 | 4.00 | [64] |
58 | Traumatic acid | C12H20O4 | 229.1434 | 229.1430 | 1.90 | 4.85 | [65] |
59 | Dihydroactinidiolide | C11H16O2 | 181.1223 | 181.1218 | 2.79 | 5.50 | [66] |
60 | 2-Heptyl-4-hydroxyquinoline | C16H21NO2 | 260.1645 | 260.1638 | 2.71 | 5.93 | |
61 | 2-heptylquinolin-4(1H)-one | C16H21NO | 244.1696 | 244.1689 | 2.83 | 6.05 | |
62 | Quercetin tetramethyl (5,7,3′,4′) ether | C19H18O7 | 359.1125 | 359.1114 | 3.14 | 6.98 | [67] |
64 | 13E-Docosenamide | C22H43NO | 338.3417 | 338.3408 | 2.78 | 9.29 | [68] |
2.2. Phenolic Content and Antioxidant Activity of MoAE
2.3. MoAE Activity on Cancer Induced in Rats
3. Materials and Methods
3.1. Plant Sample Preparation
3.2. Analysis of the Chemical Composition of MoAE by UHPLC–Q-TOF/MS
3.3. Determination of the Total Phenolic Content in MoAE
3.4. Antioxidant Activity: DPPH Radical Scavenging Assay
3.5. Animals
3.6. Evaluation of the Effect of MoAE and BIT on Breast Cancer
3.7. Determination of Serum Levels of VEFG and IL-1β
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fahad Ullah, M. Breast Cancer: Current Perspectives on the Disease Status. Adv. Exp. Med. Biol. 2019, 1152, 51–64. [Google Scholar]
- World Health Organization. Breast Cancer. 2023. Available online: https://www.who.int/es/news-room/fact-sheets/detail/breast-cancer (accessed on 14 June 2023).
- Anjum, F.; Razvi, N.; Saeed, U. Effects of Chemotherapy in Breast Cancer Patients. Nat. J. Health Sci. 2017, 2, 67–74. [Google Scholar] [CrossRef]
- Ji, X.; Lu, Y.; Tian, H.; Meng, X.; Wei, M.; Cho, W.C. Chemoresistance mechanisms of breast cancer and their countermeasures. Biomed. Pharmacother. 2019, 114, 108800. [Google Scholar] [CrossRef] [PubMed]
- Talib, W.H.; Alsayed, A.R.; Barakat, M.; Abu-Taha, M.I.; Mahmod, A.I. Targeting Drug Chemo-Resistance in Cancer Using Natural Products. Biomedicines 2021, 9, 1353. [Google Scholar] [CrossRef] [PubMed]
- Castañeda, A.M.; Meléndez, C.M.; Uribe, D.; Pedroza-Díaz, J. Synergistic effects of natural compounds and conventional chemotherapeutic agents: Recent insights for the development of cancer treatment strategies. Heliyon 2022, 8, e09519. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Júnior, R.G.; Christiane Adrielly, A.F.; da Silva Almeida, J.R.; Grougnet, R.; Thiéry, V.; Picot, L. Sensitization of tumor cells to chemotherapy by natural products: A systematic review of preclinical data and molecular mechanisms. Fitoterapia 2018, 129, 383–400. [Google Scholar] [CrossRef] [PubMed]
- Subramonie, S.; Suryadevara, N.; Ganapathy, B.; Devi, G. Molecular activities in Moringa oleifera Linn—Review. Int. J. Res. Pharm. Sci. 2019, 11, 140–147. [Google Scholar] [CrossRef]
- Abdoun, K.; Alsagan, A.; Altahir, O.; Suliman, G.; Al-Haidary, A.; Alsaiady, M. Cultivation and Uses of Moringa oleifera as Non-Conventional Feed Stuff in Livestock Production: A Review. Life 2022, 13, 63. [Google Scholar] [CrossRef]
- Abdull Razis, A.F.; Ibrahim, M.D.; Kntayya, S.B. Health benefits of Moringa oleifera. Asian Pac. J. Cancer Prev. 2014, 15, 8571–8576. [Google Scholar] [CrossRef]
- Rode, S.B.; Dadmal, A.; Salankar, H.V. Nature’s Gold (Moringa Oleifera): Miracle Properties. Cureus 2022, 14, e26640. [Google Scholar] [CrossRef]
- Sanganna, B.; Chitme, H.R.; Vrunda, K.; Jamadar, M.J. Antiproliferative and antioxidant activity of leaves extracts of Moringa oleifera. Int. J. Curr. Pharm. Res. 2016, 8, 54–56. [Google Scholar] [CrossRef]
- Pamok, S.; Saenphet, S.; Vinitketkumnuen, U.; Saenphet, K. Antiproliferative effect of Moringa oleifera Lam. and Pseuderanthemum palatiferum (Nees) Radlk extracts on the colon cancer cells. J. Med. Plants Res. 2012, 6, 139–145. [Google Scholar]
- Khalil, W.K.; Ghaly, I.S.; Diab, K.A.; ELmakawy, A.I. Antitumor activity of Moringa Oleifera leaf extract against Ehrlich solid tumor. Int. J. Pharm. 2014, 4, 68–82. [Google Scholar]
- Tiloke, C.; Phulukdaree, A.; Chuturgoon, A.A. The antiproliferative effect of Moringa oleifera crude aqueous leaf extract on cancerous human alveolar epithelial cells. BMC Complement. Altern. Med. 2013, 13, 226. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.; Pandey, P.; Jha, N.K.; Jafri, A.; Khan, I. Antiproliferative effect of Moringa oleifera methanolic leaf extract by downregulation of Notch signaling in DU145 prostate cancer cells. Gene Rep. 2020, 19, 100619. [Google Scholar] [CrossRef]
- Adebayo, I.A.; Arsad, H.; Samian, M.R. Antiproliferative effect on breast cancer (MCF7) of Moringa oleifera seed extracts. Afr. J. Tradit. Complement. Altern. Med. 2017, 14, 282–287. [Google Scholar] [CrossRef] [PubMed]
- Charoensin, S. Antioxidant and anticancer activities of Moringa oleifera leaves. J. Med. Plants Res. 2014, 8, 318–325. [Google Scholar]
- Förster, N.; Ulrichs, C.; Schreiner, M.; Müller, C.T.; Mewis, I. Development of a reliable extraction and quantification method for glucosinolates in Moringa oleifera. Food Chem. 2015, 166, 456–464. [Google Scholar] [CrossRef]
- Waterman, C.; Cheng, D.M.; Rojas-Silva, P.; Poulev, A.; Dreifus, J.; Lila, M.A.; Raskin, I. Stable, water extractable isothiocyanates from Moringa oleifera leaves attenuate inflammation in vitro. Phytochemistry 2014, 103, 114–122. [Google Scholar] [CrossRef]
- Al-Asmari, A.K.; Albalawi, S.M.; Athar, M.T.; Khan, A.Q.; Al-Shahrani, H.; Islam, M. Moringa oleifera as an Anti-Cancer Agent against Breast and Colorectal Cancer Cell Lines. PLoS ONE 2015, 10, e0135814. [Google Scholar] [CrossRef] [PubMed]
- Aloo, S.O.; Ofosu, F.K.; Muchiri, M.N.; Vijayalakshmi, S.; Pyo, C.-G.; Oh, D.-H. In Vitro Bioactivities of Commonly Consumed Cereal, Vegetable, and Legume Seeds as Related to Their Bioactive Components: An Untargeted Metabolomics Approach Using UHPLC–QTOF-MS. Antioxidants 2023, 12, 1501. [Google Scholar] [CrossRef]
- Jin, J.; Lao, J.; Zhou, R.; He, W.; Qin, Y.; Zhong, C.; Xie, J.; Liu, H.; Wan, D.; Zhang, S.; et al. Simultaneous Identification and Dynamic Analysis of Saccharides during Steam Processing of Rhizomes of Polygonatum cyrtonema by HPLC-QTOF-MS/MS. Molecules 2018, 23, 2855. [Google Scholar] [CrossRef]
- Krzyżanowska-Kowalczyk, J.; Pecio, Ł.; Mołdoch, J.; Ludwiczuk, A.; Kowalczyk, M. Novel Phenolic Constituents of Pulmonaria officinalis L. LC-MS/MS Comparison of Spring and Autumn Metabolite Profiles. Molecules 2018, 23, 2277. [Google Scholar] [CrossRef]
- Raal, A.; Rusalepp, A.; Chiru, T.; Ciobanu, N.; Talvistu, K.; Shusta, M.; Koshovyi1, O.; Püssa, T. Polyphenolic Compounds and Antioxidant Activity of Sea Buckthorn (Hippophae rhamnoides L.). Phyton-Int. J. Exp. Bot. 2023, 92, 1–15. [Google Scholar] [CrossRef]
- Di Matteo, P.; Bortolami, M.; Curulli, A.; Feroci, M.; Gullifa, G.; Materazzi, S.; Risoluti, R.; Petrucci, R. Phytochemical Characterization of Malt Spent Grain by Tandem Mass Spectrometry also Coupled with Liquid Chromatography: Bioactive Compounds from Brewery By-Products. Front. Biosci. 2023, 28, 3. [Google Scholar] [CrossRef]
- Yagali, S. Study of vibrational spectra of zwitterionic 3-Aminobutanoic acid, as supported by DFT calculations. World J. Adv. Res. Rev. 2022, 16, 1122–1131. [Google Scholar]
- Cui, Y.J.; Liu, P.; Chen, R.Y. Studies on the chemical constituents of Spatholobus suberectus Dunn. Yao Xue Xue Bao 2002, 37, 784–787. [Google Scholar] [PubMed]
- Flores, P.; Hellín, P.; Fenoll, J. Determination of organic acids in fruits and vegetables by liquid chromatography with tandem-mass spectrometry. Food Chem. 2012, 132, 1049–1054. [Google Scholar] [CrossRef]
- Gruz, J.; Novák, O.; Strnad, M. Rapid análisis of phenolic acids in beverages by UPLC–MS/MS. Food Chem. 2008, 111, 789–794. [Google Scholar] [CrossRef]
- Yan, X.; Liu, M.; Guo, C.; Lian, X.; Shen, Y.; Liu, Y.; Qian, Y.; Zhang, L.; Wang, W.; Chen, D.; et al. Analysis of Metabolic Differences in the Water Extract of Shenheling Fermented by Lactobacillus fermentum Based on Nontargeted Metabolomics. Fermentation 2023, 9, 44. [Google Scholar] [CrossRef]
- Arkhipov, A.; Sirdaarta, J.; Matthews, B.; Cock, I.E. Metabolomic Profiling of Kigelia africana Extracts with Anti-Cancer Activity by High Resolution Tandem Mass Spectroscopy. Pharmacogn. Commun. 2014, 4, 10–32. [Google Scholar]
- Kuczkowiak, U.; Petereit, F.; Nahrstedt, A. Hydroxycinnamic Acid Derivatives Obtained from a Commercial Crataegus Extract and from Authentic Crataegus spp. Sci. Pharm. 2014, 82, 835–846. [Google Scholar] [CrossRef]
- Budan, A.; Bellenot, D.; Freuze, I.; Gillmann, L.; Chicoteau, P. Potential of extracts from Saponaria officinalis and Calendula officinalis to modulate in vitro rumen fermentation with respect to their content in saponins. Biosci. Biotechnol. Biochem. 2014, 78, 228–295. [Google Scholar] [CrossRef] [PubMed]
- Ju, W.T.; Kwon, O.C.; Kim, H.B.; Sung, G.B.; Kim, H.W.; Kim, Y.S. Qualitative and quantitative analysis of flavonoids from 12 species of Korean mulberry leaves. J. Food Sci. Technol. 2018, 55, 1789–1796. [Google Scholar] [CrossRef] [PubMed]
- Phuwajaroanpong, A.; Chaniad, P.; Plirat, W.M.; Konyanee, A.; Septama, A.W.; Punsawad, C. Phytochemical Analysis, Antimalarial Properties, and Acute Toxicity of Aqueous Extracts of Trisamo and Jatu-Phala-Tiga Recipes. Adv. Pharmacol. Pharm. Sci. 2023, 2023, 6624040. [Google Scholar] [CrossRef]
- Cai, R.; Li, X.; Li, C.; Zhu, J.; Zeng, J.; Li, J.; Tang, B.; Li, Z.; Liu, S.; Yan, Y. Standards-Based UPLC-Q-Exactive Orbitrap MS Systematically Identifies 36 Bioactive Compounds in Ampelopsis grossedentata (Vine Tea). Separations 2022, 9, 329. [Google Scholar] [CrossRef]
- Pan, C.; Lü, H. Preparative separation of quercetin, ombuin and kaempferide from Gynostemma pentaphyllum by high-speed counter current chromatography. J. Chromatogr. Sci. 2019, 57, 265–271. [Google Scholar] [CrossRef]
- Manasa, D.J.; Chandrashekar, K.R. Phenolic acid profiling in the leaves of Tabernaemontana heyneana wall. an endemic plant of the western Ghats using ultra-high performance liquid chromatography coupled with quadrupole-time-of-flight. Asian J. Pharm. Clin. Res. 2019, 12, 172–177. [Google Scholar] [CrossRef]
- No, D.S.; Kim, I.-H. Pinolenic acid as a new source of phyto-polyunsaturated fatty acid. Lipid Technol. 2013, 25, 135–138. [Google Scholar] [CrossRef]
- Shin, Y.G.; Cho, K.H.; Kim, J.M.; Park, M.K.; Park, J.H. Determination of betaine in Lycium chinense fruits by liquid chromatography-electrospray ionization mass spectrometry. J. Chromatogr. 1999, 857, 331–335. [Google Scholar] [CrossRef]
- Olofsson, M.A.; Bylund, D. Liquid Chromatography with Electrospray Ionization and Tandem Mass Spectrometry Applied in the Quantitative Analysis of Chitin-Derived Glucosamine for a Rapid Estimation of Fungal Biomass in Soil. Int. J. Anal. Chem. 2016, 2016, 9269357. [Google Scholar] [CrossRef]
- Pastorini, E.; Rotini, R.; Guardigli, M.; Vecchiotti, S.; Persiani, S.; Trisolino, G.; Antonioli, D.; Rovati, L.C.; Roda, A. Development and validation of a HPLC-ES-MS/MS method for the determination of glucosamine in human synovial fluid. J. Pharm. Biomed. Anal. 2009, 50, 1009–1014. [Google Scholar] [CrossRef] [PubMed]
- Perrone, D.; Donangelo, C.M.; Farah, A. Fast simultaneous análisis of caffeine, trigonelline, nicotinic acid and sucrose in coffee by liquid chromatography–mass spectrometry. Food Chem. 2008, 110, 1030–1035. [Google Scholar] [CrossRef] [PubMed]
- El-Wahed, A.A.; Rashwan, E.H.; AlAjmi, M.F.; Khalifa, S.A.; Saeed, A.; Zhao, C.; Naggar, Y.A.; Guo, Z.; Musharraf, S.G.; Wang, K. Sidr Honeys Physical and Chemical Characterization, a Comprehensive Approach through LC-MS/MS, NMR, and GC-MS Analysis. Separations 2023, 10, 372. [Google Scholar] [CrossRef]
- Hu, W.; Pan, X.; Abbas, H.M.K.; Li, F.; Dong, W. Metabolites contributing to Rhizoctonia solani AG-1-IA maturation and sclerotial differentiation revealed by UPLC-QTOF-MS metabolomics. PLoS ONE 2017, 12, e0177464. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.; Lang, T.; Bader, M.; Beusch, A.; Schlagbauer, V.; Hofmann, T. High-Throughput Quantitation of Proline Betaine in Foods and Suitability as a Valid Biomarker for Citrus Consumption. J. Agric. Food Chem. 2017, 65, 1613–1619. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Yan, Q.; Jiang, L.; Chen, C.; Huang, X.; Zhu, X.; Zhou, T.; Chen, J.; Yan, J.; Wen, F.; et al. Metabolomics analysis reveals metabolite changes during freeze-drying and oven-drying of Angelica dahurica. Sci. Rep. 2023, 13, 6022. [Google Scholar] [CrossRef]
- Zeng, J.; Shi, D.; Chen, Y.; Bao, X.; Zong, Y. FvbHLH1 Regulates the Accumulation of Phenolic Compounds in the Yellow Cap of Flammulina velutipes. J. Fungi 2023, 9, 1063. [Google Scholar] [CrossRef]
- Hazrati, H.; Kudsk, P.; Ding, L.; Uthe, H.; Fomsgaard, I.S. Integrated LC-MS and GC-MS-Based Metabolomics Reveal the Effects of Plant Competition on the Rye Metabolome. J. Agric. Food Chem. 2022, 70, 3056–3066. [Google Scholar] [CrossRef]
- Cai, M.; Liu, Y. Quantification of salsolinol enantiomers by stable isotope dilution liquid chromatography with tandem mass spectrometric detection. Rapid Commun. Mass Spectrom. 2008, 22, 4171–4177. [Google Scholar] [CrossRef]
- Duan, Y.; Petzold, M.; Saleem-Batcha, R.; Teufel, R. Bacterial Tropone Natural Products and Derivatives: Overview of their Biosynthesis, Bioactivities, Ecological Role and Biotechnological Potential. Chembiochem 2020, 21, 2384–2407. [Google Scholar] [CrossRef]
- Plaza-Cazón, J.; González, E.; Donati, E.R. Parastrephia quadrangularis: A Possible Alternative to Inhibit the Microbial Effect on the Generation of Acid Mine Drainage. Mine Water Environ. 2021, 40, 994–1002. [Google Scholar] [CrossRef]
- Hayakawa, Y.; Suita, K.; Ohnuki, Y.; Mototani, Y.; Ishikawa, M.; Ito, A.; Nariyama, M.; Morii, A.; Kiyomoto, K.; Tsunoda, M.; et al. Vidarabine, an anti-herpes agent, prevents occlusal-disharmony-induced cardiac dysfunction in mice. J. Physiol. Sci. 2022, 72, 2. [Google Scholar] [CrossRef]
- Miyamoto, H.; Yaguchi, T.; Ohta, K.; Nagai, K.; Nagata, T.; Yamamoto, S.; Nishizaki, T. 2-pyrrolidinone induces a long-lasting facilitation of hippocampal synaptic transmission by enhancing alpha7 ACh receptor responses via a PKC pathway. Brain Res. Mol. Brain Res. 2003, 117, 91–96. [Google Scholar] [CrossRef]
- Mohammed, B.S.; Sanadelaslam, E.; Salwa IA, E.; Ahmed, S.J. HPLC-PDA-MS Identification of Phenolic Profile and in vitro Antioxidant Activity of Adansonia digitata L. Leaves from Sudan. Moroc. J. Chem. 2024, 12, 221–232. [Google Scholar]
- Osiecka, D.; Vakh, C.; Makoś-Chełstowska, P.; Kubica, P. Plant-based meat substitute analysis using microextraction with deep eutectic solvent followed by LC-MS/MS to determine acrylamide, 5-hydroxymethylfurfural and furaneol. Anal. Bioanal. Chem. 2024, 416, 1117–1126. [Google Scholar] [CrossRef] [PubMed]
- Pathan, S.A.; Phulpoto, M.H.; Solangi, A.R.; Khanzada, A.W. Solvent dependent 13C NMR Chemical shifts in 6-Methyquinoline and 8-Methyquinoline. J.-Chem. Soc. Pak. 2003, 25, 196–200. [Google Scholar]
- Hroboňová, K.; Sádecká, J.; Čižmárik, J. HPLC separation and determination of dicoumarol and other simple coumarins in sweet clover. Nova Biotechnol. Chim. 2018, 17, 95–102. [Google Scholar] [CrossRef]
- Wu, Q.X.; Chen, J.; Shi, Y.P. RPHPLC and NMR Study of Antioxidant Flavonoids in Extract from Gentiana piasezkii. J. Anal. Chem. 2010, 65, 298–304. [Google Scholar] [CrossRef]
- Bojilov, D.; Manolov, S.; Ahmed, S.; Dagnon, S.; Ivanov, I.; Marc, G.; Oniga, S.; Oniga, O.; Nedialkov, P.; Mollova, S. HPLC Analysis and In Vitro and In Silico Evaluation of the Biological Activity of Polyphenolic Components Separated with Solvents of Various Polarities from Helichrysum italicum. Molecules 2023, 28, 6198. [Google Scholar] [CrossRef] [PubMed]
- Nour, A.H.; Idris, A.A.; Ishag, O.A.; Nour, A.H. Chemical Composition and Repellent Activity of Methyl Cinnamate-Rich Basil (Ocimum basilicum) Essential Oil. J. Turk. Chem. Soc. Sect. A Chem. 2022, 9, 1277–1284. [Google Scholar] [CrossRef]
- Cho, S.; Lee, D.J.; Jung, Y.-S.; Kim, H.B.; Cho, E.J.; Lee, S. Phytochemical Identification from Boehmeria nivea Leaves and Analysis of (–)-Loliolide by HPLC. Nat. Prod. Sci. 2016, 22, 134–139. [Google Scholar] [CrossRef]
- Cosme, F.; Vilela, A.; Moreira, L.; Moura, C.; Enríquez JA, P.; Filipe-Ribeiro, L.; Nunes, F.M. Terroir Effect on the Phenolic Composition and Chromatic Characteristics of Mencía/Jaen Monovarietal Wines: Bierzo D.O. (Spain) and Dão D.O. (Portugal). Molecules 2020, 25, 6008. [Google Scholar] [CrossRef]
- Sowa, I.; Paduch, R.; Mołdoch, J.; Szczepanek, D.; Szkutnik, J.; Sowa, P.; Tyszczuk-Rotko, K.; Blicharski, T.; Wójciak, M. Antioxidant and Cytotoxic Potential of Carlina vulgaris Extract and Bioactivity-Guided Isolation of Cytotoxic Components. Antioxidants 2023, 12, 1704. [Google Scholar] [CrossRef]
- Hamid, H.A.; Kupan, S.; Yusoff, M.M. Dihydroactinidiolide from thermal degradation of β-carotene. Int. J. Food Prop. 2017, 20, 674–680. [Google Scholar] [CrossRef]
- Nadaf, N.H.; Parulekar, R.S.; Patil, R.S.; Gade, T.K.; Momin, A.A.; Waghmare, S.R.; Dhanavade, M.J.; Arvindekar, A.U.; Sonawane, K.D. Biofilm inhibition mechanism from extract of Hymenocallis littoralis leaves. J. Ethnopharmacol. 2018, 222, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Clementino, L.C.; Torres, F.A.; Velasquez, A.M.; Villela, L.; Mutue, T.F.; Colepicolo, P.; Graminha, M.A. Bioguided study of the Antarctic alga Himantothallus grandifolius (A. Geep & E.S. Geep) indicates 13E-Docosenamide as potential antileishmanial agent. J. Appl. Pharm. Sci. 2020, 10, 98–103. [Google Scholar]
- Manguro, L.O.; Lemmen, P. Phenolics of Moringa oleifera leaves. Nat. Prod. Res. 2007, 21, 56–68. [Google Scholar] [CrossRef] [PubMed]
- Peñalver, R.; Martínez-Zamora, L.; Lorenzo, J.M.; Ros, G.; Nieto, G. Nutritional and Antioxidant Properties of Moringa oleifera Leaves in Functional Foods. Foods 2022, 11, 1107. [Google Scholar] [CrossRef]
- Fitriana, W.D.; Ersam, T.; Shimizu, K.; Fatmawati, S. Antioxidant Activity of Moringa oleifera Extracts. Indones. J. Chem. 2016, 16, 297–301. [Google Scholar] [CrossRef]
- Tao, L.; Gu, F.; Liu, Y.; Yang, M.; Wu, X.Z.; Sheng, J.; Tian, Y. Preparation of antioxidant peptides from Moringa oleifera leaves and their protection against oxidative damage in HepG2 cells. Front. Nutr. 2022, 9, 1062671. [Google Scholar] [CrossRef]
- Prasad, S.; Gupta, S.C.; Tyagi, A.K. Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Lett. 2017, 387, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Lambring, C.B.; Chen, L.; Nelson, C.; Stevens, A.; Bratcher, W.; Basha, R. Oxidative Stress and Cancer: Harnessing the Therapeutic Potential of Curcumin and Analogues Against Cancer. Eur. J. Biol. 2023, 82, 317–325. [Google Scholar] [CrossRef]
- Puente-Cobacho, B.; Varela-López, A.; Quiles, J.L.; Vera-Ramirez, L. Involvement of redox signalling in tumour cell dormancy and metastasis. Cancer Metastasis Rev. 2023, 42, 49–85. [Google Scholar] [CrossRef]
- Chimento, A.; De Luca, A.; D’Amico, M.; De Amicis, F.; Pezzi, V. The Involvement of Natural Polyphenols in Molecular Mechanisms Inducing Apoptosis in Tumor Cells: A Promising Adjuvant in Cancer Therapy. Int. J. Mol. Sci. 2023, 24, 1680. [Google Scholar] [CrossRef]
- Vera-Ramirez, L.; Sanchez-Rovira, P.; Ramirez-Tortosa, M.C.; Ramirez-Tortosa, C.L.; Granados-Principal, S.; Lorente, J.A.; Quiles, J.L. Free radicals in breast carcinogenesis, breast cancer progression and cancer stem cells. Biological bases to develop oxidative-based therapies. Crit. Rev. Oncol./Hematol. 2011, 80, 347–368. [Google Scholar] [CrossRef]
- Xu, D.; Hu, M.J.; Wang, Y.Q.; Cui, Y.L. Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application. Molecules 2019, 24, 1123. [Google Scholar] [CrossRef]
- Song, X.; Wang, Y.; Gao, L. Mechanism of antioxidant properties of quercetin and quercetin-DNA complex. J. Mol. Model. 2020, 26, 133. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Pan, J.; Liu, H.; Jiao, Z. Characterization of the Synergistic Antioxidant Activity of Epigallocatechin Gallate (EGCG) and Kaempferol. Molecules 2023, 28, 5265. [Google Scholar] [CrossRef] [PubMed]
- Selvakumar, P.; Badgeley, A.; Murphy, P.; Anwar, H.; Sharma, U.; Lawrence, K.; Lakshmikuttyamma, A. Flavonoids and Other Polyphenols Act as Epigenetic Modifiers in Breast Cancer. Nutrients 2020, 12, 761. [Google Scholar] [CrossRef]
- Hazafa, A.; Rehman, K.U.; Jahan, N.; Jabeen, Z. The Role of Polyphenol (Flavonoids) Compounds in the Treatment of Cancer Cells. Nutr. Cancer 2020, 72, 386–397. [Google Scholar] [CrossRef] [PubMed]
- Kasiri, N.; Rahmati, M.; Ahmadi, L.; Eskandari, N.; Motedayyen, H. Therapeutic potential of quercetin on human breast cancer in different dimensions. Inflammopharmacology 2020, 28, 39–62. [Google Scholar] [CrossRef] [PubMed]
- Noolu, B.; Gogulothu, R.; Bhat, M. In Vivo Inhibition of Proteasome Activity and Tumour Growth by Murraya koenigii Leaf Extract in Breast Cancer Xenografts and by Its Active Flavonoids in Breast Cancer Cells. Anticancer. Agents Med. Chem. 2016, 16, 1605–1614. [Google Scholar] [CrossRef]
- Lin, C.W.; Hou, W.C.; Shen, S.C. Quercetin inhibition of tumor invasion via suppressing PKC delta/ERK/AP-1-dependent matrix metalloproteinase-9 activation in breast carcinoma cells. Carcinogenesis 2008, 29, 1807–1815. [Google Scholar] [CrossRef] [PubMed]
- Hashemzaei, M.; Delarami Far, A.; Yari, A.; Heravi, R.E.; Tabrizian, K.; Taghdisi, S.M. Anticancer and apoptosis-inducing effects of quercetin in vitro and in vivo. Oncol. Rep. 2017, 38, 819–828. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Somasagara, R.R.; Hegde, M.; Nishana, M.; Tadi, S.K.; Srivastava, M. Quercetin, a Natural Flavonoid Interacts with DNA, Arrests Cell Cycle and Causes Tumor Regression by Activating Mitochondrial Pathway of Apoptosis. Sci. Rep. 2016, 6, 24049. [Google Scholar] [CrossRef]
- Niazvand, F.; Orazizadeh, M.; Khorsandi, L.; Abbaspour, M.; Mansouri, E.; Khodadadi, A. Effects of Quercetin-Loaded Nanoparticles on MCF-7 Human Breast Cancer Cells. Medicina 2019, 55, 114. [Google Scholar] [CrossRef]
- Bolanle, J. Understanding the Anti-Cancer Activities of Moringa Isothiocyanates in Breast Cancer Cells. Ph.D. Thesis, Rutgers, The State University of New Jersey, Piscataway, NJ, USA, 2018. [Google Scholar]
- Xiao, D.; Vogel, V.; Singh, S.V. Benzyl isothiocyanate-induced apoptosis in human breast cancer cells is initiated by reactive oxygen species and regulated by Bax and Bak. Mol. Cancer Ther. 2006, 5, 2931–2945. [Google Scholar] [CrossRef]
- Sehrawat, A.; Singh, S.V. Benzyl isothiocyanate inhibits epithelial-mesenchymal transition in cultured and xenografted human breast cancer cells. Cancer Prev. Res. 2011, 4, 1107–1117. [Google Scholar] [CrossRef]
- Xiao, D.; Bommareddy, A.; Kim, S.H.; Sehrawat, A.; Hahm, E.R.; Singh, S.V. Benzyl isothiocyanate causes FoxO1-mediated autophagic death in human breast cancer cells. PLoS ONE 2012, 7, e32597. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Y.; An, Y.; Fang, G. The mechanism of anticancer action and potential clinical use of kaempferol in the treatment of breast cancer. Biomed. Pharmacother. 2019, 117, 109086. [Google Scholar] [CrossRef]
- Zhu, L.; Xue, L. Kaempferol Suppresses Proliferation and Induces Cell Cycle Arrest, Apoptosis, and DNA Damage in Breast Cancer Cells. Oncol. Res. 2019, 27, 629–634. [Google Scholar] [CrossRef]
- Najafipour, R.; Momeni, A.M.; Mirmazloomi, Y.; Moghbelinejad, S. Vitexin Induces Apoptosis in MCF-7 Breast Cancer Cells through the Regulation of Specific miRNAs Expression. Int. J. Mol. Cell Med. 2022, 11, 197–206. [Google Scholar] [PubMed]
- Chen, S.J.; Hsu, C.P.; Li, C.W.; Lu, J.H.; Chuang, L.T. Pinolenic acid inhibits human breast cancer MDA-MB-231 cell metastasis in vitro. Food Chem. 2011, 126, 1708–1715. [Google Scholar] [CrossRef] [PubMed]
- Osanai, K.; Kobayashi, Y.; Otsu, M.; Izawa, T.; Sakai, K.; Iwashita, M. Ramelteon, a selective MT1/MT2 receptor agonist, suppresses the proliferation and invasiveness of endometrial cancer cells. Hum. Cell. 2017, 30, 209–215. [Google Scholar] [CrossRef]
- Miyata, R.; Omasa, M.; Fujimoto, R.; Ishikawa, H.; Aoki, M. Efficacy of Ramelteon for delirium after lung cancer surgery. Interact. Cardiovasc. Thorac. Surg. 2017, 24, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Malkova, A.M.; Gubal, A.R.; Petrova, A.L. Pathogenetic role and clinical significance of interleukin-1β in cancer. Immunology 2023, 168, 203–216. [Google Scholar] [CrossRef] [PubMed]
- Tulotta, C.; Lefley, D.V.; Freeman, K. Endogenous Production of IL1B by Breast Cancer Cells Drives Metastasis and Colonization of the Bone Microenvironment. Clin. Cancer Res. 2019, 25, 2769–2782. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Umamaheswari, M.; Chatterjee, T. In vitro antioxidant activities of the fractions of Coccinia grandis L. Leaf extract. Afr. J. Tradit. Complement. Altern. Med. 2008, 5, 61–73. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X. Chemopreventive Activity of Honokiol against 7, 12-Dimethylbenz[a] anthracene-Induced Mammary Cancer in Female Sprague Dawley Rats. Front. Pharmacol. 2017, 8, 253664. [Google Scholar] [CrossRef] [PubMed]
Total Phenol Content (mg Gallic Acid Equivalents/Gram Dry Extract) | Antioxidant Activity (IC50) µg/mL | |
---|---|---|
MoAE | 135.08 ± 0.64 | 66.66 ± 0.53 |
BIT | - | 122.39 ± 3.66 |
Vitamin C | - | 8.21 ± 0.02 |
Parameters/Groups | DMBA | DMBA + MoAE-100 | DMBA + MoAE-250 | DMBA + MoAE-500 | DMBA + BIT-5 | DMBA + BIT-10 | DMBA + BIT-20 |
---|---|---|---|---|---|---|---|
Total number of tumors | 18.00 | 15.00 | 11.00 | 10.00 | 18.00 | 14.00 | 12.00 |
Average number of tumors per group | 3.00 ± 0.34 | 2.50 ± 0.26 (−17%) | 1.83 ± 0.43 (−39%) | 1.67 ± 0.49 (−44%) | 3.00 ± 0.49 (−0%) | 2.33 ± 0.43 (−22%) | 2.00 ± 0.49 (−33%) |
Tumor latency (days) | 59.83 ± 3.97 | 62.50 ± 6.66 | 63.60 ± 5.73 | 67.80 ± 9.86 | 59.80 ± 4.49 | 70.80 ± 5.89 | 71.75 ± 5.38 |
Cumulative tumor weight (g) | 35.2 | 21.71(−37.37%) | 18.6 (−47.16%) | 10.51 (−70.14%) | 30.27 (−14.00%) | 19.57 (−44.40%) | 11.42 (−67.56%) |
Parameter/Group | DMBA | DMBA + MoAE-100 | DMBA + MoAE-250 | DMBA + MoAE-500 | DMBA + BIT-5 | DMBA + BIT-10 | DMBA + BIT-20 |
---|---|---|---|---|---|---|---|
Tubular differentiation | 2 | 2 | 2 | 1 | 2 | 2 | 2 |
Nuclear pleomorphism | 3 | 3 | 2 | 3 | 3 | 3 | 2 |
Number of mitoses | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Sum score | 6 | 6 | 5 | 5 | 6 | 6 | 5 |
Histologic grade | II | II | I | I | II | II | I |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojas-Armas, J.P.; Palomino-Pacheco, M.; Arroyo-Acevedo, J.L.; Ortiz-Sánchez, J.M.; Justil-Guerrero, H.J.; Martínez-Heredia, J.T.; Castro-Luna, A.; Rodríguez Flores, C.; Guzmán Duxtan, A.J. Phytochemical Profiling by UHPLC–Q-TOF/MS and Chemopreventive Effect of Aqueous Extract of Moringa oleifera Leaves and Benzyl Isothiocyanate on Murine Mammary Carcinogenesis. Molecules 2024, 29, 1380. https://doi.org/10.3390/molecules29061380
Rojas-Armas JP, Palomino-Pacheco M, Arroyo-Acevedo JL, Ortiz-Sánchez JM, Justil-Guerrero HJ, Martínez-Heredia JT, Castro-Luna A, Rodríguez Flores C, Guzmán Duxtan AJ. Phytochemical Profiling by UHPLC–Q-TOF/MS and Chemopreventive Effect of Aqueous Extract of Moringa oleifera Leaves and Benzyl Isothiocyanate on Murine Mammary Carcinogenesis. Molecules. 2024; 29(6):1380. https://doi.org/10.3390/molecules29061380
Chicago/Turabian StyleRojas-Armas, Juan Pedro, Miriam Palomino-Pacheco, Jorge Luis Arroyo-Acevedo, José Manuel Ortiz-Sánchez, Hugo Jesús Justil-Guerrero, Jaime Teodocio Martínez-Heredia, Américo Castro-Luna, Crescencio Rodríguez Flores, and Aldo Javier Guzmán Duxtan. 2024. "Phytochemical Profiling by UHPLC–Q-TOF/MS and Chemopreventive Effect of Aqueous Extract of Moringa oleifera Leaves and Benzyl Isothiocyanate on Murine Mammary Carcinogenesis" Molecules 29, no. 6: 1380. https://doi.org/10.3390/molecules29061380
APA StyleRojas-Armas, J. P., Palomino-Pacheco, M., Arroyo-Acevedo, J. L., Ortiz-Sánchez, J. M., Justil-Guerrero, H. J., Martínez-Heredia, J. T., Castro-Luna, A., Rodríguez Flores, C., & Guzmán Duxtan, A. J. (2024). Phytochemical Profiling by UHPLC–Q-TOF/MS and Chemopreventive Effect of Aqueous Extract of Moringa oleifera Leaves and Benzyl Isothiocyanate on Murine Mammary Carcinogenesis. Molecules, 29(6), 1380. https://doi.org/10.3390/molecules29061380