Insights into ThB40: Stability, Electronic Structure, and Interaction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Stability of ThB40
2.2. Geometries and Electronic Structures
2.3. Interactions between Th and B40
2.4. Simulated IR Spectra of D2d-B40 and Th@D2d-B40
3. Calculation Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luo, M.; Xu, Y.E.; Song, Y.X. Ab initio study on nonmetal and nonmagnetic metal atoms doped arsenene. JETP Lett. 2017, 106, 434–439. [Google Scholar] [CrossRef]
- Li, M.Y.; Cui, J.B.; Zhao, Y.X.; Zhao, P.; Li, Q.Z.; Zhao, X. Unexpected diverseness on electronic density and bonding behaviours for Sc2X@C2v(63751)-C86 and Sc2X@C1(63755)-C86 (X = S and 0). Chem. Phys. Lett. 2018, 707, 93–100. [Google Scholar] [CrossRef]
- Ifthikar, J.; Shahib, I.I.; Jawad, A.; Gendy, E.A.; Wang, S.Q.; Wu, B.B.; Chen, Z.Q.; Chen, Z.L. The excursion covered for the elimination of chromate by exploring the coordination mechanisms between chromium species and various functional groups. Coord. Chem. Rev. 2021, 437, 213868. [Google Scholar] [CrossRef]
- Dimic, D.; Eichhorn, T.; Milenkovic, D.; Kaluderovic, G.N. Synthesis, Structural, and Quantum Chemical Analysis of Neutral and Cationic Ruthenium(II) Complexes with Nicotinate-Polyethylene Glycol Ester Ligands. Inorganics 2023, 11, 460. [Google Scholar] [CrossRef]
- Mato, M.; Cornella, J. Bismuth in Radical Chemistry and Catalysis. Angew. Chem. Int. Ed. 2023, 63, e202315046. [Google Scholar] [CrossRef] [PubMed]
- Weinhold, F.; Glendening, E.D. Natural resonance-theoretic conceptions of extreme electronic delocalization in soft materials. Phys. Chem. Chem. Phys. 2024, 26, 2815–2822. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, A.; Chen, Z.; Jiao, H. Spherical Aromaticity in Ih Symmetrical Fullerenes The 2(N+1)2 Rule. Angew. Chem. Int. Ed. 2000, 39, 3915–3917. [Google Scholar] [CrossRef]
- Popov, A.A.; Dunsch, L. Bonding in endohedral metallofullerenes as studied by quantum theory of atoms in molecules. Chemistry 2009, 15, 9707–9729. [Google Scholar] [CrossRef]
- Canchaya, J.G.; Wang, Y.; Alcami, M.; Martin, F.; Busnengo, H.F. Study of the interaction between short alkanethiols from ab initio calculations. Phys. Chem. Chem. Phys. 2010, 12, 7555–7565. [Google Scholar] [CrossRef]
- Rodriguez-Fortea, A.; Balch, A.L.; Poblet, J.M. Endohedral metallofullerenes: A unique host-guest association. Chem. Soc. Rev. 2011, 40, 3551–3563. [Google Scholar] [CrossRef]
- Yang, S.; Liu, F.; Chen, C.; Jiao, M.; Wei, T. Fullerenes encaging metal clusters—Clusterfullerenes. Chem. Commun. 2011, 47, 11822–11839. [Google Scholar] [CrossRef]
- Lu, X.; Feng, L.; Akasaka, T.; Nagase, S. Current status and future developments of endohedral metallofullerenes. Chem. Soc. Rev. 2012, 41, 7723–7760. [Google Scholar] [CrossRef]
- Bao, L.; Peng, P.; Lu, X. Bonding inside and outside Fullerene Cages. Acc. Chem. Res. 2018, 51, 810–815. [Google Scholar] [CrossRef] [PubMed]
- Heath, J.; O’Brien, S.; Zhang, Q.; Liu, Y.; Curl, R.; Tittel, F.; Smalley, R. Lanthanum complexes of spheroidal carbon shells. J. Am. Chem. Soc. 1985, 107, 7779–7780. [Google Scholar] [CrossRef]
- Alvarez, M.M.; Gillan, E.G.; Holczer, K.; Kaner, R.B.; Min, K.S.; Whetten, R.L. Lanthanum carbide (La2C80): A soluble dimetallofullerene. J. Phys. Chem. 1991, 95, 10561–10563. [Google Scholar] [CrossRef]
- Chai, Y.; Guo, T.; Jin, C.; Haufler, R.E.; Chibante, L.F.; Fure, J.; Wang, L.; Alford, J.M.; Smalley, R.E. Fullerenes with metals inside. J. Phys. Chem. 1991, 95, 7564–7568. [Google Scholar] [CrossRef]
- Moreno-Vicente, A.; Roselló, Y.; Chen, N.; Echegoyen, L.; Dunk, P.W.; Rodríguez-Fortea, A.; de Graaf, C.; Poblet, J.M. Are U–U Bonds Inside Fullerenes Really Unwilling Bonds? J. Am. Chem. Soc. 2023, 145, 6710–6718. [Google Scholar] [CrossRef] [PubMed]
- Li, M.Y.; Luo, X.L.; Zhao, Y.X.; Zhang, W.X.; Yuan, K.; Zhao, X. Metal Atoms (Li, Na, and K) Tuning the Configuration of Pyrrole for the Selective Recognition of C60. Inorg. Chem. 2023, 62, 4618–4624. [Google Scholar] [CrossRef]
- Jiang, H.; Yu, X.; Guo, M.; Yao, Y.-R.; Meng, Q.; Echegoyen, L.; Autschbach, J.; Chen, N. USc2C2 and USc2NC Clusters with U–C Triple Bond Character Stabilized Inside Fullerene Cages. J. Am. Chem. Soc. 2023, 145, 5645–5654. [Google Scholar] [CrossRef]
- Cai, W.; Abella, L.; Zhuang, J.; Zhang, X.; Feng, L.; Wang, Y.; Morales-Martinez, R.; Esper, R.; Boero, M.; Metta-Magana, A.; et al. Synthesis and Characterization of Non-Isolated-Pentagon-Rule Actinide Endohedral Metallofullerenes U@ C1(17418)-C76, U@C1(28324)-C80, and Th@C1(28324)-C80: Low-Symmetry Cage Selection Directed by a Tetravalent Ion. J. Am. Chem. Soc. 2018, 140, 18039–18050. [Google Scholar] [CrossRef]
- Zhao, Y.X.; Li, M.Y.; Zhao, P.; Ehara, M.; Zhao, X. New Insight into U@C80: Missing U@D3(31921)-C80 and Nuanced Enantiomers of U@C1(28324)-C80. Inorg. Chem. 2019, 58, 14159–14166. [Google Scholar] [CrossRef]
- Liu, F.; Spree, L. Molecular spinning top: Visualizing the dynamics of M3N@C80 with variable temperature single crystal X-ray diffraction. Chem. Commun. 2019, 55, 13000–13003. [Google Scholar] [CrossRef]
- Yan, Y.; Morales-Martinez, R.; Zhuang, J.; Yao, Y.R.; Li, X.; Poblet, J.M.; Rodriguez-Fortea, A.; Chen, N. Th@D5h(6)-C80: A highly symmetric fullerene cage stabilized by a single metal ion. Chem. Commun. 2021, 57, 6624–6627. [Google Scholar] [CrossRef]
- Jin, M.; Zhuang, J.; Wang, Y.; Yang, W.; Liu, X.; Chen, N. Th@Td(19151)-C76: A Highly Symmetric Fullerene Cage Stabilized by a Tetravalent Actinide Metal Ion. Inorg. Chem. 2019, 58, 16722–16726. [Google Scholar] [CrossRef]
- Shen, Y.; Yu, X.; Meng, Q.; Yao, Y.-R.; Autschbach, J.; Chen, N. ThC2@C82 versus Th@C84: Unexpected formation of triangular thorium carbide cluster inside fullerenes. Chem. Sci. 2023, 13, 12980–12986. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Morales-Martínez, R.; Zhong, J.; de Graaf, C.; Rodríguez-Fortea, A.; Poblet, J.M.; Echegoyen, L.; Feng, L.; Chen, N. U2@Ih(7)-C80: Crystallographic Characterization of a Long-Sought Dimetallic Actinide Endohedral Fullerene. J. Am. Chem. Soc. 2018, 140, 3907–3915. [Google Scholar] [CrossRef]
- Zhuang, J.; Morales-Martínez, R.; Zhang, J.; Wang, Y.; Yao, Y.R.; Pei, C.; Rodríguez-Fortea, A.; Wang, S.; Echegoyen, L.; de Graaf, C.; et al. Characterization of a strong covalent Th3+-Th3+ bond inside an Ih(7)-C80 fullerene cage. Nat. Commun. 2021, 12, 2372. [Google Scholar] [CrossRef]
- Zhao, Y.F.; Lusk, M.T.; Dillon, A.C.; Heben, M.J.; Zhang, S.B. Boron-based organometallic nanostructures: Hydrogen storage properties and structure stability. Nano Lett. 2008, 8, 157–161. [Google Scholar] [CrossRef]
- Ramachandrant, P.V.; Burghardt, T.E. Recent developments in the chiral synthesis of homoallylic amines via organoboranes. Pure Appl. Chem. 2006, 78, 1397–1406. [Google Scholar] [CrossRef]
- Bigmore, H.R.; Lawrence, S.C.; Mountford, P.; Tredget, C.S. Coordination, organometallic and related chemistry of tris(pyrazolyl) methane ligands. Dalton Transact. 2005, 1, 635–651. [Google Scholar] [CrossRef]
- Xue, K.; Li, H.Y.; Pan, L.; Li, C.J.; Zhang, X.W.; Zou, J.J. Preparation and performance characterization of functionalized boron-based energetic-microcapsules with uniform size. Chem. Eng. J. 2023, 469, 143917. [Google Scholar] [CrossRef]
- Ali, F.; Hosmane, N.S.; Zhu, Y.H. Boron Chemistry for Medical Applications. Molecules 2020, 25, 828. [Google Scholar] [CrossRef]
- Chen, W.H.; Liu, J.Y.; Sun, W.M.; He, H.M.; Yu, S.S.; Li, Y.; Li, Z.R. Metalloborospherenes with the stabilized classical fullerene-like borospherene B36 as electric field manipulated second-order nonlinear optical switches. New J. Chem. 2022, 46, 22246–22255. [Google Scholar] [CrossRef]
- Soliman, K.A.; Aal, S.A. Ti, Ni, and Cu decorated borospherene as potential molecular sensor for phosgene. Mat. Sci. Semicon. Proc. 2022, 144, 106574. [Google Scholar] [CrossRef]
- Pei, L.; Zhang, L.J.; Li, D.Z. Theoretical study on exohedral complexes C6H6TMB40 (TM = Sc-Ni). Phys. Chem. Chem. Phys. 2022, 24, 21794–21799. [Google Scholar] [CrossRef]
- Kaur, H.; Kaur, J.; Kumar, R. Comparative study of symmetrical and asymmetrical B40 molecular junctions. J. Comput. Electron 2022, 21, 599–607. [Google Scholar] [CrossRef]
- Chinnalagu, D.K.; Murugesan, B.; Arumugam, M.; Chinniah, K.; Ganesan, S.; Cai, Y.R.; Mahalingam, S. Fabrication of 2D-Borophene nanosheets anchored S, N-mesoporous carbon nanocomposite (SNC-Bp//SNC-Bp) symmetric device for high-performance supercapacitor application. J. Energy Storage 2023, 74, 109328. [Google Scholar] [CrossRef]
- Wang, L.S. Photoelectron spectroscopy of size-selected boron clusters: From planar structures to borophenes and borospherenes. Int. Rev. Phys. Chem. 2016, 35, 69–142. [Google Scholar] [CrossRef]
- Zhai, H.J.; Zhao, Y.F.; Li, W.L.; Chen, Q.; Bai, H.; Hu, H.S.; Piazza, Z.A.; Tian, W.J.; Lu, H.G.; Wu, Y.B.; et al. Observation of an all-boron fullerene. Nat. Chem. 2014, 6, 727–731. [Google Scholar] [CrossRef]
- Yan, Q.Q.; Zhao, X.; Zhang, T.; Li, S.D. Perfect Core-Shell Octahedral B@B38+, Be@B38, and Zn@B38 with an Octa-Coordinate Center as Superatoms Following the Octet Rule. ChemPhysChem 2023, 24, e202200947. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, M.; Lu, X.-Q.; Yan, Q.-Q.; Zhao, X.-N.; Li, S.-D. Sc@B28−, Ti@B28, V@B28+, and V@B292−: Spherically Aromatic Endohedral Seashell-like Metallo-Borospherenes. Molecules 2023, 28, 3892. [Google Scholar] [CrossRef]
- Müller, M.; Hansen, A.; Grimme, S. An atom-in-molecule adaptive polarized valence single-ζ atomic orbital basis for electronic structure calculations. J. Chem. Phys. 2023, 159, 164108. [Google Scholar] [CrossRef]
- Ishihara, M.; Hatano, H.; Kawase, M.; Sakagami, H. Estimation of Relationship Between the Structure of 1,2,3,4-Tetrahydroisoquinoline Derivatives Determined by a Semiempirical Molecular-Orbital Method and their Cytotoxicity. Anticancer Res. 2009, 29, 2265–2271. [Google Scholar]
- Conradie, M.M.; Conradie, J.; Ghosh, A. Capturing the spin state diversity of iron(III)-aryl porphyrins OLYP is better than TPSSh. J. Inorg. Biochem. 2011, 105, 84–91. [Google Scholar] [CrossRef]
- Jensen, K.P. Bioinorganic Chemistry Modeled with the TPSSh Density Functional. Inorg. Chem. 2008, 47, 10357–10365. [Google Scholar] [CrossRef]
- Fa, W.; Chen, S.; Pande, S.; Zeng, X.C. Stability of Metal-Encapsulating Boron Fullerene B40. J. Phys. Chem. A 2015, 119, 11208–11214. [Google Scholar] [CrossRef]
- Zhao, P.; Ehara, M. Theoretical Insights into Monometallofullerene Th@C76: Strong Covalent Interaction between Thorium and the Carbon Cage. Inorg. Chem. 2018, 57, 2961–2964. [Google Scholar] [CrossRef]
- Muñoz-Castro, A.; King, R.B. Th@C86, Th@C82, Th@C80, and Th@C76: Role of thorium encapsulation in determining spherical aromatic and bonding properties on medium-sized endohedral metallofullerenes. Phys. Chem. Chem. Phys. 2020, 22, 23920–23928. [Google Scholar] [CrossRef]
- Bridgeman, A.J.; Cavigliasso, G.; Ireland, L.R.; Rothery, J. The Mayer bond order as a tool in inorganic chemistry. J. Chem. Soc. Dalton 2001, 1, 2095–2108. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F.W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Cao, H.; Han, X.Y.; Wu, H.Y. Efficient atom-molecule conversion in Bose-Einstein condensates based on nonlinear dressed-state scheme. Chaos Soliton Fract. 2023, 174, 113882. [Google Scholar] [CrossRef]
- Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Petersson, G.; Nakatsuji, H. Gaussian 16, Revision C.01; Gaussian Inc.: Wallingford, CT, USA, 2019. [Google Scholar]
- Prascher, B.P.; Woon, D.E.; Peterson, K.A.; Dunning, T.H.; Wilson, A.K. Gaussian basis sets for use in correlated molecular calculations. VII. Valence, core-valence, and scalar relativistic basis sets for Li, Be, Na, and Mg. Theor. Chem. Acc. 2011, 128, 69–82. [Google Scholar] [CrossRef]
- Woon, D.E.; Dunning, T.H. Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys. 1993, 98, 1358–1371. [Google Scholar] [CrossRef]
- Glendening, E.D.; Landis, C.R.; Weinhold, F. Natural bond orbital methods. WIR Comput. Mol. Sci. 2012, 2, 1–42. [Google Scholar] [CrossRef]
Isomers | ΔE (kcal/mol) | Gap (eV) | Isomers | ΔE (kcal/mol) | Gap (eV) |
---|---|---|---|---|---|
three2-Th@D2d-B40 | 0.0 | 0.80 | hexa1-Th@Cs-B40 | 64.2 | 0.86 |
hepta-Th@D2d-B40 | 0.0 | 0.80 | Th@Cs-B40 | 66.6 | 1.0 |
three-Th@D2d-B40 | 0.0 | 0.80 | three-Th@Cs-B40 | 80.9 | 0.87 |
two-Th@D2d-B40 | 0.0 | 0.80 | hexa2-Th@Cs-B40 | 91.7 | 0.97 |
center-Th@D2d-B40 | 0.0 | 0.80 | - | - | - |
hexa-Th@D2d-B40 | 0.0 | 0.80 | - | - | - |
hexa2-Th@D2d-B40 | 84.2 | 0.98 | - | - | - |
hexa3-Th@D2d-B40 | 91.6 | 1.12 | - | - | - |
Atoms | Populations |
---|---|
Th | 7s0.015f0.376d0.147p0.528s0.19 |
B | 2s0.532p2.453s0.013p0.02 |
Bonds | Mayer Bond Order | Bond Length |
---|---|---|
Th-B7 | 0.342 | 2.94 |
Th-B10 | 0.269 | 3.26 |
Th-B17 | 0.342 | 2.94 |
Th-B32 | 0.290 | 2.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Wang, Y.; Zhou, Z.; Gao, Y.; Chen, Y.; Zhang, G.; Ma, C. Insights into ThB40: Stability, Electronic Structure, and Interaction. Molecules 2024, 29, 1222. https://doi.org/10.3390/molecules29061222
Li Y, Wang Y, Zhou Z, Gao Y, Chen Y, Zhang G, Ma C. Insights into ThB40: Stability, Electronic Structure, and Interaction. Molecules. 2024; 29(6):1222. https://doi.org/10.3390/molecules29061222
Chicago/Turabian StyleLi, Yutian, Yingying Wang, Zhanrong Zhou, Yang Gao, Yiming Chen, Guoqing Zhang, and Chao Ma. 2024. "Insights into ThB40: Stability, Electronic Structure, and Interaction" Molecules 29, no. 6: 1222. https://doi.org/10.3390/molecules29061222
APA StyleLi, Y., Wang, Y., Zhou, Z., Gao, Y., Chen, Y., Zhang, G., & Ma, C. (2024). Insights into ThB40: Stability, Electronic Structure, and Interaction. Molecules, 29(6), 1222. https://doi.org/10.3390/molecules29061222