Gallic Acid-Based Hydrogels for Phloretin Intestinal Release: A Promising Strategy to Reduce Oxidative Stress in Chronic Diabetes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation of the Hydrogel Based on Gallic Acid Diacrylate
2.2. Morphological Analysis
2.3. Swelling Studies
2.4. Release Studies from Hydrogel
2.5. Determination of Total Phenolic Content
2.6. DPPH and ABTS Radical Scavenging Activity Assay
2.7. Antioxidant Activity Evaluation
3. Conclusions
4. Materials and Methods
4.1. Reagents
4.2. Instruments
4.3. Animals
4.4. Acrylation of 3,4,5-Trihydroxybenzoic Acid with 2-Propenoic Acid
4.5. Preparation of the Diacrylate Gallate Hydrogel
4.6. Swelling Studies
4.7. Impregnation of the Hydrogel with Phloretin
4.8. In Vitro Release Studies
4.9. Determination of Total Phenolic Content
4.10. DPPH Radical Scavenging Activity Assay
4.11. ABTS Radical Scavenging Assay
4.12. Evaluation of the Antioxidant Activity
4.13. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferrari, F.; Moretti, A.; Villa, R.F. Hyperglycemia in acute ischemic stroke: Physiopathological and therapeutic complexity. Neural Regen Res. 2022, 17, 292–299. [Google Scholar] [CrossRef] [PubMed]
- Cole, J.B.; Florez, J.C. Genetics of diabetes mellitus and diabetes complications. Nat. Rev. Nephrol. 2020, 16, 377–390. [Google Scholar] [CrossRef] [PubMed]
- Charlton, A.; Garzarella, J.; Jandeleit-Dahm, K.A.M.; Jha, J.C. Oxidative Stress and Inflammation in Renal and Cardiovascular Complications of Diabetes. Biology 2021, 10, 18. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Tang, G.; Zhang, C.; Wang, N.; Feng, Y. Gallic Acid and Diabetes Mellitus: Its Association with Oxidative Stress. Molecules 2021, 26, 7115. [Google Scholar] [CrossRef] [PubMed]
- Cepas, V.; Collino, M.; Mayo, J.C.; Sainz, R.M. Redox Signaling and Advanced Glycation Endproducts (AGEs) in Diet-Related Diseases. Antioxidants 2020, 9, 142. [Google Scholar] [CrossRef] [PubMed]
- Onyango, A.N. Cellular Stresses and Stress Responses in the Pathogenesis of Insulin Resistance. Oxidative Med. Cell. Longev. 2018, 2018, 4321714. [Google Scholar] [CrossRef] [PubMed]
- Velderrain-Rodriguez, G.R.; Torres-Moreno, H.; Villegas-Ochoa, M.A.; Ayala-Zavala, J.F.; Robles-Zepeda, R.E.; Wall-Medrano, A.; Gonzalez-Aguilar, G.A. Gallic Acid Content and an Antioxidant Mechanism Are Responsible for the Antiproliferative Activity of‘Ataulfo’ Mango Peel on LS180 Cells. Molecules 2018, 23, 695. [Google Scholar] [CrossRef]
- Zhao, X.; Zhi, Q.-Q.; Li, J.-Y.; Keller, N.P.; He, Z.-M. The Antioxidant Gallic Acid Inhibits Aflatoxin Formation in Aspergillus flavus by Modulating Transcription Factors FarB and CreA. Toxins 2018, 10, 270. [Google Scholar] [CrossRef]
- Radan, M.; Dianat, M.; Badavi, M.; Mard, S.A.; Bayati, V.; Goudarzi, G. In vivo and in vitro evidence for the involvement of Nrf2-antioxidant response element signaling pathway in the inflammation and oxidative stress induced by particulate matter (PM10): The effective role of gallic acid. Free Radic. Res. 2019, 53, 210–225. [Google Scholar] [CrossRef]
- Khan, D.; Sharif, A.; Zafar, M.; Akhtar, B.; Akhtar, M.F.; Awan, S. Delonix regia a Folklore Remedy for Diabetes; Attenuates Oxidative Stress and Modulates Type II Diabetes Mellitus. Curr. Pharm. Biotechnol. 2020, 21, 1059–1069. [Google Scholar] [CrossRef]
- Variya, B.C.; Bakrania, A.K.; Patel, S.S. Antidiabetic potential of gallic acid from Emblica officinalis: Improved glucose transporters and insulin sensitivity through PPAR-and Akt signaling. Phytomedicine 2020, 73, 152906. [Google Scholar] [CrossRef] [PubMed]
- Nakhate, K.T.; Badwaik, H.; Choudhary, R.; Sakure, K.; Agrawal, Y.O.; Sharma, C.; Ojha, S.; Goyal, S.N. Therapeutic Potential and Pharmaceutical Development of a Multitargeted Flavonoid Phloretin. Nutrients 2022, 14, 3638. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Sun, M.; Xia, Y.; Cui, X.; Jiang, J. Phloretin ameliorates diabetic nephropathy by inhibiting nephrin and podocin reduction through a non-hypoglycemic effect. Food Funct. 2022, 13, 6613–6622. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, D.; Lin, H.; Jiang, S.; Han, L.; Hou, S.; Lin, S.; Cheng, Z.; Bian, W.; Zhang, X.; et al. Enhanced oral bioavailability and bioefficacy of phloretin using mixed polymeric modified self-nanoemulsions. Food Sci. Nutr. 2020, 8, 3545–3558. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Xiao, X.; Yuan, Y.; Liu, J.; Liu, Y.; Yi, X. Solubilization of phloretin via steviol glycoside-based solid dispersion and micelles. Food Chem. 2020, 308, 125569–125578. [Google Scholar] [CrossRef] [PubMed]
- Badwaik, H.R.; Kumari, L.; Maiti, S.; Sakure, K.; Nakhate, K.T.; Tiwari, V.; Giri, T.K. A review on challenges and issues with carboxymethylation of natural gums: The widely used excipients for conventional and novel dosage forms. Int. J. Biol. Macromol. 2022, 209, 2197–2212. [Google Scholar] [CrossRef]
- Gu, L.; Sun, R.; Wang, W.; Xia, Q. Nanostructured lipid carriers for the encapsulation of phloretin: Preparation and in vitro characterization studies. Chem. Phys. Lipids 2022, 242, 105150. [Google Scholar] [CrossRef]
- Casarini, T.P.A.; Frank, L.A.; Benin, T.; Onzi, G.; Pohlmann, A.R.; Guterres, S.S. Innovative hydrogel containing polymeric nanocapsules loaded with phloretin: Enhanced skin penetration and adhesion. Mater. Sci. Eng. C 2021, 120, 111681. [Google Scholar] [CrossRef]
- Ranjanamala, T.; Vanmathiselvi, K.; Casimeer, S.C.; Ghidan, A.Y. Synthesis and Characterization ofDose-Dependent Antioxidants and Antimicrobial Activity of Phloretin Loaded PLGA Nanoparticles. Biointerface Res. Appl. Chem. 2022, 12, 3076–3089. [Google Scholar] [CrossRef]
- Trombino, S.; Cassano, R. Special Issue on DeSGFning Hydrogels for Controlled Drug Delivery: Guest Editors’ Introduction. Pharmaceutics 2020, 12, 57. [Google Scholar] [CrossRef] [PubMed]
- Trombino, S.; Servidio, C.; Curcio, F.; Cassano, R. Strategies for Hyaluronic Acid-Based Hydrogel DeSGFn in Drug Delivery. Pharmaceutics 2019, 11, 407. [Google Scholar] [CrossRef]
- Huang, H.; Hou, Y.; Chen, L.; He, W.; Wang, X.; Zhang, D.; Hu, J. Multifunctional gallic acid self-assembled hydrogel for alleviation of ethanol-induced acute gastric injury. Int. J. Pharm. 2023, 645, 12337. [Google Scholar] [CrossRef]
- Cassano, R.; Trombino, S. Trehalose-based hydrogel potentially useful for the skin burn treatment. J. Appl. Polym. Sci. 2016, 134, 44755–44761. [Google Scholar] [CrossRef]
- Cassano, R.; Curcio, F.; Mandracchia, D.; Trapani, A.; Trombino, S. Gelatin and glycerine-based bioadhesive vaginal hydrogel. Curr. Drug Del. 2020, 17, 44755–44761. [Google Scholar] [CrossRef] [PubMed]
- Serini, S.; Cassano, R.; Bruni, M.; Servidio, C.; Calviello, G.; Trombino, S. Characterization of a hyaluronic acid and folic acid-based hydrogel for cisplatin delivery: Antineoplastic effect in human ovarian cancer cells in vitro. Int. J. Pharm. 2021, 606, 120899–120913. [Google Scholar] [CrossRef]
- Mellace, S.; Cassano, R. Advanced Materials for Pharmaceutical and Biomedical Purposes. Ph.D. Thesis, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata, Italy, 2018. [Google Scholar]
- Cassano, R.; Curcio, F.; Sole, R.; Trombino, S. Transdermal Delivery of Phloretin by Gallic Acid Microparticles. Gels 2023, 9, 226. [Google Scholar] [CrossRef] [PubMed]
- Mazzotta, E.; Orlando, C.; Muzzalupo, R. New nanomaterials with intrinsic antioxidant activity by surface functionalization of niosomes with natural phenolic acids. Pharmaceutics 2021, 13, 766. [Google Scholar] [CrossRef]
- Laurano, R.; Torchio, A.; Ciardelli, G.; Boffito, M. In Situ Forming Bioartificial Hydrogels with ROS Scavenging Capability Induced by Gallic Acid Release with Potential in Chronic SkinWound Treatment. Gels 2023, 9, 731. [Google Scholar] [CrossRef]
Time (h) | α% pH 1.2 | α% pH 6.8 | α% pH 7.4 |
---|---|---|---|
1 | 67 ± 2.13 | - | - |
2 | 118 ± 3.75 | - | - |
3 | - | 135 ± 4.15% | 540 ± 17.14 |
4 | - | 183 ± 5.78% | 779 ± 24.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cassano, R.; Curcio, F.; Sole, R.; Mellace, S.; Trombino, S. Gallic Acid-Based Hydrogels for Phloretin Intestinal Release: A Promising Strategy to Reduce Oxidative Stress in Chronic Diabetes. Molecules 2024, 29, 929. https://doi.org/10.3390/molecules29050929
Cassano R, Curcio F, Sole R, Mellace S, Trombino S. Gallic Acid-Based Hydrogels for Phloretin Intestinal Release: A Promising Strategy to Reduce Oxidative Stress in Chronic Diabetes. Molecules. 2024; 29(5):929. https://doi.org/10.3390/molecules29050929
Chicago/Turabian StyleCassano, Roberta, Federica Curcio, Roberta Sole, Silvia Mellace, and Sonia Trombino. 2024. "Gallic Acid-Based Hydrogels for Phloretin Intestinal Release: A Promising Strategy to Reduce Oxidative Stress in Chronic Diabetes" Molecules 29, no. 5: 929. https://doi.org/10.3390/molecules29050929
APA StyleCassano, R., Curcio, F., Sole, R., Mellace, S., & Trombino, S. (2024). Gallic Acid-Based Hydrogels for Phloretin Intestinal Release: A Promising Strategy to Reduce Oxidative Stress in Chronic Diabetes. Molecules, 29(5), 929. https://doi.org/10.3390/molecules29050929