Multi-Component Syntheses of Spiro[furan-2,3′-indoline]-3-carboxylate Derivatives Using Ionic Liquid Catalysts
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of the Reaction Conditions
2.2. Mechanistic Considerations
2.3. Studying the Substrate Scope
3. Conclusions
4. Materials and Methods
4.1. Reagents
4.2. Instrumentation
4.3. General Procedure for the Syntheses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Q.; Hu, Y.; Li, S.; Zhang, M.; Wang, Y.; Wang, Z.; Peng, Y.; Wang, M.; Li, X.; Pan, H. Recent advances in supported acid/base ionic liquids as catalysts for biodiesel production. Front. Chem. 2022, 10, 999607. [Google Scholar] [CrossRef]
- Ren, C.; Wang, Z.; Gao, Q.; Li, J.; Jiang, S.; Huang, Q.; Yang, Y.; Zhang, J.; Wang, Y.; Hu, Y.; et al. Novel Brønsted Acidic Ionic Liquids as High Efficiency Catalysts for Liquid-Phase Beckmann Rearrangement. Catalysts 2023, 13, 978. [Google Scholar] [CrossRef]
- Vekariya, R.L. A review of ionic liquids: Applications towards catalytic organic transformations. J. Mol. Liquids 2017, 227, 44–60. [Google Scholar] [CrossRef]
- MacFarlane, D.R. Introduction: Ionic Liquids. Chem. Rev. 2017, 117, 6633–6635. [Google Scholar] [CrossRef]
- Steinrück, H.-P.; Wasserscheid, P. Ionic Liquids in Catalysis. Catal. Lett. 2015, 145, 380–397. [Google Scholar] [CrossRef]
- Kayukova, L.; Vologzhanina, A.; Dorovatovskii, P.; Yergaliyeva, E.; Uzakova, A.; Duisenali, A. N-N(+) Bond-Forming Intramolecular Cyclization of O-Tosyloxy-Aminopropioamidoximes and Ion Exchange Reaction for the Synthesis of 2-Aminospiropyrazolilammonium Chlorides and Hexafluorophosphates. Int. J. Mol. Sci. 2023, 24, 11315. [Google Scholar] [CrossRef] [PubMed]
- Ni, H.; Zhang, Y.; Zong, C.; Hou, Z.; Song, H.; Chen, Y.; Liu, X.; Xu, T.; Luo, Y. Synthesis of Tropine-Based Functionalized Acidic Ionic Liquids and Catalysis of Esterification. Int. J. Mol. Sci. 2022, 23, 12877. [Google Scholar] [CrossRef]
- Skoda-Földes, R. The Use of Supported Acidic Ionic Liquids in Organic Synthesis. Molecules 2014, 19, 8840–8884. [Google Scholar] [CrossRef]
- Mao, B.; Fañanás-Mastral, M.; Feringa, B.L. Catalytic Asymmetric Synthesis of Butenolides and Butyrolactones. Chem. Rev. 2017, 117, 10502–10566. [Google Scholar] [CrossRef]
- Tadiparthi, K.; Venkatesh, S. Synthetic approaches toward butenolide-containing natural products. J. Heterocyclic Chem. 2022, 59, 1285–1307. [Google Scholar] [CrossRef]
- Madhavachary, R.; Mallik, R.; Ramachary, D.B. Organocatalytic Enantiospecific Total Synthesis of Butenolides. Molecules 2021, 26, 4320. [Google Scholar] [CrossRef]
- Gil-Ordóñez, M.; Maestro, A.; Andrés, J.M. Access to Spiropyrazolone-butenolides through NHC-Catalyzed [3+2]-Asymmetric Annulation of 3-Bromoenals and 1H-Pyrazol-4,5-diones. J. Org. Chem. 2023, 88, 6890–6900. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wu, J.; Cheng, H.; Zhong, C.; He, Z.-L. N-Heterocyclic Carbene Catalyzed [3+2] Annulations of β-Halocycloenals with Isatins and Mechanism Study. Eur. J. Org. Chem. 2021, 2021, 983–989. [Google Scholar] [CrossRef]
- Mandal, S.; Thirupathi, B. Strategies for the construction of γ-spirocyclic butenolides in natural product synthesis. Org. Biomol. Chem. 2020, 18, 5287–5314. [Google Scholar] [CrossRef]
- Murauski, K.J.R.; Jaworski, A.A.; Scheidt, K.A. A Continuing Challenge: N-Heterocyclic Carbene Catalyzed Syntheses of γ-Butyrolactones. Chem. Soc. Rev. 2018, 47, 1773–1782. [Google Scholar] [CrossRef]
- Dugal-Tessier, J.; O’Bryan, E.A.; Schroeder, T.B.H.; Cohen, D.T.; Scheidt, K.A. An N-Heterocyclic Carbene/Lewis Acid Strategy for the Stereoselective Synthesis of Spirooxindole Lactones. Angew. Chem. Int. Ed. 2012, 51, 4963–4967. [Google Scholar] [CrossRef]
- Saidachary, G.; Raju, B.C. Carbohydrate-Based Studies Toward the Synthesis of Hamigeromycin E: A Stereoselective Total Synthesis of an Isomer of Zeaenol. Helv. Chim. Acta 2016, 99, 425–435. [Google Scholar] [CrossRef]
- Schünemann, K.; Furkert, D.P.; Choi, E.C.; Connelly, S.; Fraser, J.D.; Sperry, J.; Brimble, M.A. Synthesis of the 2-methylene analogue of the HRV 3C protease inhibitor thysanone (2-carbathysanone). Org. Biomol. Chem. 2014, 12, 905–912. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, T.; Tabata, Y.; Suzuki, H. Silver-catalyzed ring-opening [3+2] annulation of cyclopropenones with amides. New J. Chem. 2018, 42, 19178–19182. [Google Scholar] [CrossRef]
- Nguyen, S.S.; Ferreira, A.J.; Long, Z.G.; Heiss, T.K.; Dorn, R.S.; Row, R.D.; Prescher, J.A. Butenolide Synthesis from Functionalized Cyclopropenones. Org. Lett. 2019, 21, 8695–8699. [Google Scholar] [CrossRef]
- Sakharov, P.A.; Rostovskii, N.V.; Khlebnikov, A.F.; Novikov, M.S. Regiodivergent Synthesis of Butenolide-Based α- and β-Amino Acid Derivatives via Base-Controlled Azirine Ring Expansion. Org. Lett. 2020, 22, 3023–3027. [Google Scholar] [CrossRef] [PubMed]
- Uchida, T.; Katsuki, T. Cationic Co(III)(salen)-Catalyzed Enantioselective Baeyer−Villiger Oxidation of 3-Arylcyclobutanones Using Hydrogen Peroxide as a Terminal Oxidant. Tetrahedron Lett. 2001, 42, 6911–6914. [Google Scholar] [CrossRef]
- Beck, B.; Magnin-Lachaux, M.; Herdtweck, E.; Dömling, A. A novel three-component butenolide synthesis. Org. Lett. 2001, 3, 2875–2878. [Google Scholar] [CrossRef] [PubMed]
- Jusseau, X.; Chabaud, L.; Guillou, C. Synthesis of γ-butenolides and α,β-unsaturated γ-butyrolactams by addition of vinylogous nucleophiles to Michael acceptors. Tetrahedron 2014, 70, 2595–2615. [Google Scholar] [CrossRef]
- Carter, N.B.; Nadany, A.E.; Sweeney, J.B. Recent developments in the synthesis of furan-2(5H)-ones. J. Chem. Soc. Perkin Trans. 2002, 2002, 2324–2342. [Google Scholar] [CrossRef]
- Murthy, S.N.; Madhav, B.; Kumar, A.V.; Rao, K.R.; Nageswar, Y.V.D. Facile and efficient synthesis of 3,4,5-substituted furan-2(5H)-ones by using β-cyclodextrin as reusable catalyst. Tetrahedron 2009, 65, 5251–5256. [Google Scholar] [CrossRef]
- Nagarapu, L.; Kumar, U.N.; Upendra, P.; Bantu, R. Simple convenient method for the synthesis of substituted furan-2(5H)-one derivatives using tin(II) chloride. Synth. Commun. 2012, 42, 2139–2148. [Google Scholar] [CrossRef]
- Safaei-Ghomi, J.; Heidari-Baghbahadorani, E.; Shahbazi-Alavi, H. SnO nanoparticles: A robust and reusable heterogeneous catalyst for the synthesis of 3,4,5-substituted furan-2(5H)-ones. Monatsh. Chem. 2015, 146, 181–186. [Google Scholar] [CrossRef]
- Tekale, S.U.; Kauthale, S.S.; Pagore, V.P.; Jadhav, V.B.; Pawar, R.P. ZnO nanoparticle-catalyzed efficient one-pot three-component synthesis of 3,4,5-trisubstituted furan-2(5H)-ones. J. Iran. Chem. Soc. 2013, 10, 1271–1277. [Google Scholar] [CrossRef]
- Ghashang, M.; Janghorban, S.; Roudbaraki, S.J. Synthesis of 3,4,5-substituted furan-2(5H)-ones using Al-doped ZnO nanostructure. Res. Chem. Intermed. 2018, 44, 5013–5029. [Google Scholar] [CrossRef]
- Safaei-Ghomi, J.; Hatami, A.; Shahbazi-Alavi, H. A Highly Flexible Green Synthesis of 3,4,5-Substituted Furan-2(5H)-ones Using Nano-CdZr4(PO4)6 as Catalyst under Microwave Irradiation. Polycycl. Aromat. Compd. 2017, 37, 407–414. [Google Scholar] [CrossRef]
- Doostmohammadi, R.; Hazeri, N. Application of silica gel-supported polyphosphoric acid (PPA/SiO2) as a reusable solid acid catalyst for one-pot multi-component synthesis of 3,4,5-substituted furan-2(5H)-ones. Lett. Org. Chem. 2013, 10, 199–203. [Google Scholar] [CrossRef]
- Bahramian, F.; Fazlinia, A.; Mansoor, S.S.; Ghashang, M.; Azimi, F.; Biregan, M.N. Preparation of 3,4,5-substituted furan-2 (5H)-ones using HY Zeolite nano-powder as an efficient catalyst. Res. Chem. Intermed. 2016, 42, 6501–6510. [Google Scholar] [CrossRef]
- Shafiee, M.R.M.; Mansoor, S.S.; Ghashang, M.; Fazlinia, A. Preparation of 3,4,5-substituted furan-2(5H)-ones using aluminum hydrogen sulfate as an efficient catalyst. C. R. Chim. 2014, 17, 131–134. [Google Scholar] [CrossRef]
- Doostmohammadi, R.; Maghsoodlou, M.T.; Hazeri, N.; Habibi-Khorassani, S.M. An efficient one-pot multi-component synthesis of 3,4,5-substituted furan-2(5H)-ones catalyzed by tetra-n-butylammonium bisulfate. Chin. Chem. Lett. 2013, 24, 901–903. [Google Scholar] [CrossRef]
- Salahi, S.; Maghsoodlou, M.T.; Hazeri, N.; Movahedifar, F.; Doostmohammadi, R.; Lashkari, M. Acidic ionic liquid N-methyl 2-pyrrolidonium hydrogen sulfate as an efficient catalyst for the one-pot multicomponent preparation of 3,4,5-substituted furan-2(5H)-ones. Res. Chem. Intermed. 2015, 41, 6477–6483. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, J.; Guo, Y.; Feng, L.; Wei, S.; Chen, S. Producing Fatty Acid Methyl Esters from Free Fatty Acids with Ionic Liquids as Catalyst. Chem. Eng. Technol. 2019, 42, 174–181. [Google Scholar] [CrossRef]
- Dukhande, V.A.; Choksi, T.S.; Sabnis, S.U.; Patwardhan, A.W.; Patwardhan, A.V. Separation of toluene from n-heptane using monocationic and dicationic ionic liquids. Fluid Phase Equilib. 2013, 342, 75–81. [Google Scholar] [CrossRef]
- Xiong, W.-M.; Zhu, M.-Z.; Deng, L.; Fu, Y.; Guo, Q.-X. Esterification of Organic Acid in Bio-Oil using Acidic Ionic Liquid Catalysts. Energy Fuels 2009, 23, 2278–2283. [Google Scholar] [CrossRef]
- Lunagariya, J.; Dhar, A.; Vekariy, R.L. Efficient esterification of n-butanol with acetic acid catalyzed by the Brønsted acidic ionic liquids: Influence of acidity. RSC Adv. 2017, 7, 5412–5420. [Google Scholar] [CrossRef]
- Khalaj, M.; Taherkhani, M.; Payen, L.; Klein, A. A Sulfonic Acid Polyvinyl Pyridinium Ionic Liquid Catalyzes the Multi-Component Synthesis of Spiro-indoline-3,5-pyrano[2,3-d]-pyrimidines and -Pyrazines. Molecules 2023, 28, 3663. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, Y.; Li, C.; Jie, H.; Jia, X. Atom-economical synthesis of the functionalized spirocyclic oxindole-butenolide via three-component [2+2+1] cycloaddition strategy. Green Chem. 2012, 14, 1314–1321. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Li, C.; Jia, X. Syntheses of Spirocyclic Oxindole-Butenolides by Using Three-Component Cycloadditions of Isocyanides, Allenoates, and Isatins. Chem. Eur. J. 2011, 17, 7409–7413. [Google Scholar] [CrossRef] [PubMed]
- Yavari, I.; Hossaini, Z.; Sabbaghan, M.; Ghazanfarpour-Darjani, M. Efficient synthesis of functionalized spiro-2,5-dihydro-1,2-λ5-oxaphospholes. Tetrahedron 2007, 63, 9423–9428. [Google Scholar] [CrossRef]
Conditions | Cat1 | Cat2 |
---|---|---|
Time (h)/Yield (%) | Time (h)/Yield (%) | |
EtOH; US; Cat.: none; T (°C): r.t. | 24/No product formed | 24/No product formed |
EtOH; US; Cat.: 30 mol%; T (°C): r.t. | 24/No product formed | 24/No product formed |
EtOH; US; Cat.: 30 mol%; T (°C): Reflux | 3/96 | 3/88 |
n-Hexane; US; Cat.: 30 mol%; T (°C): Reflux | 24/No product formed | 24/No product formed |
CH2Cl2; US; Cat.: 30 mol%; T (°C): Reflux | 24/No product formed | 24/No product formed |
Et2O; US; Cat.: 30 mol%; T (°C): Reflux | 24/No product formed | 24/No product formed |
EtOAc; US; Cat.: 30 mol%; T (°C): Reflux | 7/18 | 7/22 |
MeOH; US; Cat.: 30 mol%; T (°C): Reflux | 4/66 | 4/61 |
H2O; US; Cat.: 30 mol%; T (°C): Reflux | 5/31 | 5/45 |
Toluene; US; Cat.: 30 mol%; T (°C): Reflux | 4/23 | 4/32 |
DMF; US; Cat.: 30 mol%; T (°C): Reflux | 4/61 | 4/66 |
EtOH; US; Cat.: 5 mol%; T (°C): Reflux | 3/26 | 3/18 |
EtOH; US; Cat.: 10 mol%; T (°C): Reflux | 3/46 | 3/51 |
EtOH; US; Cat.: 20 mol%; T (°C): Reflux | 3/76 | 3/79 |
EtOH; US; Cat.: 40 mol%; T (°C): Reflux | 3/95 | 3/86 |
EtOH; US; Cat.: 50 mol%; T (°C): Reflux | 3/94 | 3/87 |
EtOH; US; Cat.: 30 mol% H2SO4; T (°C): Reflux | 3/No product formed b | |
EtOH; US; Cat.: 30 mol%; HOAc; T (°C): Reflux | 3/No product formed b |
Product | Substrate | Anilines | (Cat1) | (Cat2) | m.p. (°C) |
---|---|---|---|---|---|
Time (h)/Yield (%) b | Time (h)/Yield (%) b | ||||
1a | aniline | 3/96 | 3/88 | 219–221 | |
2a | 4-methylaniline | 2.5/98 | 2.5/85 | 223–225 | |
3a | 4-chloroaniline | 5/85 | 5/80 | 245–247 | |
4a | 4-methoxyaniline | 2.5/98 | 2.5/90 | 236–238 | |
5a | 3,5-dimethylaniline | 2/97 | 2/92 | 249–251 | |
6a | 3,4-dimethylaniline | 2/96 | 2/90 | 247–249 | |
7a | 3,5-dimethoxyaniline | 2/93 | 2/96 | 255–257 | |
8a | 4-ethylaniline | 2.5/94 | 2.5/93 | 231–233 | |
9a | 4-methylaniline | 3.5/91 | 4/89 | 261–263 | |
10a | 4-chloroaniline | 5/95 | 7/90 | 271–273 | |
11a | 4-methoxyaniline | 3/96 | 3.5/91 | 277–279 | |
12a | 4-methylaniline | 2.5/94 | 2.5/92 | 281–283 | |
13a | 4-chloroaniline | 5/95 | 5/93 | 278–280 | |
14a | 4-methoxyaniline | 3.5/91 | 3.5/91 | 272–274 | |
15a | 4-ethylaniline | 4/96 | 4/93 | 275–277 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalaj, M.; Zarandi, M.; Samadi Kazemi, M.; Musavi, S.M.; Hohnsen, J.; Klein, A. Multi-Component Syntheses of Spiro[furan-2,3′-indoline]-3-carboxylate Derivatives Using Ionic Liquid Catalysts. Molecules 2024, 29, 1223. https://doi.org/10.3390/molecules29061223
Khalaj M, Zarandi M, Samadi Kazemi M, Musavi SM, Hohnsen J, Klein A. Multi-Component Syntheses of Spiro[furan-2,3′-indoline]-3-carboxylate Derivatives Using Ionic Liquid Catalysts. Molecules. 2024; 29(6):1223. https://doi.org/10.3390/molecules29061223
Chicago/Turabian StyleKhalaj, Mehdi, Maryam Zarandi, Malihe Samadi Kazemi, Seyed Mahmoud Musavi, Johannes Hohnsen, and Axel Klein. 2024. "Multi-Component Syntheses of Spiro[furan-2,3′-indoline]-3-carboxylate Derivatives Using Ionic Liquid Catalysts" Molecules 29, no. 6: 1223. https://doi.org/10.3390/molecules29061223
APA StyleKhalaj, M., Zarandi, M., Samadi Kazemi, M., Musavi, S. M., Hohnsen, J., & Klein, A. (2024). Multi-Component Syntheses of Spiro[furan-2,3′-indoline]-3-carboxylate Derivatives Using Ionic Liquid Catalysts. Molecules, 29(6), 1223. https://doi.org/10.3390/molecules29061223