Analytical Assessment of the Antioxidant Properties of the Coneflower (Echinacea purpurea L. Moench) Grown with Various Mulch Materials
Abstract
:1. Introduction
2. Results
2.1. Crude Protein Fat and Ash Content in Flowers, Plant Stems plus Leaves of E.purpurea
2.2. Total Polyphenolic Content and Antioxidant Activity
2.3. Polyphenolic Profile
3. Discussion
4. Material and Methods
4.1. Plant Material
4.2. Concentration of Protein, Ash and Crude Fat
4.3. Methanolic Extract Preparation
4.4. Total Polyphenols Content and Antioxidant Activity
4.5. Polyphenols Profile
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ramazan, E.; Isa, T.; Musa, U.; Ibrahim, D.; Fatih, G.; Mahfuz, E.; Omer, K. Chemical constituents, quantitative analysis and antioxidant activities of Echinacea purpurea (L.) Moench and Echinacea pallida (nutt.) Nutt. J. Food Biochem. 2015, 39, 622–630. [Google Scholar] [CrossRef]
- Dosoky, N.S.; Kirpotina, L.N.; Schepetkin, I.A.; Khlebnikov, A.I.; Lisonbee, B.L.; Black, J.L.; Woolf, H.; Thurgood, T.L.; Graf, B.L.; Satyal, P.; et al. Volatile Composition, Antimicrobial Activity, and In Vitro Innate Immunomodulatory Activity of Echinacea purpurea (L.) Moench Essential Oils. Molecules 2023, 28, 7330. [Google Scholar] [CrossRef]
- Osińska, E.; Pióro-Jabrucka, E. Uprawa i Przetwórstwo Roślin Zielarskich (Cultivation and Processing of Herbal Plants); Centrum Doradztwa Rolniczego w Brwinowie: Brwinów, Poland, 2022; ISBN 978-83-88082-64-1. (In Polish) [Google Scholar]
- Newerli-Guz, J. Uprawa roślin zielarskich w Polsce. Rocz. Nauk. Stowarzyszenia Ekon. Rol. I Agrobiznesu 2016, 18, 268–274. [Google Scholar]
- Barnes, J.; Anderson, L.A.; Gibbons, S.; Phillipson, J.D. Echinacea species (Echinacea angustifolia (DC.) Hell., Echinacea pallida (Nutt.) Nutt., Echinacea purpurea (L.) Moench): A review of their chemistry, pharmacology and clinical properties. J. Pharm. Pharmacol. 2005, 57, 929–954. [Google Scholar] [CrossRef]
- Bergeron, C.; Livesey, J.F.; Awang, D.V.C.; Arnason, J.T.; Rana, J.; Baum, B.R.; Letchamo, W.A. Quantitative HPLC Method for the Quality Assurance of Echinacea Products on the North American Market. Phytochem. Anal. 2000, 11, 207–215. [Google Scholar] [CrossRef]
- Sharma, S.M.; Anderson, M.; Schoop, S.R.; Hudson, J.B. Bactericidal and anti-inflammatory properties of a standardized Echinacea extract (Echinaforce): Dual actions against respiratory bacteria. Phytomedicine 2010, 17, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Manayi, A.; Vazirian, M.; Saeidnia, S. Echinacea purpurea: Pharmacology, phytochemistry and analysis methods. Pharmacogn. Rev. 2015, 9, 63–72. [Google Scholar] [CrossRef]
- Stojicevic, S.; Stanisavljevic, A.; Velickovic, D.; Veljkovic, V.; Lazic, M. Antioxidant and antimicrobial activities of Echinacea (Echinacea purpurea L.). extracts obtained by classical and ulterasound extraction. Chin. J. Chem. Eng. 2009, 17, 478–483. [Google Scholar]
- Binns, S.E.; Purgina, B.; Bergeron, C.; Smith, M.L.; Ball, L.; Baum, B. Light-mediated antifungal activity of Echinacea extracts. Planta Med. 2000, 66, 241–244. [Google Scholar] [CrossRef]
- Hudson, J.B. Applications of the phytomedicine Echinacea purpurea (Purple Coneflower) in infectious diseases. J. Biomed. Biotechnol. 2012, 2012, 769896. [Google Scholar] [CrossRef]
- Gurley, B.J.; Gardner, S.F.; Hubbard, M.A.; Williams, D.K.; Gentry, W.B.; Carrier, J.; Khan, I.A.; Edwards, D.J.; Shah, A. In vivo assessment of botanical supplementation on human cytochrome P450 phenotypes: Citrus aurantium, Echinacea purpurea, milk thistle, and saw palmetto. Clin. Pharmacol. Ther. 2004, 76, 428–440. [Google Scholar] [CrossRef] [PubMed]
- Kołodziej, B. Uprawa Ziół; PWRiL: Warszawa, Poland, 2010; ISBN 978-83-09-99021-3. (In Polish) [Google Scholar]
- Zheng, Y.; Dixon, M.; Saxena, P.K. Growing environment and nutrient availability affect the content of some phenolic compounds in Echinacea purpurea and Echinacea angustifolia. Planta Med. 2006, 72, 1407–1414. [Google Scholar] [CrossRef] [PubMed]
- Kader, M.A.; Senge, M.; Mojid, M.A.; Ito, K. Recent advances in mulching materials and methods for modifying soil environment. Soil Tillage Res. 2017, 168, 155–166. [Google Scholar] [CrossRef]
- Lamont, W.J. Plastics: Modifying the Microclimate for the Production of Vegetable Crops. Hort. Technol. 2005, 15, 477–481. [Google Scholar] [CrossRef]
- Ibarra-Jiménez, L.; Hugolira-Saldivar, R.; Valdez-Aguilar, L.A.; Lozano-Del Río, J. Colored plastic mulches affect soil temperature and tuber production of potato. Acta Agric. Scand. 2011, 61, 365–371. [Google Scholar] [CrossRef]
- Yin, T.; Yao, Z.; Yan, C.; Liu, Q.; Ding, X.; He, W. Maize yield reduction is more strongly related to soil moisture fluctuation than soil temperature change under biodegradable film vs plastic film mulching in a semi-arid region of northern China. Agric. Water Manag. 2023, 287, 108351. [Google Scholar] [CrossRef]
- Xiukang, W.; Zhanbin, L.; Yingying, X. Effects of mulching and nitrogen on soil temperature water content, nitrate-N content and maize yield in the Loess Plateau of China. Agric. Water Manag. 2015, 161, 53–64. [Google Scholar] [CrossRef]
- Almeida, W.F.D.; Lima, L.A.; Pereira, G.M. Drip pulses and soil mulching effect on American crisp head lettuce yield. Eng. Agrícola 2015, 35, 1009–1018. [Google Scholar] [CrossRef]
- Filipovic, V.; Romic, D.; Romic, M.; Borošic, J.; Filipovic, L.; Mallmann, F.J.K.; Robinson, D. A Plastic mulch and nitrogen fertigation in growing vegetables modify soil temperature, water and nitrate dynamics: Experimental results and a modeling study. Agric. Water Manag. 2016, 176, 100–110. [Google Scholar] [CrossRef]
- Hu, C.; Kitts, D.D. Studies on the antioxidant activity of Echinacea root extract. J. Agric. Food Chem. 2000, 48, 1466–1472. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Mnayer, D.; Morais-Braga, M.F.B.; Carneiro, J.N.P.; Bezerra, C.F.; Coutinho, H.D.M.; Salehi, B.; Martorell, M.; Del Mar Contreras, M.; Soltani-Nejad, A.; et al. Echinacea plants as antioxidant and antibacterial agents: From traditional medicine to biotechnological applications. Phytother. Res. 2018, 32, 1653–1663. [Google Scholar] [CrossRef] [PubMed]
- Rachkeeree, A.; Kantadoung, K.; Suksathan, R.; Puangpradab, R.; Page, P.A.; Sommano, S.R. Nutritional Compositions and Phytochemical Properties of the Edible Flowers from Selected Zingiberaceae Found in Thailand. Front Nutr. 2018, 5, 3. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Song, X.; Hua, Y.; Tao, J.; Zhou, C. Effects of Different Harvest Times on Nutritional Component of Herbaceous Peony Flower Petals. J. Chem. 2020, 2020, 4942805. [Google Scholar] [CrossRef]
- Grzeszczuk, M.; Wesołowska, A.; Jadczak, D.; Jakubowska, B. Nutritional value of chive edible flowers. Acta Sci. Pol. Hortorum Cultus 2011, 10, 85–94. [Google Scholar]
- Singh, S.; Kaur, I.; Kariyat, R. The Multifunctional Roles of Polyphenols in Plant-Herbivore Interactions. Int. J. Mol. Sci. 2021, 22, 1442. [Google Scholar] [CrossRef] [PubMed]
- Zagoskina, N.V.; Zubova, M.Y.; Nechaeva, T.L.; Kazantseva, V.V.; Goncharuk, E.A.; Katanskaya, V.M.; Baranova, E.N.; Aksenova, M.A. Polyphenols in Plants: Structure, Biosynthesis, Abiotic Stress Regulation, and Practical Applications (Review). Int. J. Mol. Sci. 2023, 24, 13874. [Google Scholar] [CrossRef] [PubMed]
- El-Beltagi, H.S.; Basit, A.; Mohamed, H.I.; Ali, I.; Ullah, S.; Kamel, E.A.R.; Shalaby, T.A.; Ramadan, K.M.A.; Alkhateeb, A.A.; Ghazzawy, H.S. Mulching as a Sustainable Water and Soil Saving Practice in Agriculture: A Review. Agronomy 2022, 12, 1881. [Google Scholar] [CrossRef]
- Tsai, Y.L.; Chiou, S.Y.; Chan, K.C.; Sung, J.M.; Lin, S.D. Caffeic acid derivatives, total phenols, antioxidant and antimutagenic activities of Echinacea purpurea flower extracts. LWT 2012, 46, 169–176. [Google Scholar] [CrossRef]
- Chen, Y.L.; Sung, J.M.; Lin, S.D. Effect of Extraction Methods on the Active Compounds and Antioxidant Properties of Ethanolic Extracts of Echinacea purpurea Flower. Am. J. Plant Sci. 2015, 6, 201–212. [Google Scholar] [CrossRef]
- Pellati, F.; Benvenuti, S.; Magro, L.; Melegari, M.; Soragni, F. Analysis of phenolic compounds and radical scavenging activity of Echinacea spp. J. Pharm. Biomed. Anal. 2004, 35, 289–301. [Google Scholar] [CrossRef]
- Pellati, F.; Benvenuti, S.; Melegari, M.; Lasseigne, T. Variability in the Composition of Antioxidant Compounds in Echinacea Species by HPLC. Phytochem. Anal. 2005, 16, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef] [PubMed]
- Schlesier, K.; Harwat, M.; Böhm, V.; Bitsch, R. Assessment of Antioxidant Activity by Using Different In Vitro Methods. Free Radic. Res. 2002, 36, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Wojdyło, A.; Oszmiański, J.; Czemerys, R. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem. 2007, 105, 940–949. [Google Scholar] [CrossRef]
- Skrzypczak-Pietraszek, E.; Piska, K.; Pietraszek, J. Enhanced production of the pharmaceutically important polyphenolic compounds in Vitex agnus castus L. shoot cultures by precursor feeding strategy. Eng. Life Sci. 2018, 18, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.; Tsatsakis, A.; Mamoulakis, C.; Teodoro, M.; Briguglio, G.; Caruso, E.; Fenga, C. Current evidence on the effect of dietary polyphenols intake on chronic diseases. Food Chem. Toxicol. 2017, 110, 286–299. [Google Scholar] [CrossRef] [PubMed]
- Kishimoto, Y.; Tani, M.; Kondo, K. Pleiotropic preventive effects of dietary polyphenols in cardiovascular diseases. Eur. J. Clin. Nutr. 2013, 67, 532–535. [Google Scholar] [CrossRef] [PubMed]
- Germosén Robineau, L.; García González, M.; Morón, F.; Costaguta, M.; Delens, M.; Olmedo, D.; Méndez, M.; Boulogne, I.; García, R.; Durán, R.; et al. Farmacopea Vegetal Caribeña; Universidad de Cartagena: Cartagena, Colombia, 2017; ISBN 978-958-5439-06-1. [Google Scholar]
- AOAC. Official Methods of Analysis of the AOAC, 21st ed.; AOAC: Gaithersburg, MD, USA, 2019. [Google Scholar]
- Skoczylas, J.; Jędrszczyk, E.; Dziadek, K.; Dacewicz, E.; Kopeć, A. Basic Chemical Composition, Antioxidant Activity and Selected Polyphenolic Compounds Profile in Garlic Leaves and Bulbs Collected at Various Stages of Development. Molecules 2023, 28, 6653. [Google Scholar] [CrossRef]
- Swain, P.; Hillis, W.E. The phenolic constituents of Prunus domestica (L.). The quantity of analisys of phenolic constituents. J. Sci. Food Agric. 1959, 10, 63–68. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Miliauskas, G.; Venskutonis, P.R.; Van Beek, T.A. Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem. 2004, 85, 231–237. [Google Scholar] [CrossRef]
- Dziadek, K.; Kopeć, A.; Dziadek, M.; Sadowska, U.; Cholewa-Kowalska, K. The Changes in Bioactive Compounds and Antioxidant Activity of Chia (Salvia hispanica L.) Herb under Storage and Different Drying Conditions: A Comparison with Other Species of Sage. Molecules 2022, 27, 1569. [Google Scholar] [CrossRef]
Sample Name | Protein | Crude Fat | Ash |
---|---|---|---|
F0 | 13.21 ± 0.11 de | 1.99 ± 0.13 c | 8.59 ± 0.06 g |
F1 | 17.10 ± 0.89 fg | 1.02 ± 0.25 ab | 9.09 ± 0.65 h |
F2 | 17.47 ± 0.08 g | 1.23 ± 0.04 bc | 8.32 ± 0.07 efg |
F3 | 15.40 ± 0.48 e | 1.45 ± 0.23 bc | 7.74 ± 0.08 d |
F4 | 15.58 ± 0.01 e | 1.47 ± 0.38 bc | 8.39 ± 0.05 efg |
F5 | 15.98 ± 0.23 ef | 0.64 ± 0.04 a | 7.87 ± 0.15 de |
F6 | 15.67 ± 0.38 ef | 1.67 ± 0.00 bc | 8.05 ± 0.11 def |
SL0 | 7.20 ± 0.76 a | 0.85 ± 0.11 ab | 6.99 ± 0.37 c |
SL1 | 12.00 ± 0.01 de | 0.60 ± 0.02 a | 5.45 ± 0.10 a |
SL2 | 12.04 ± 1.68 de | 0.62 ± 0.08 a | 8.36 ± 0.00 efg |
SL3 | 9.34 ± 0.86 b | 0.60 ± 0.03 a | 6.25 ± 0.02 b |
SL4 | 11.38 ± 0.27 cd | 1.25 ± 0.04 abc | 7.91 ± 0.09 de |
SL5 | 8.90 ± 0.42 b | 0.73 ± 0.11 a | 6.04 ± 0.28 b |
SL6 | 10.12 ± 0.24 bc | 2.06 ± 0.15 c | 8.51 ± 0.02 fg |
Part of the plant | |||
Flower | 15.77 ± 3.94 B | 1.35 ± 0.56 A | 8.29 ± 0.48 B |
Stems plus leaves | 10.14 ± 1.83 A | 0.96 ± 0.52 A | 7.07 ± 1.17 A |
p-value | 0.001 | 0.065 | 0.001 |
Mulching material colour | |||
Control | 10.20 ± 3.50 A | 1.42 ± 0.67 A | 7.79 ± 0.95 A |
Black | 14.02 ± 2.59 A | 1.09 ± 0.39 A | 7.71 ± 1.49 A |
Green | 13.60 ± 3.65 A | 0.80 ± 0.27 A | 7.65 ± 1.02 A |
Brown | 12.63 ± 3.15 A | 1.45 ± 0.74 A | 7.64 ± 0.91 A |
p-value | 0.264 | 0.097 | 0.996 |
Thickness of mulching material g/100 m2 | |||
Control | 10.20 ± 3.50 A | 1.42 ± 0.67 A | 7.79 ± 0.95 A |
100 | 13.89 ± 3.18 A | 0.92 ± 0.52 A | 7.53 ± 1.35 A |
80 | 12.94 ± 3.03 A | 1.31 ± 0.54 A | 7.795 ± 0.86 A |
p-value | 0.150 | 0.153 | 0.827 |
Sample Name | Total Polyphenols (mg/100 g D.M.) * | DPPH (µmol Trolox/1 g D.M.) | ABTS (µmol Trolox/1 g D.M.) | FRAP (µmol Trolox/1 g D.M.) |
---|---|---|---|---|
F0 | 12,881.59 ± 547.89 g | 690.27 ± 40.75 f | 547.70 ± 17.09 h | 1680.71 ± 73.22 f |
F1 | 9728.05 ± 232.05 e | 609.74 ± 27.52 e | 356.36 ± 7.99 f | 1501.03 ± 12.05 e |
F2 | 14,222.89 ± 233.76 h | 860.06 ± 10.60 h | 331.66 ± 31.55 ef | 2319.29 ± 23.52 i |
F3 | 10,821.37 ± 182.08 f | 660.21 ± 27.52 ef | 314.67 ± 9.13 e | 2141.01 ± 11.63 g |
F4 | 13,941.18 ± 0.00 h | 937.17 ± 30.80 i | 512.66 ± 56.92 g | 2220.66 ± 67.23 h |
F5 | 13,663.35 ± 441.41 h | 824.41 ± 18.58 h | 511.51 ± 23.60 gh | 2116.97 ± 26.34 g |
F6 | 14,129.95 ± 156.91 h | 752.51 ± 29.29 g | 588.66 ± 12.06 i | 2294.97 ± 33.79 i |
SL0 | 5363.62 ± 70.56 c | 351.93 ± 12.60 bc | 189.46 ± 18.46 d | 798.95 ± 6.99 d |
SL1 | 3256.16 ± 26.52 a | 269.36 ± 1.40 a | 45.63 ± 4.47 a | 438.78 ± 20.28 a |
SL2 | 6395.19 ± 7.91 d | 373.40 ± 37.35 c | 109.76 ± 14.32 b | 595.36 ± 4.46 c |
SL3 | 4270.80 ± 54.41 b | 268.23 ± 4.32 a | 45.92 ± 6.56 a | 457.23 ± 3.85 a |
SL4 | 6673.99 ± 75.66 d | 432.54 ± 28.51 d | 201.02 ± 9.04 d | 779.71 ± 8.88 d |
SL5 | 4257.47 ± 425.34 b | 316.69 ± 9.00 ab | 80.46 ± 5.92 ab | 515.39 ± 11.72 b |
SL6 | 4843.00 ± 25.34 c | 389.09 ± 8.04 cd | 151.97 ± 5.72 c | 602.70 ± 8.72 c |
Part of plant | ||||
flower | 12,770 ± 1706 B | 762 ± 115 B | 452 ± 110 B | 2039 ± 305 B |
Steams plus leaves | 5009 ± 1168 A | 343 ± 60 A | 118 ± 62 A | 598 ± 137 A |
p-value | <0.001 | <0.001 | <0.001 | <0.001 |
Colour of mulching material | ||||
Control | 9123 ± 4125 A | 521 ± 197 A | 368 ± 197 A | 1239 ± 473 A |
Black | 8399 ± 4109 A | 562 ± 265 A | 279 ± 177 A | 1235 ± 747 A |
Green | 9634 ± 4578 A | 593 ± 267 A | 258 ± 184 A | 1386 ± 872 A |
brown | 8516 ± 4317 A | 517 ± 210 A | 275 ± 214 A | 1374 ± 885 A |
p-value | 0.580 | 0.554 | 0.041 | 0.761 |
Thickness g/m2 | ||||
control | 9122 ± 4125 A | 521 ± 199 A | 368 ± 197 B | 1239 ± 473 A |
100 | 8116 ± 3955 A | 507 ± 230 A | 201 ± 140 A | 1242 ± 810 A |
80 | 9585 ± 4519 A | 609 ± 249 A | 341 ± 208 AB | 1422 ± 818 A |
p-value | 0.580 | 0.554 | 0.041 | 0.761 |
Sample | Gallic Acid | Chlorogenic Acid | 4 Hydroxybenzoic Acid | Caffeic Acid | Vanillic Acid | Syringic Acid | p-Coumaric Acid | Ferulic Acid | Sinapinic Acid mg/100 g | Rosmarinic Acid mg/100 g | Carnosic Acid * mg/100 g |
---|---|---|---|---|---|---|---|---|---|---|---|
F0 | nd | 276 ± 0.03 i | 54.46 ± 0.04 h | 14.42 ± 1.66 e | 3.03 ± 0.01 cd | 13.30 ± 0.09 h | 1719 ± 1.58 j | 2.83 ± 0.10 a | 51.64 ± 1.36 c | 3.91 ± 0.09 c | 91.05 ± 0.03 f |
F1 | 2.53 ± 0.3 b | 195 ± 0.25 e | 40.79 ± 0.11 e | 16.68 ± 0.07 f | 9.46 ± 1.36 i | 7.96 ± 0.04 g | 1354 ± 2.17 h | 2.63 ± 0.03 a | 50.20 ± 1.46 c | 2.10 ± 0.03 ab | 43.61 ± 0.69 c |
F2 | nd | 331 ± 0.07 k | 63.64 ± 1.06 j | 31.22 ± 0.04 j | 13.83 ± 0.09 j | 4.57 ± 0.17 bc | 2053 ± 7.38 m | 3.72 ± 0.15 b | 52.71 ± 1.16 c | 2.60 ± 0.06 b | 67.30 ± 0.73 de |
F3 | 5.27 ± 0.01 f | 187 ± 0.06 d | 37.45 ± 0.04 d | 14.26 ± 0.91 e | 6.07 ± 0.01 g | 3.76 ± 0.20 ab | 1385 ± 4.08 i | nd | 40.59 ± 0.61 ab | 1.95 ± 0.03 a | 70.89 ± 0.22 e |
F4 | nd | 358 ± 0.24 l | 58.78 ± 0.03 i | 21.00 ± 0.00 g | 5.28 ± 0.03 f | 2.83 ± 1.06 a | 1934 ± 7.53 k | nd | 42.61 ± 0.24 b | 20.90 ± 0.56 g | 38.63 ± 0.26 c |
F5 | nd | 230 ± 6.56 h | 47.33 ± 1.39 f | 25.33 ± 0.00 i | 8.01 ± 0.02 h | 13.56 ± 1.28 h | 2035 ± 1.31 l | nd | 38.28 ± 0.54 a | 14.30 ± 0.09 e | 61.31 ± 14.73 d |
F6 | nd | 221 ± 0.94 g | 41.40 ± 0.05 e | 22.29 ± 0.45 h | 6.59 ± 0.02 g | 16.43 ± 0.29 i | 2107 ± 4.45 n | nd | 39.58 ± 0.29 a | 1.60 ± 0.03 a | 106.44 ± 0.17 g |
SL0 | 2.50 ± 0.01 b | 282 ± 0.33 j | 54.34 ± 0.09 h | 8.31 ± 0.04 d | 3.00 ± 0.01 cd | 14.10 ± 0.15 h | 470 ± 0.86 f | nd | 100.35 ± 0.65 g | 13.90 ± 0.46 e | 2.75 ± 0.16 a |
SL1 | 2.54 ± 0.01 b | 86 ± 0.09 b | 17.04 ± 0.03 b | 5.58 ± 0.03 ab | 1.64 ± 0.01 ab | 5.23 ± 0.10 cd | 318 ± 2.85 c | nd | 69.39 ± 1.54 d | 5.66 ± 0.09 d | 7.30 ± 0.63 ab |
SL2 | 3.00 ± 0.07 d | 202 ± 0.05 f | 40.67 ± 0.11 e | 7.27 ± 0.02 cd | 4.30 ± 0.10 e | 5.62 ± 0.03 de | 422 ± 3.55 e | 67.96 ± 0.16 d | 99.81 ± 1.99 g | 5.34 ± 0.07 d | 7.13 ± 0.11 ab |
SL3 | 2.87 ± 0.02 c | 197.66 ± 1.09 e | 37.35 ± 0.02 d | 4.47 ± 0.00 a | 1.41 ± 0.02 a | 6.77 ± 0.00 f | 203 ± 2.01 a | 41.78 ± 0.27 c | 51.41 ± 0.88 c | 3.89 ± 0.06 c | 8.69 ± 0.38 ab |
SL4 | 3.60 ± 0.11 e | 274.60 ± 0.14 i | 49.76 ± 0.10 g | 6.52 ± 0.03 bc | 4.65 ± 0.08 ef | 6.46 ± 0.02 ef | 548 ± 3.93 g | 96.14 ± 0.14 e | 120.44 ± 1.08 h | 22.83 ± 0.51 h | 12.86 ± 0.89 b |
SL5 | 5.53 ± 0.09 g | 70.19 ± 0.16 a | 13.27 ± 0.02 a | 5.24 ± 0.03 a | 3.24 ± 0.17 d | 4.53 ± 0.02 bc | 309 ± 2.04 b | nd | 76.15 ± 0.03 e | 1.90 ± 0.03 a | 6.30 ± 0.62 ab |
SL6 | 2.10 ± 0.00 a | 109.20 ± 0.16 c | 19.84 ± 0.01 c | 6.82 ± 0.06 c | 2.30 ± 0.00 bc | 7.49 ± 0.16 fg | 360 ± 2.94 d | nd | 83.93 ± 1.51 f | 18.41 ± 0.33 f | 8.06 ± 1.08 ab |
Sample Name | Catechin | Epicatechin | Naringin | Rutin | Hesperidin | Myricetin | Luteolin | Kaempferol | Apigenin | Hispidulin | Acacetin | Carnosol * |
---|---|---|---|---|---|---|---|---|---|---|---|---|
F0 | 20.10 ± 4.65 b | 29.10 ± 5.56 ef | 3.79 ± 0.09 a | 119 ± 0.9 g | 53.58 ± 0.11 e | 15.57 ± 0.00 c | 1.89 ± 0.00 c | 2.11 ± 0.00 a | 3.05 ± 0.01 b | nd | 11.17 ± 0.03 i | 11.26 ± 0.19 ab |
F1 | 24.06 ± 7.16 bc | 32.34 ± 10.41 f | 35.58 ± 1.33 b | 203 ± 0.01 i | 86.24 ± 0.17 h | 28.50 ± 0.07 f | nd | 2.68 ± 0.01 e | 3.98 ± 0.24 e | nd | 4.32 ± 0.00 d | 24.23 ± 24.74 abc |
F2 | 30.18 ± 0.13 c | 23.92 ± 0.07 bcde | 115 ± 1.83 e | 257 ± 1.14 m | 107. ± 0.21 l | 31.69 ± 0.11 h | 2.44 ± 0.00 f | 2.60 ± 0.02 d | 3.67 ± 0.00 d | nd | 6.06 ± 0.04 f | 31.47 ± 31.71 abc |
F3 | 25.34 ± 0.10 bc | 28.88 ± 0.00 def | 154 ± 4.60 g | 177 ± 0.64 h | 103 ± 1.83 k | 22.57 ± 0.03 e | nd | 3.41 ± 0.03 f | 5.68 ± 0.01 f | nd | 6.61 ± 0.03 g | 8.64 ± 0.16 a |
F4 | 6.23 ± 0.26 a | 20.71 ± 0.48 abcd | 197 ± 2.74 h | 217 ± 0.89 l | 98.16 ± 0.70 j | 38.77 ± 1.68 i | 1.97 ± 0.02 d | 2.23 ± 0.00 b | 3.15 ± 0.00 bc | nd | 4.72 ± 0.00 e | 8.37 ± 0.17 a |
F5 | 3.53 ± 4.99 a | 23.88 ± 5.31 bcde | 14.83 ± 19.19 a | 215 ± 0.54 k | 87.87 ± 0.06 i | 30.09 ± 0.12 g | 2.02 ± 0.05 d | 2.62 ± 0.00 d | 1.45 ± 0.03 a | nd | 10.55 ± 0.05 h | 7.22 ± 0.14 a |
F6 | 3.84 ± 0.39 a | 14.36 ± 0.19 a | 3.05 ± 0.08 a | 210 ± 1.11 j | 76.98 ± 0.03 g | 21.37 ± 0.02 d | 1.69 ± 0.02 a | 2.44 ± 0.02 c | 3.33 ± 0.03 c | nd | 14.68 ± 0.05 j | 7.96 ± 0.03 a |
SL0 | nd | 27.01 ± 0.18 cdef | 134 ± 0.95 f | 94.36 ± 0.49 f | 66.56 ± 0.64 f | 2.93 ± 0.06 b | 1.79 ± 0.07 b | nd | nd | 1.67 ± 0.00 a | nd | 26.07 ± 23.96 abc |
SL1 | 7.78 ± 0.49 a | 19.91 ± 0.25 abc | 56 ± 0.43 c | 42.95 ± 0.06 a | 26.21 ± 0.12 a | nd | nd | nd | nd | 1.71 ± 0.00 a | nd | 43.38 ± 0.13 c |
SL2 | 10.11 ± 0.70 a | 13.94 ± 0.03 a | 129 ± 1.70 f | 58.78 ± 0.36 c | 42.58 ± 0.46 c | 1.63 ± 0.02 a | 2.16 ± 0.02 e | nd | nd | nd | nd | 46.30 ± 0.00 c |
SL3 | 48.39 ± 5.85 d | 15.77 ± 0.39 ab | 89 ± 0.33 d | 54.40 ± 0.02 b | 32.28 ± 0.56 b | 1.86 ± 0.02 ab | nd | nd | nd | 1.93 ± 0.00 b | 1.64 ± 0.02 a | 43.27 ± 0.43 c |
SL4 | nd | 19.60 ± 0.06 abc | 187 ± 15.97 h | 83.73 ± 1.12 e | 53.98 ± 0.11 e | 1.98 ± 0.02 ab | nd | nd | nd | 2.49 ± 0.00 c | 1.94 ± 0.02 b | 45.79 ± 0.44 c |
SL5 | nd | 19.47 ± 0.33 abc | 63. ± 0.21 c | 84.13 ± 0.21 e | 47.43 ± 0.33 d | 2.21 ± 0.05 ab | nd | 2.45 ± 0.02 c | nd | 1.94 ± 0.05 b | nd | 45.68 ± 0.28 c |
SL6 | nd | 31.57 ± 0.65 ef | 89. ± 0.08 d | 78.94 ± 0.25 d | 48.44 ± 0.33 d | 2.11 ± 0.13 ab | nd | nd | 1.56 ± 0.00 a | nd | 2.33 ± 0.01 c | 39.33 ± 0.25 bc |
Code | Treatment |
---|---|
F0 | Flower/control |
F1 | Flower/black mulching; density 100 g/m2 |
F2 | Flower/green mulching; density 100 g/m2 |
F3 | Flower/brown mulching; density 100 g/m2 |
F4 | Flower/black mulching; density 80 g/m2 |
F5 | Flower/green mulching; density 80 g/m2 |
F6 | Flower brown mulching; density 80 g/m2 |
SL0 | Stem plus leaves control |
SL1 | Stem plus leaves/black mulching; density 100 g/m2 |
SL2 | Stem plus leaves/green mulching; density 100 g/m2 |
SL3 | Stem plus leaves/brown mulching; density 100 g/m2 |
SL4 | Stem plus leaves/black mulching; density 80 g/m2 |
SL5 | Stem plus leaves/green mulching; density 80 g/m2 |
SL6 | Stem plus leaves/brown mulching; density 80 g/m2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adebimpe Ojo, C.; Dziadek, K.; Sadowska, U.; Skoczylas, J.; Kopeć, A. Analytical Assessment of the Antioxidant Properties of the Coneflower (Echinacea purpurea L. Moench) Grown with Various Mulch Materials. Molecules 2024, 29, 971. https://doi.org/10.3390/molecules29050971
Adebimpe Ojo C, Dziadek K, Sadowska U, Skoczylas J, Kopeć A. Analytical Assessment of the Antioxidant Properties of the Coneflower (Echinacea purpurea L. Moench) Grown with Various Mulch Materials. Molecules. 2024; 29(5):971. https://doi.org/10.3390/molecules29050971
Chicago/Turabian StyleAdebimpe Ojo, Celestina, Kinga Dziadek, Urszula Sadowska, Joanna Skoczylas, and Aneta Kopeć. 2024. "Analytical Assessment of the Antioxidant Properties of the Coneflower (Echinacea purpurea L. Moench) Grown with Various Mulch Materials" Molecules 29, no. 5: 971. https://doi.org/10.3390/molecules29050971
APA StyleAdebimpe Ojo, C., Dziadek, K., Sadowska, U., Skoczylas, J., & Kopeć, A. (2024). Analytical Assessment of the Antioxidant Properties of the Coneflower (Echinacea purpurea L. Moench) Grown with Various Mulch Materials. Molecules, 29(5), 971. https://doi.org/10.3390/molecules29050971