Investigating the Quality and Purity Profiles of Olive Oils from Diverse Regions in Selçuk, İzmir
Abstract
:1. Introduction
2. Results and Discussion
2.1. Quality Parameters
2.2. Phenolic Profiles of Samples
2.3. Fatty Acid Composition
2.4. Sterol Composition
3. Materials and Methods
3.1. Sampling Virgin Olive Oil Products
3.2. Reagents
3.3. Determination of Quality Parameters
3.4. Peroxide Value (PV) Analysis
3.5. p-Anisidine Value (p-anV) Analysis
3.6. Total Oxidation Value (TOTOX)
3.7. Determination of Methyl Esters of Fatty Acids
3.8. Phenolic Profile Determination
3.9. Determination of Sterol Composition
3.10. Statistical Analysis
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bungaro, M. The World of Olive Oil. Available online: https://www.internationaloliveoil.org/the-world-of-olive-oil/ (accessed on 28 January 2024).
- Özkan, Z. Ürün Raporu Zeytinyağı 2021. TEPGE Yayın: Ankara, Türkiye, 2022. [Google Scholar]
- Adigüzel, F.; Kizilaslan, N. Ege Bölgesinde Zeytin İşletmelerinin Maliyetleri ve Sorunları. Türk Tarım Ve Doğa Bilim. Derg. 2019, 6, 696–709. [Google Scholar] [CrossRef]
- Selçuk Ekonomisi—Selçuk Ticaret Odası. Available online: https://www.selcukticaretodasi.org.tr/selcuk/selcuk-ekonomisi/ (accessed on 28 January 2024).
- Arslan, D.O. Salim Characterization of Turkish Olive Oils in Details. Food Rev. Int. 2019, 36, 168–192. [Google Scholar] [CrossRef]
- Lozano-Sánchez, J.; Cerretani, L.; Bendini, A.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Filtration Process of Extra Virgin Olive Oil: Effect on Minor Components, Oxidative Stability and Sensorial and Physicochemical Characteristics. Trends Food Sci. Technol. 2010, 21, 201–211. [Google Scholar] [CrossRef]
- Ocakoglu, D.; Tokatli, F.; Ozen, B.; Korel, F. Distribution of Simple Phenols, Phenolic Acids and Flavonoids in Turkish Monovarietal Extra Virgin Olive Oils for Two Harvest Years. Food Chem. 2009, 113, 401–410. [Google Scholar] [CrossRef]
- Öğütçü, M.; Mendeş, M.; Yılmaz, E. Sensorial and Physico-Chemical Characterization of Virgin Olive Oils Produced in Çanakkale. J. Am. Oil Chem. Soc. 2008, 85, 441–456. [Google Scholar] [CrossRef]
- Aguilera, M.P.; Beltran, G.; Sanchez-Villasclaras, S.; Uceda, M.; Jimenez, A. Kneading Olive Paste from Unripe “Picual” Fruits: I. Effect on Oil Process Yield. J. Food Eng. 2010, 97, 533–538. [Google Scholar] [CrossRef]
- Alkan, D.; Tokatli, F.; Ozen, B. Phenolic Characterization and Geographical Classification of Commercial Extra Virgin Olive Oils Produced in Turkey. J. Am. Oil Chem. Soc. 2011, 89, 261–268. [Google Scholar] [CrossRef]
- Gómez-Caravaca, A.M.; Maggio, R.M.; Cerretani, L. Chemometric Applications to Assess Quality and Critical Parameters of Virgin and Extra-Virgin Olive Oil. A Review. Anal. Chim. Acta 2016, 913, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Ün, I.; Ok, S. Analysis of Olive Oil for Authentication and Shelf Life Determination. J. Food Sci. Technol. 2018, 55, 2476–2487. [Google Scholar] [CrossRef] [PubMed]
- Maléchaux, A.; Le Dréau, Y.; Vanloot, P.; Artaud, J.; Dupuy, N. Discrimination of Extra Virgin Olive Oils from Five French Cultivars: En Route to a Control Chart Approach. Food Control 2019, 106, 106691. [Google Scholar] [CrossRef]
- Likudis, Z. Olive Oils with Protected Designation of Origin (PDO) and Protected Geographical Indication (PGI). In Products from Olive Tree; IntechOpen: London, UK, 2016. [Google Scholar]
- Crizel, R.L.; Hoffmann, J.F.; Zandoná, G.P.; Lobo, P.M.S.; Jorge, R.O.; Chaves, F.C. Characterization of Extra Virgin Olive Oil from Southern Brazil. Eur. J. Lipid Sci. Technol. 2020, 122, 1900347. [Google Scholar] [CrossRef]
- Türkay, Ç.; Özdïkïcïerler, O.; Yemïşçïoğlu, F. Use of Phenolic Profile and Fatty Acid Composition on Chemometric Discrimination of Turkish Virgin Olive Oils with Geographical Indication. Akad. Gıda 2021, 19, 126–136. [Google Scholar] [CrossRef]
- Coğrafi İşaret Platformu. Available online: http://www.turkpatent.gov.tr (accessed on 28 January 2024).
- eAmbrosia—The EU Geographical Indications Register. Available online: https://ec.europa.eu/agriculture/eambrosia/geographical-indications-register/ (accessed on 28 January 2024).
- Piscopo, A.; Mafrica, R.; De Bruno, A.; Romeo, R.; Santacaterina, S.; Poiana, M. Characterization of Olive Oils Obtained from Minor Accessions in Calabria (Southern Italy). Foods 2021, 10, 305. [Google Scholar] [CrossRef] [PubMed]
- I.O.C. (International Olive Council). Trade Standard Applying to Olive Oils and Olive Pomace Oils; COI/T.15/NC no. 3/Rev. 2.; International Olive Council: Madrid, Spain, 2006. [Google Scholar]
- Sevim, D.; Köseoğlu, O.; Özdemir, D.; Hakan, M.; Büyükgök, E.B.; Uslu, H.; Dursun, Ö.; Savran, M.K.; Eralp, Ö.; Kaptan, S.; et al. Determination of the Quality and Purity Characteristics of Olive Oils Obtained from Different Regions of Turkey, Depending on Climatic Changes. J. Am. Oil Chem. Soc. 2023, 100, 197–213. [Google Scholar] [CrossRef]
- Bruscatto, M.H.; Zambiazi, R.C.; Crizel-Cardoso, M.; Piatnicki, C.M.S.; Mendonça, C.R.B.; Dutra, F.L.G.; Coutinho, E.F. Chemical Characterization and Oxidative Stability of Olive Oils Extracted from Olive Trees of Southern Brazil. Pesqui. Agropecuária Bras. 2019, 52, 1231–1240. [Google Scholar] [CrossRef]
- Cardoso, S.M.; Mafra, I.; Reis, A.; Nunes, C.; Saraiva, J.A.; Coimbra, M.A. Naturally Fermented Black Olives: Effect on Cell Wall Polysaccharides and on Enzyme Activities of Taggiasca and Conservolea Varieties. LWT Food Sci. Technol. 2010, 43, 153–160. [Google Scholar] [CrossRef]
- Grigoriadou, D.; Tsimidou, M.Z. Quality Control and Storage Studies of Virgin Olive Oil: Exploiting UV Spectrophotometry Potential. Eur. J. Lipid Sci. Technol. 2006, 108, 61–69. [Google Scholar] [CrossRef]
- Kesen, S.; Kelebek, H.; Sen, K.; Ulas, M.; Selli, S. GC–MS–Olfactometric Characterization of the Key Aroma Compounds in Turkish Olive Oils by Application of the Aroma Extract Dilution Analysis. Food Res. Int. 2013, 54, 1987–1994. [Google Scholar] [CrossRef]
- Köseoğlu, O.; Sevim, D.; Kadiroğlu, P. Quality Characteristics and Antioxidant Properties of Turkish Monovarietal Olive Oils Regarding Stages of Olive Ripening. Food Chem. 2016, 212, 628–634. [Google Scholar] [CrossRef]
- Karagoz, S.G.; Yilmazer, M.; Ozkan, G.; Carbonell-Barrachina, Á.A.; Kiralan, M.; Ramadan, M.F. Effect of Cultivar and Harvest Time on C6 and C5 Volatile Compounds of Turkish Olive Oils. Eur. Food Res. Technol. 2017, 243, 1193–1200. [Google Scholar] [CrossRef]
- Dabbou, S.; Brahmi, F.; Taamali, A.; Issaoui, M.; Ouni, Y.; Braham, M.; Zarrouk, M.; Hammami, M. Extra Virgin Olive Oil Components and Oxidative Stability from Olives Grown in Tunisia. J. Am. Oil Chem. Soc. 2010, 87, 1199–1209. [Google Scholar] [CrossRef]
- Garavaglia, J.; da Costa, J.R.O.; Menezes, R.C.R.; Dal Bosco, S.M.; Machado, I.C.K.; Olivares Merino, I.; Sánchez Villasclaras, S. Characteristics and Sensory Assessment of Extra Virgin Olive Oils Produced in Two Different Zones of Brazil. J. Am. Oil Chem. Soc. 2023, 100, 303–315. [Google Scholar] [CrossRef]
- Boussahel, S.; Di Stefano, V.; Muscarà, C.; Cristani, M.; Melilli, M.G. Phenolic Compounds Characterization and Antioxidant Properties of Monocultivar Olive Oils from Northeast Algeria. Agriculture 2020, 10, 494. [Google Scholar] [CrossRef]
- Pedan, V.; Popp, M.; Rohn, S.; Nyfeler, M.; Bongartz, A. Characterization of Phenolic Compounds and Their Contribution to Sensory Properties of Olive Oil. Molecules 2019, 24, 2041. [Google Scholar] [CrossRef]
- Yorulmaz, H.O.; Konuskan, D.B. Antioxidant Activity, Sterol and Fatty Acid Compositions of Turkish Olive Oils as an Indicator of Variety and Ripening Degree. J. Food Sci. Technol. 2017, 54, 4067–4077. [Google Scholar] [CrossRef] [PubMed]
- Miho, H.; Díez, C.; Mena-Bravo, A.; de Medina, V.S.; Moral, J.; Melliou, E.; Magiatis, P.; Rallo, L.; Barranco, D.; Priego-Capote, F. Cultivar Influence on Variability in Olive Oil Phenolic Profiles Determined through an Extensive Germplasm Survey. Food Chem. 2018, 266, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Korkmaz, A. Characterization and Comparison of Extra Virgin Olive Oils of Turkish Olive Cultivars. Molecules 2023, 28, 1483. [Google Scholar] [CrossRef] [PubMed]
- Üçüncüoğlu, D.; Sivri-Özay, D. Geographical Origin Impact on Volatile Composition and Some Quality Parameters of Virgin Olive Oils Extracted from the “Ayvalık” Variety. Heliyon 2020, 6, e04919. [Google Scholar] [CrossRef]
- Gürdeniz, G.O.; Ozen, B.; Tokatli, F. Classification of Turkish Olive Oils with Respect to Cultivar, Geographic Origin and Harvest Year, Using Fatty Acid Profile and Mid-IR Spectroscopy. Eur. Food Res. Technol. 2008, 227, 1275–1281. [Google Scholar] [CrossRef]
- Oğraş, Ş.; Kaban, G.; Kaya, M. The Effects of Geographic Region, Cultivar and Harvest Year on Fatty Acid Composition of Olive Oil. J. Oleo Sci. 2016, 65, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Uluata, S.; Altuntaş, Ü.; Özçelik, B. Biochemical Characterization of Arbequina Extra Virgin Olive Oil Produced in Turkey. J. Am. Oil Chem. Soc. 2016, 93, 617–626. [Google Scholar] [CrossRef]
- Özdikicierler, O. Chemometric Discrimination of Turkish Olive Oils by Variety and Region Using PCA and Comparison of Classification Viability of SIMCA and PLS-DA. Eur. Food Res. Technol. 2021, 247, 157–168. [Google Scholar] [CrossRef]
- Kritioti, A.; Menexes, G.; Drouza, C. Chemometric Characterization of Virgin Olive Oils of the Two Major Cypriot Cultivars Based on Their Fatty Acid Composition. Food Res. Int. 2017, 103, 426–437. [Google Scholar] [CrossRef] [PubMed]
- Karabagias, I.; Michos, C.; Badeka, A.; Kontakos, S.; Stratis, I.; Kontominas, M.G. Classification of Western Greek Virgin Olive Oils According to Geographical Origin Based on Chromatographic, Spectroscopic, Conventional and Chemometric Analyses. Food Res. Int. 2013, 54, 1950–1958. [Google Scholar] [CrossRef]
- Lukić, M.; Lukić, I.; Moslavac, T. Sterols and Triterpene Diols in Virgin Olive Oil: A Comprehensive Review on Their Properties and Significance, with a Special Emphasis on the Influence of Variety and Ripening Degree. Horticulturae 2021, 7, 493. [Google Scholar] [CrossRef]
- I.O.C. (International Olive Council). Norme Commercial Applicable Aux Huiles d’Olive et Aux Huiles de Grignon d’Olive; COI/NCn°3 Rev.4; Conseil Olèicole International: Madrid, Spain, 2009. [Google Scholar]
- El Moudden, H.; El Idrissi, Y.; El Guezzane, C.; Belmaghraoui, W.; El Yadini, A.; Harhar, H.; Tabyaoui, M. Tradition Mills’ Picholine Olive Oil Physicochemical Characterization and Chemical Profiling across Different Cities in Morocco. Sci. World J. 2020, 2020, 1804723. [Google Scholar] [CrossRef] [PubMed]
- Lozano-Castellón, J.; Rinaldi de Alvarenga, J.F.; Vallverdú-Queralt, A.; Lamuela-Raventós, R.M. Cooking with Extra-Virgin Olive Oil: A Mixture of Food Components to Prevent Oxidation and Degradation. Trends Food Sci. Technol. 2022, 123, 28–36. [Google Scholar] [CrossRef]
- Castillo-Luna, A.; Criado-Navarro, I.; Ledesma-Escobar, C.A.; López-Bascón, M.A.; Priego-Capote, F. The Decrease in the Health Benefits of Extra Virgin Olive Oil during Storage Is Conditioned by the Initial Phenolic Profile. Food Chem. 2021, 336, 127730. [Google Scholar] [CrossRef]
- Moreau, R.A.; Whitaker, B.D.; Hicks, K.B. Phytosterols, Phytostanols, and Their Conjugates in Foods: Structural Diversity, Quantitative Analysis, and Health-Promoting Uses. Prog. Lipid Res. 2002, 41, 457–500. [Google Scholar] [CrossRef]
- Gharby, S.; Harhar, H.; Guillaume, D.; Haddad, A.; Charrouf, Z. The Origin of Virgin Argan Oil’s High Oxidative Stability Unraveled. Nat. Prod. Commun. 2012, 7, 621–624. [Google Scholar] [CrossRef] [PubMed]
- Gordon, M.H.; Magos, P. The Effect of Sterols on the Oxidation of Edible Oils. Food Chem. 1983, 10, 141–147. [Google Scholar] [CrossRef]
- Giacometti, J.; Milin, C. Composition and Qualitative Characteristics of Virgin Olive Oils Produced in Northern Adriatic Region, Republic of Croatia. Grasas Aceites 2001, 52, 397–402. [Google Scholar] [CrossRef]
- Gumus, Z.P.; Ertas, H.; Yasar, E.; Gumus, O. Classification of Olive Oils Using Chromatography, Principal Component Analysis and Artificial Neural Network Modelling. J. Food Meas. Charact. 2018, 12, 1325–1333. [Google Scholar] [CrossRef]
- Alves, M.R.; Cunha, S.C.; Amaral, J.S.; Pereira, J.A.; Oliveira, M.B. Classification of PDO Olive Oils on the Basis of Their Sterol Composition by Multivariate Analysis. Anal. Chim. Acta 2005, 549, 166–178. [Google Scholar] [CrossRef]
- I.O.C. (International Olive Council). Method of Analysis Determination of Free Fatty Acids, Cold Method; COI/T.20/Doc. No 34; International Olive Council: Madrid, Spain, 2017. [Google Scholar]
- I.O.C. (International Olive Council). Method of Analysis Spectrophotometric Investigation in the Ultraviolet; COI/T.20/Doc. No 19; International Olive Council: Madrid, Spain, 2019. [Google Scholar]
- I.O.C. (International Olive Council). Determination of Peroxide Value; COI/T.20/Doc. No 35; International Olive Council: Madrid, Spain, 2017. [Google Scholar]
- AOCS. Official Methods and Recommended Practices of the American Oil Chemists’ Society, 4th ed.; Firestone, D., Ed.; AOCS Press: Champaign, IL, USA, 1998. [Google Scholar]
- I.O.C. (International Olive Council). Method of Analysis Determination of Fatty Acids Methyl Esters by Gas Chromatography; COI/T.20/Doc. No 33; International Olive Council: Madrid, Spain, 2017. [Google Scholar]
- I.O.C. (International Olive Council). Determination of Phenolic Compounds; COI/T.20/Doc. No 29; International Olive Council: Madrid, Spain, 2022. [Google Scholar]
- Karacan, E.; Özdïkïcïerler, O.; Yemïşçïoğlu, F. Comparative Investigation Of The Use Of Sterol Composition, Ecn42 Difference And Ftir Spectroscopy In The Determination of Virgin Olive Oil Adulteration. Gıda 2023, 48, 510–525. [Google Scholar] [CrossRef]
Groups | Free Fatty Acid Content (% Oleic Acid) | Peroxide Value (meq O2/kg) | p-Anisidine Value (mmol/kg) | Total Oxidation Value | K232 | K270 |
---|---|---|---|---|---|---|
ES | 0.13 ± 0.01 c | 11.69 ± 1.19 a | 24.03 ± 0.71 b | 47.41 ± 2.39 a | 2.19 ± 0.11 a | 0.12 ± 0.00 c |
KK | 0.11 ± 0.01 d | 6.66 ± 0.11 c | 11.95 ± 0.32 d | 25.28 ± 0.53 e | 1.99 ± 0.06 b | 0.14 ± 0.01 a |
AU | 0.15 ± 0.01 b | 9.73 ± 0.39 b | 25.50 ± 0.42 a | 44.97 ± 0.94 b | 1.98 ± 0.04 b | 0.10 ± 0.00 d |
AA | 0.27 ± 0.01 a | 9.77 ± 0.44 b | 13.88 ± 0.54 c | 33.43 ± 1.24 d | 2.21 ± 0.09 a | 0.13 ± 0.01 b |
DB | 0.10 ± 0.01 d | 6.76 ± 0.10 c | 24.08 ± 0.57 b | 37.60 ± 0.74 c | 2.25 ± 0.10 a | 0.11 ± 0.00 cd |
Groups | ||||||
---|---|---|---|---|---|---|
Phenolics (mg/kg) | ES | KK | AU | AA | DB | |
Simple Phenols | 3,4-DHPEA (tyrosol) | 1.55 ± 0.8 e | 3.89 ± 0.15 d | 11.53 ± 0.52 a | 2.36 ± 0.09 d | 7.28 ± 0.26 b |
p-HPEA (hydroxytyrosol) | 4.85 ± 0.14 e | 13.27 ± 0.55 b | 18.67 ± 0.84 a | 7.94 ± 0.38 d | 9.97 ± 0.42 c | |
p-coumaric acid | 0.95 ± 0.03 d | 1.30 ± 0.07 a | 0.80 ± 0.03 e | 1.18 ± 0.04 b | 1.07 ± 0.05 c | |
Lignan | Pinoresinol | 18.31 ± 0.56 a | 15.61 ± 0.53 c | 16.63 ± 0.67 b | 14.01 ± 0.70 d | 13.06 ± 0.48 e |
Secoiridoids | 3,4-DHPEA-EDA (oleacein) | 45.19 ± 1.48 b | 30.69 ± 1.45 c | 45.37 ± 1.73 b | 6.87 ± 0.32 d | 55.95 ± 1.98 a |
p-HPEA-EDA (oleocanthal) | 93.58 ± 3.40 a | 82.34 ± 3.68 c | 86.92 ± 3.15 b | 42.43 ± 1.65 e | 73.55 ± 2.23 d | |
3,4-DHPEA-EA (oleuropein aglycone monoaldehyde) | 40.02 ± 2.00 a | 25.24 ± 0.77 c | 40.44 ± 1.42 a | 26.63 ± 1.14 c | 32.60 ± 1.49 b | |
p-HPEA-EA (lignostride aglycone monoaldehyde) | 15.21 ± 0.65 a | 11.05 ± 0.32 b | 6.52 ± 0.17 d | 6.50 ± 0.28 d | 8.64 ± 0.25 c | |
Total phenols | 219.66 | 183.39 | 226.88 | 107.92 | 202.12 |
Groups | |||||
---|---|---|---|---|---|
Fatty Acids (%) | ES | KK | AU | AA | DB |
C16:0 (palmitic acid) | 14.42 ± 0.4 a | 14.36 ± 0.72 a | 13.09 ± 0.66 ab | 13.86 ± 0.45 ab | 13.89 ± 0.58 b |
C16:1 (palmitoleic acid) | 1.06 ± 0.02 b | 1.66 ± 0.03 a | 1.01 ± 0.02 c | 0.87 ± 0.02 d | 0.99 ± 0.02 c |
C17:0 (margaric acid) | 0.04 ± 0.00 b | 0.08 ± 0.00 a | 0.04 ± 0.00 bc | 0.04 ± 0.01 bc | 0.035 ± 0.01 c |
C17:1 (margoleic acid) | 0.06 ± 0.01 bc | 0.16 ± 0.01 a | 0.07 ± 0.00 b | 0.05 ± 0.00 d | 0.06 ± 0.01 cd |
C18:0 (stearic acid) | 2.08 ± 0.09 b | 2.55 ± 0.09 a | 2.21 ± 0.10 b | 2.56 ± 0.07 a | 2.50 ± 0.13 a |
C18:1 (oleic acid) | 68.18 ± 2.35 ab | 66.92 ± 2.35 b | 71.98 ± 3.18 a | 69.71 ± 3.47 ab | 69.24 ± 2.18 ab |
C18:2 (linoleic acid) | 10.57 ± 0.52 a | 9.99 ± 0.36 a | 8.72 ± 0.36 b | 8.01 ± 0.35 c | 8.90 ± 0.39 b |
C20:0 (arachidic acid) | 0.40 ± 0.01 b | 0.36 ± 0.01 c | 0.39 ± 0.01 b | 0.43 ± 0.01 a | 0.45 ± 0.01 a |
C18:3 (linolenic acid) | 0.69 ± 0.01 a | 0.64 ± 0.01 b | 0.59 ± 0.02 c | 0.65 ± 0.01 b | 0.68 ± 0.02 a |
C20:1 (gadoleic acid) | 0.30 ± 0.01 a | 0.24 ± 0.01 b | 0.30 ± 0.01 a | 0.29 ± 0.01 a | 0.30 ± 0.01 a |
C22:0 (behenic acid) | 0.12 ± 0.00 bc | 0.10 ± 0.01 d | 0.11 ± 0.01 c | 0.13 ± 0.01 ab | 0.13 ± 0.01 a |
C24:0 (lignoseric acid) | 0.07 ± 0.01 a | 0.05 ± 0.00 b | 0.06 ± 0.00 a | 0.07 ± 0.00 a | 0.07 ± 0.0 a |
Σ MUFA (monounsaturated fatty acids) | 69.60 ± 2.34 a | 69.98 ± 2.35 a | 73.36 ± 3.17 a | 70.91 ± 3.17 a | 70.59 ± 2.18 a |
Σ PUFA (polyunsaturated fatty acids) | 11.26 ± 0.51 a | 10.63 ± 0.36 a | 9.31 ± 0.38 bc | 8.66 ± 0.35 c | 9.58 ± 0.40 b |
Σ SAFA (saturated fatty acids) | 17.12 ± 0.48 a | 17.50 ± 0.74 a | 15.90 ± 0.69 b | 17.08 ± 0.49 a | 17.07 ± 0.66 a |
Groups | |||||
---|---|---|---|---|---|
Sterols (%) | ES | KK | AU | AA | DB |
Cholesterol | 0.14 ± 0.3 | 0.09 ± 0.01 | 0.15 ± 0.04 | 0.11 ± 0.03 | 0.10 ± 0.02 |
Brassicasterol | 0.04 ± 0.01 | 0.07 ± 0.01 | 0.01 ± 0.00 | 0.02 ± 0.00 | 0.00 ± 0.00 |
24-methylene-cholesterol | 0.04 ± 0.00 | 0.05 ± 0.01 | 0.08 ± 0.02 | 0.09 ± 0.01 | 0.07 ± 0.01 |
Campesterol | 3.30 ± 0.12 | 3.34 ± 0.13 | 3.12 ± 0.19 | 3.13 ± 0.11 | 3.09 ± 0.11 |
Campestanol | 0.37 ± 0.02 | 0.23 ± 0.01 | 0.35 ± 0.03 | 0.43 ± 0.02 | 0.27 ± 0.02 |
Stigmasterol | 1.44 ± 0.08 | 1.36 ± 0.16 | 1.46 ± 0.09 | 1.67 ± 0.09 | 1.83 ± 0.07 |
Δ7-campesterol | 0.04 ± 0.01 | 0.02 ± 0.00 | 0.01 ± 0.01 | 0.03 ± 0.01 | 0.02 ± 0.01 |
Clerosterol | 0.99 ± 0.07 | 1.10 ± 0.05 | 1.26 ± 0.17 | 1.05 ± 0.17 | 1.04 ± 0.14 |
β-sitosterol | 85.67 ± 0.22 | 86.92 ± 0.33 | 87.65 ± 0.39 | 85.99 ± 0.39 | 86.78 ± 0.26 |
Sitostanol | 1.31 ± 0.07 | 1.62 ± 0.07 | 1.24 ± 0.08 | 1.82 ± 0.09 | 1.76 ± 0.08 |
Δ5-avenasterol | 5.21 ± 0.10 | 3.92 ± 0.24 | 3.69 ± 0.34 | 4.08 ± 0.21 | 3.47 ± 0.15 |
Δ5.24-stigmastadienol | 0.42 ± 0.02 | 0.48 ± 0.05 | 0.42 ± 0.04 | 0.44 ± 0.05 | 0.35 ± 0.07 |
Apparent β-sitosterol | 93.59 ± 0.20 | 94.04 ± 0.26 | 94.27 ± 0.20 | 93.38 ± 0.24 | 93.39 ± 0.14 |
Δ7-stigmastenol | 0.33 ± 0.03 | 0.32 ± 0.05 | 0.20 ± 0.03 | 0.40 ± 0.03 | 0.38 ± 0.03 |
Δ7-avenasterol | 0.73 ± 0.05 | 0.47 ± 0.03 | 0.35 ± 0.04 | 0.74 ± 0.07 | 0.84 ± 0.08 |
Eritrodiol + uvaol | 1.72 ± 0.28 | 1.29 ± 0.16 | 1.69 ± 0.20 | 1.78 ± 0.14 | 2.37 ± 0.54 |
Total Sterol | 2086.08 ± 131.59 | 2059.93 ± 69.98 | 1155.43 ± 57.49 | 1109.23 ± 31.24 | 1364.30 ± 53.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akcan, T. Investigating the Quality and Purity Profiles of Olive Oils from Diverse Regions in Selçuk, İzmir. Molecules 2024, 29, 1104. https://doi.org/10.3390/molecules29051104
Akcan T. Investigating the Quality and Purity Profiles of Olive Oils from Diverse Regions in Selçuk, İzmir. Molecules. 2024; 29(5):1104. https://doi.org/10.3390/molecules29051104
Chicago/Turabian StyleAkcan, Tolga. 2024. "Investigating the Quality and Purity Profiles of Olive Oils from Diverse Regions in Selçuk, İzmir" Molecules 29, no. 5: 1104. https://doi.org/10.3390/molecules29051104
APA StyleAkcan, T. (2024). Investigating the Quality and Purity Profiles of Olive Oils from Diverse Regions in Selçuk, İzmir. Molecules, 29(5), 1104. https://doi.org/10.3390/molecules29051104