Essential Oil Compounds in Combination with Conventional Antibiotics for Dermatology
Abstract
:1. Introduction
2. Results and Discussion
2.1. Antimicrobial Analysis
2.2. Combinations
2.3. Toxicity Analysis
2.4. Selectivity Index
3. Materials and Methods
3.1. Preparation of Cultures
3.2. Antimicrobial Agents and Essential Oil Compounds
3.3. Minimum Inhibitory Concentration (MIC)
3.4. Interactive Profiles
3.5. Varied Ratio Combinations
3.6. Toxicity Studies
3.7. Selectivity Index (SI)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EO | Essential oil |
EOC | Essential oil compound |
FIC | Fractional inhibitory concentration |
LC | Lethal concentration |
SI | Selectivity index |
References
- Ki, V.; Rotstein, C. Bacterial skin and soft tissue infections in adults: A review of their epidemiology, pathogenesis, diagnosis, treatment and site of care. Can. J. Infect. Dis. Med. Microbiol. 2008, 19, 173–184. [Google Scholar] [CrossRef]
- Tognetti, L.; Martinelli, C.; Berti, S.; Hercogova, J.; Lotti, T.; Leoncini, F.; Moretti, S. Bacterial skin and soft tissue infections: Review of the epidemiology, microbiology, aetiopathogenesis and treatment: A collaboration between dermatologists and infectivologists. J. Eur. Acad. Dermatol. Venereol. 2012, 26, 931–941. [Google Scholar] [CrossRef]
- Kaye, K.S.; Petty, L.A.; Shorr, A.F.; Zilberberg, M.D. Current epidemiology, etiology, and burden of acute skin infections in the United States. Clin. Infect. Dis. 2019, 68, S193–S199. [Google Scholar] [CrossRef]
- Vale de Macedo, G.H.R.; Costa, G.D.E.; Oliveira, E.R.; Damasceno, G.V.; Mendonça, J.S.P.; Silva, L.d.S.; Chagas, V.L.; Bazán, J.M.N.; Aliança, A.S.d.S.; Miranda, R.d.C.M.d.; et al. Interplay between ESKAPE pathogens and immunity in skin infections: An overview of the major determinants of virulence and antibiotic resistance. Pathogens 2021, 10, 148. [Google Scholar] [CrossRef]
- Poulakou, G.; Lagou, S.; Tsiodras, S. What’s new in the epidemiology of skin and soft tissue infections in 2018? Curr. Opin. Infect. Dis. 2019, 32, 77–86. [Google Scholar] [CrossRef]
- Esposito, S.; Bassetti, M.; Concia, E.; De Simone, G.; De Rosa, F.G.; Grossi, P.; Novelli, A.; Menichetti, F.; Petrosillo, N.; Tinelli, M. Diagnosis and management of skin and soft-tissue infections (SSTI). A literature review and consensus statement: An update. J. Chemother. 2017, 29, 197–214. [Google Scholar] [CrossRef]
- Muhaj, F.F.; George, S.J.; Tyring, S.K. Bacterial antimicrobial resistance and dermatological ramifications. Br. J. Dermatol. 2022, 187, 12–20. [Google Scholar] [CrossRef]
- Khare, T.; Anand, U.; Dey, A.; Assaraf, Y.G.; Chen, Z.-S.; Liu, Z.; Kumar, V. Exploring phytochemicals for combating antibiotic resistance in microbial pathogens. Front. Pharmacol. 2021, 12, 720–726. [Google Scholar] [CrossRef]
- Larsson, D.G.J.; Flach, C.-F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 2022, 20, 257–269. [Google Scholar] [CrossRef]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Oliveira, D.M.P.D.; Forde, B.M.; Kidd, T.J.; Harris, P.N.A.; Schembri, M.A.; Beatson, S.A.; Paterson, D.L.; Walker, M.J. Antimicrobial resistance in ESKAPE pathogens. Clin. Microbiol. Rev. 2020, 33, e00181–e00190. [Google Scholar] [CrossRef] [PubMed]
- Pfalzgraff, A.; Brandenburg, K.; Weindl, G. Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds. Front. Pharmacol. 2018, 9, 281. [Google Scholar] [CrossRef] [PubMed]
- Nandhini, P.; Kumar, P.; Mickymaray, S.; Alothaim, A.S.; Somasundaram, J.; Rajan, M. Recent developments in methicillin-resistant Staphylococcus aureus (MRSA) treatment: A review. Antibiotics 2022, 11, 606. [Google Scholar] [CrossRef] [PubMed]
- Xie, R.; Zhang, X.D.; Zhao, Q.; Peng, B.; Zheng, J. Analysis of global prevalence of antibiotic resistance in Acinetobacter baumannii infections disclosed a faster increase in OECD countries. Emerg. Microbes Infect. 2018, 7, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, D.L.N.; Costa, F.M.R.d.; Silva, W.M.d.; Aburjaile, F.; Azevedo, V. Acinetobacter baumannii and its relationship to carbapenem resistance: A meta-analysis. Bacteria 2022, 1, 112–120. [Google Scholar] [CrossRef]
- Tayyaba, U.; Ahmed, S. Epidemiology and prevalence of beta-lactamases and recent resistance pattern in Gram-negative bacteria from environmental reservoirs. In Beta-Lactam Resistance in Gram-Negative Bacteria; Shahid, M., Hiba Sami, A.S., Eds.; Springer: Singapore, 2022; Volume 1, pp. 219–236. [Google Scholar]
- Horcajada, J.P.; Montero, M.; Oliver, A.; Sorlí, L.; Luque, S.; Gómez-Zorrilla, S.; Benito, N.; Grau, S. Epidemiology and treatment of multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa infections. Clin. Microbiol. Rev. 2019, 32, e00031–e00119. [Google Scholar] [CrossRef] [PubMed]
- Arendrup, M.C.; Patterson, T.F. Multidrug-resistant Candida: Epidemiology, molecular mechanisms, and treatment. J. Infect. Dis. 2017, 216 (Suppl. 3), S445–S451. [Google Scholar] [CrossRef]
- Gow, N.A.; Johnson, C.; Berman, J.; Coste, A.T.; Cuomo, C.A.; Perlin, D.S.; Bicanic, T.; Harrison, T.S.; Wiederhold, N.; Bromley, M. The importance of antimicrobial resistance in medical mycology. Nat. Commun. 2022, 13, 5352. [Google Scholar] [CrossRef]
- Fisher, M.C.; Alastruey-Izquierdo, A.; Berman, J.; Bicanic, T.; Bignell, E.M.; Bowyer, P.; Bromley, M.; Brüggemann, R.; Garber, G.; Cornely, O.A. Tackling the emerging threat of antifungal resistance to human health. Nat. Rev. Microbiol. 2022, 20, 557–571. [Google Scholar] [CrossRef]
- Rayens, E.; Norris, K.A. Prevalence and healthcare burden of fungal infections in the United States, 2018. Open Forum Infect. Dis. 2022, 9, 593. [Google Scholar] [CrossRef]
- Owen, L.; Laird, K. Synchronous application of antibiotics and essential oils: Dual mechanisms of action as a potential solution to antibiotic resistance. Crit. Rev. Microbiol. 2018, 44, 414–435. [Google Scholar] [CrossRef]
- Ju, J.; Xie, Y.; Yu, H.; Guo, Y.; Cheng, Y.; Qian, H.; Yao, W. Synergistic interactions of plant essential oils with antimicrobial agents: A new antimicrobial therapy. Crit. Rev. Food Sci. Nutr. 2022, 62, 1740–1751. [Google Scholar] [CrossRef]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Suganya, T.; Packiavathy, I.A.S.V.; Aseervatham, G.; Carmona, A.; Rashmi, V.; Mariappan, S.; Devi, N.R.; Ananth, D.A. Tackling multiple-drug-resistant bacteria with conventional and complex phytochemicals. Front. Cell. Infect. Microbiol. 2022, 12, 671. [Google Scholar] [CrossRef]
- Dias, K.; Miranda, G.; Bessa, J.; Araújo, A.; Freitas, P.; Almeida, R.; Paulo, C.; Neto, J.; Coutinho, H.; Ribeiro-Filho, J. Terpenes as bacterial efflux pump inhibitors: A systematic review. Front. Pharmacol. 2022, 13, 953–982. [Google Scholar] [CrossRef]
- Dorman, H.J.D.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000, 88, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Kalemba, D.; Kunicka, A. Antibacterial and antifungal properties of essential oils. Curr. Med. Chem. 2003, 10, 813–829. [Google Scholar] [CrossRef]
- Kumar, V.; Yasmeen, N.; Pandey, A.; Ahmad Chaudhary, A.; Alawam, A.S.; Ahmad Rudayni, H.; Islam, A.; Lakhawat, S.S.; Sharma, P.K.; Shahid, M. Antibiotic adjuvants: Synergistic tool to combat multi-drug resistant pathogens. Front. Cell. Infect. Microbiol. 2023, 13, 1293633. [Google Scholar] [CrossRef] [PubMed]
- Hemaiswarya, S.; Kruthiventi, A.K.; Doble, M. Synergism between natural products and antibiotics against infectious diseases. Phytomedicine 2008, 15, 639–652. [Google Scholar] [CrossRef] [PubMed]
- Langeveld, W.T.; Veldhuizen, E.J.; Burt, S.A. Synergy between essential oil components and antibiotics: A review. Crit. Rev. Microbiol. 2014, 40, 76–94. [Google Scholar] [CrossRef] [PubMed]
- Tyers, M.; Wright, G.D. Drug combinations: A strategy to extend the life of antibiotics in the 21st century. Nat. Rev. Microbiol 2019, 17, 141–155. [Google Scholar] [CrossRef]
- Hemaiswarya, S.; Doble, M. Synergistic interaction of eugenol with antibiotics against Gram negative bacteria. Phytomedicine 2009, 16, 997–1005. [Google Scholar] [CrossRef] [PubMed]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils-a review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, C.; Fuentes, A.; Barat, J.M.; Ruiz, M.J. Relevant essential oil components: A minireview on increasing applications and potential toxicity. Toxicol. Mech. Methods 2021, 31, 559–565. [Google Scholar] [CrossRef]
- Moola, S.; Orchard, A.; van Vuuren, S. The antimicrobial and toxicity influence of six carrier oils on essential oil compounds. Molecules 2022, 28, 30. [Google Scholar] [CrossRef] [PubMed]
- Wojtunik-Kulesza, K.A. Toxicity of selected monoterpenes and essential oils rich in these compounds. Molecules 2022, 27, 1716. [Google Scholar] [CrossRef] [PubMed]
- Lahmar, A.; Bedoui, A.; Mokdad-Bzeouich, I.; Dhaouifi, Z.; Kalboussi, Z.; Cheraif, I.; Ghedira, K.; Chekir-Ghedira, L. Reversal of resistance in bacteria underlies synergistic effect of essential oils with conventional antibiotics. Microb. Pathog. 2017, 106, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Göger, G.; Demirci, B.; Ilgın, S.; Demirci, F. Antimicrobial and toxicity profiles evaluation of the Chamomile (Matricaria recutita L.) essential oil combination with standard antimicrobial agents. Ind. Crops Prod. 2018, 120, 279–285. [Google Scholar] [CrossRef]
- Alsterholm, M.; Karami, N.; Faergemann, J. Antimicrobial activity of topical skin pharmaceuticals—An in vitro study. Acta Derm. Venereol. 2010, 90, 239. [Google Scholar] [CrossRef]
- Nenoff, P.; Koch, D.; Krüger, C.; Drechsel, C.; Mayser, P. New insights on the antibacterial efficacy of miconazole in vitro. Mycoses 2017, 60, 552–557. [Google Scholar] [CrossRef]
- Fothergill, A.W. Miconazole: A historical perspective. Expert Rev. Anti Infect. Ther. 2006, 4, 171–175. [Google Scholar] [CrossRef]
- Sang-Hwa, L. Antibacterial activity of antimycotic miconazole against methicillin resistant Staphylococcus aureus. J. Microbiol. Biotechnol. 1999, 9, 572–575. [Google Scholar]
- Khalandi, H.; Masoori, L.; Farahyar, S.; Delbandi, A.A.; Raiesi, O.; Farzanegan, A.; Khalandi, G.; Mahmoudi, S.; Erfanirad, T.; Falahati, M. Antifungal activity of capric acid, nystatin, and fluconazole and their in vitro interactions against Candida isolates from neonatal oral thrush. Assay Drug Dev. Technol. 2020, 18, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Griffin, S.G.; Wyllie, S.G.; Markham, J.L.; Leach, D.N. The role of structure and molecular properties of terpenoids in determining their antimicrobial activity. Flavour. Fragr. J. 1999, 14, 322–332. [Google Scholar] [CrossRef]
- Aelenei, P.; Miron, A.; Trifan, A.; Bujor, A.; Gille, E.; Aprotosoaie, A.C. Essential oils and their components as modulators of antibiotic activity against Gram-negative bacteria. Medicines 2016, 3, 19. [Google Scholar] [CrossRef]
- Gill, A.O.; Holley, R.A. Mechanisms of bactericidal action of cinnamaldehyde against Listeria monocytogenes and of eugenol against L. monocytogenes and Lactobacillus sakei. Appl. Environ. Microbiol. 2004, 70, 5750–5755. [Google Scholar] [CrossRef]
- Nazzaro, F.; Fratianni, F.; Coppola, R.; Feo, V. Essential Oils and antifungal activity. Pharmaceuticals 2017, 10, 86. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Yañez, C.R.; Terrazas, L.I.; Jimenez-Estrada, M.; Campos, J.E.; Flores-Ortiz, C.M.; Hernandez, L.B.; Cruz-Sanchez, T.; Garrido-Fariña, G.I.; Rodriguez-Monroy, M.A.; Canales-Martinez, M.M. Anti-Candida activity of Bursera morelensis Ramirez Essential Oil and two compounds, α-pinene and γ-terpinene—An in vitro study. Molecules 2017, 22, 2095. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.C.R.d.; Lopes, P.M.; Azevedo, M.M.B.d.; Costa, D.C.M.; Alviano, C.S.; Alviano, D.S. Biological activities of α-pinene and β-pinene enantiomers. Molecules 2012, 17, 6305–6316. [Google Scholar] [CrossRef]
- Palaniappan, K.; Holley, R.A. Use of natural antimicrobials to increase antibiotic susceptibility of drug resistant bacteria. Int. J. Food Microbiol. 2010, 140, 164–168. [Google Scholar] [CrossRef]
- Albano, M.; Crulhas, B.P.; Alves, F.C.B.; Pereira, A.F.M.; Andrade, B.F.M.T.; Barbosa, L.N.; Furlanetto, A.; Lyra, L.P.d.S.; Rall, V.L.M.; Júnior, A.F. Antibacterial and anti-biofilm activities of cinnamaldehyde against Staphylococcus epidermidis. Microb. Pathog. 2019, 126, 231–238. [Google Scholar] [CrossRef]
- Coenye, T.; Spittaels, K.J.; Achermann, Y. The role of biofilm formation in the pathogenesis and antimicrobial susceptibility of Cutibacterium acnes. Biofilm 2022, 4, 100063. [Google Scholar] [CrossRef]
- Hurst, M.; Lamb, H.M. Meropenem. Drugs 2000, 59, 653–680. [Google Scholar] [CrossRef] [PubMed]
- Calo, J.R.; Crandall, P.G.; O’Bryan, C.A.; Ricke, S.C. Essential oils as antimicrobials in food systems—A review. Food Control 2015, 54, 111–119. [Google Scholar] [CrossRef]
- Vergis, J.; Gokulakrishnan, P.; Agarwal, R.K.; Kumar, A. Essential oils as natural food antimicrobial agents: A review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1320–1323. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Zhang, T.; Yuan, Y.; Lin, S.; Xu, J.; Ye, H. Effects of cinnamaldehyde on Escherichia coli and Staphylococcus aureus membrane. Food Control 2015, 47, 196–202. [Google Scholar] [CrossRef]
- Carolus, H.; Van Dyck, K.; Van Dijck, P. Candida albicans and Staphylococcus species: A threatening twosome. Front. Microbiol. 2019, 10, 2162. [Google Scholar] [CrossRef]
- Quatresooz, P.; Vroome, V.; Borgers, M.; Cauwenbergh, G.; Piérard, G.E. Novelties in the multifaceted miconazole effects on skin disorders. Expert Opin. Pharmacother. 2008, 9, 1927–1934. [Google Scholar] [CrossRef]
- Morita, Y.; Tomida, J.; Kawamura, Y. Responses of Pseudomonas aeruginosa to antimicrobials. Front. Microbiol. 2014, 4, 422. [Google Scholar] [CrossRef]
- Miladinović, D.L.; Ilić, B.S.; Kocić, B.D.; Ćirić, V.M.; Nikolić, D.M. Antibacterial investigation of thyme essential oil and its main constituents in combination with tetracycline. J. Med. Food 2015, 18, 935–937. [Google Scholar] [CrossRef] [PubMed]
- Topa, S.H.; Palombo, E.A.; Kingshott, P.; Blackall, L.L. Activity of Cinnamaldehyde on Quorum Sensing and Biofilm Susceptibility to Antibiotics in Pseudomonas aeruginosa. Microorganisms 2020, 8, 455. [Google Scholar] [CrossRef]
- Chadha, J.; Ravi; Singh, J.; Chhibber, S.; Harjai, K. Gentamicin Augments the Quorum Quenching Potential of Cinnamaldehyde in vitro and Protects Caenorhabditis elegans From Pseudomonas aeruginosa Infection. Front. Cell. Infect. Microbiol. 2022, 12, 899566. [Google Scholar] [CrossRef]
- Amaral, S.C.; Pruski, B.B.; de Freitas, S.B.; Allend, S.O.; Ferreira, M.R.A.; Moreira, C.; Pereira, D.I.B.; Junior, A.S.V.; Hartwig, D.D. Origanum vulgare essential oil: Antibacterial activities and synergistic effect with polymyxin B against multidrug-resistant Acinetobacter baumannii. Mol. Biol. Rep. 2020, 47, 9615–9625. [Google Scholar] [CrossRef]
- Duarte, A.; Ferreira, S.; Silva, F.; Domingues, F.C. Synergistic activity of coriander oil and conventional antibiotics against Acinetobacter baumannii. Phytomedicine 2012, 19, 236–238. [Google Scholar] [CrossRef]
- Ferrando, N.; Pino-Otín, M.R.; Ballestero, D.; Lorca, G.; Terrado, E.M.; Langa, E. Enhancing commercial antibiotics with trans-cinnamaldehyde in Gram-positive and Gram-negative bacteria: An in vitro approach. Plants 2024, 13, 192. [Google Scholar] [CrossRef] [PubMed]
- Karumathil, D.P.; Nair, M.S.; Gaffney, J.; Kollanoor-Johny, A.; Venkitanarayanan, K. Trans-cinnamaldehyde and eugenol increase Acinetobacter baumannii sensitivity to beta-lactam antibiotics. Front. Microbiol. 2018, 9, 1011. [Google Scholar] [CrossRef]
- Aleksic Sabo, V.; Nikolic, I.; Mimica-Dukic, N.; Knezevic, P. Anti-Acinetobacter baumannii activity of selected phytochemicals alone, in binary combinations and in combinations with conventional antibiotics. Nat. Prod. Res. 2021, 35, 5964–5967. [Google Scholar] [CrossRef]
- Tooke, C.L.; Hinchliffe, P.; Bragginton, E.C.; Colenso, C.K.; Hirvonen, V.H.A.; Takebayashi, Y.; Spencer, J. β-Lactamases and β-lactamase inhibitors in the 21st century. J. Mol. Biol. 2019, 431, 3472–3500. [Google Scholar] [CrossRef] [PubMed]
- Dhara, L.; Tripathi, A. Cinnamaldehyde: A compound with antimicrobial and synergistic activity against ESBL-producing quinolone-resistant pathogenic Enterobacteriaceae. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 65–73. [Google Scholar] [CrossRef] [PubMed]
- de Araújo, A.C.J.; Freitas, P.R.; Dos Santos Barbosa, C.R.; Muniz, D.F.; de Almeida, R.S.; Alencar de Menezes, I.R.; Ribeiro-Filho, J.; Tintino, S.R.; Coutinho, H.D.M. In vitro and in silico inhibition of Staphylococcus aureus efflux pump NorA by α-pinene and limonene. Curr. Microbiol. 2021, 78, 3388–3393. [Google Scholar] [CrossRef]
- Thirapanmethee, K.; Kanathum, P.; Khuntayaporn, P.; Huayhongthong, S.; Surassmo, S.; Chomnawang, M.T. Cinnamaldehyde: A plant-derived antimicrobial for overcoming multidrug-resistant Acinetobacter baumannii infection. Eur. J. Integr. Med. 2021, 48, 101376. [Google Scholar] [CrossRef]
- Akhmouch, A.A.; Hriouech, S.; Mzabi, A.; Tanghort, M.; Chefchaou, H.; Remmal, A.; Chami, N. Synergistic action of AMX associated with 1,8-cineole and its effect on the ESBL enzymatic resistance mechanism. Antibiotics 2022, 11, 1002. [Google Scholar] [CrossRef]
- Didehdar, M.; Chegini, Z.; Shariati, A. Eugenol: A novel therapeutic agent for the inhibition of Candida species infection. Front. Pharmacol. 2022, 13, 872. [Google Scholar] [CrossRef]
- Ahmad, A.; Khan, A.; Khan, L.A.; Manzoor, N. In vitro synergy of eugenol and methyleugenol with fluconazole against clinical Candida isolates. J. Med. Microbiol. 2010, 59, 1178–1184. [Google Scholar] [CrossRef] [PubMed]
- Jafri, H.; Banerjee, G.; Khan, M.S.A.; Ahmad, I.; Abulreesh, H.H.; Althubiani, A.S. Synergistic interaction of eugenol and antimicrobial drugs in eradication of single and mixed biofilms of Candida albicans and Streptococcus mutans. AMB Express 2020, 10, 185. [Google Scholar] [CrossRef] [PubMed]
- Shaban, S.; Patel, M.; Ahmad, A. Improved efficacy of antifungal drugs in combination with monoterpene phenols against Candida auris. Sci. Rep. 2020, 10, 1162. [Google Scholar] [CrossRef] [PubMed]
- Sharifzadeh, A.; Shokri, H. In vitro synergy of eugenol on the antifungal effects of voriconazole against Candida tropicalis and Candida krusei strains isolated from the genital tract of mares. Equine Vet. J. 2021, 53, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Shokri, H.; Minooieanhaghigh, M.; Sharifzadeh, A. The synergistic activity of eugenol and fluconazole on the induction of necrosis and apoptosis in Candida krusei Isolates of HIV+ patients with oral candidiasis. Intern. Med. Today 2021, 27, 434–449. [Google Scholar] [CrossRef]
- Marchese, A.; Barbieri, R.; Coppo, E.; Orhan, I.E.; Daglia, M.; Nabavi, S.F.; Izadi, M.; Abdollahi, M.; Nabavi, S.M.; Ajami, M. Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint. Crit. Rev. Microbiol. 2017, 43, 668–689. [Google Scholar] [CrossRef] [PubMed]
- Carson, C.F.; Mee, B.J.; Riley, T.V. Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob. Agents Chemother. 2002, 46, 1914–1920. [Google Scholar] [CrossRef] [PubMed]
- Dalhoff, A. Selective toxicity of antibacterial agents—Still a valid concept or do we miss chances and ignore risks? Infection 2021, 49, 29–56. [Google Scholar] [CrossRef]
- Connell, D.W.; Yu, Q.J.; Verma, V. Influence of exposure time on toxicity-An overview. Toxicology 2016, 355–356, 49–53. [Google Scholar] [CrossRef]
- Bussmann, R.W.; Malca, G.; Glenn, A.; Sharon, D.; Nilsen, B.; Parris, B.; Dubose, D.; Ruiz, D.; Saleda, J.; Martinez, M.; et al. Toxicity of medicinal plants used in traditional medicine in Northern Peru. J. Ethnopharmacol. 2011, 137, 121–140. [Google Scholar] [CrossRef]
- Kordali, S.; Kesdek, M.; Cakir, A. Toxicity of monoterpenes against larvae and adults of Colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae). Ind. Crops Prod. 2007, 26, 278–297. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, T.; Zhang, Y.; Wang, L.; Xie, Y. Fumigant toxicity of monoterpenes against fruitfly, Drosophila melanogaster. Ind. Crops Prod. 2016, 81, 147–151. [Google Scholar] [CrossRef]
- Pattanasiri, T.; Taparhudee, W.; Suppakul, P. Acute toxicity and anaesthetic effect of clove oil and eugenol on Siamese fighting fish, Betta splendens. Aquac. Int. 2017, 25, 163–175. [Google Scholar] [CrossRef]
- Youssefi, M.R.; Abouhosseini Tabari, M.; Esfandiari, A.; Kazemi, S.; Moghadamnia, A.; Sut, S.; Dall’Acqua, S.; Benelli, G.; Maggi, F. Efficacy of two monoterpenoids, carvacrol and thymol, and their combinations against eggs and larvae of the west nile vector Culex pipiens. Molecules 2019, 24, 1867. [Google Scholar] [CrossRef]
- Chiu, C.C.; Keeling, C.I.; Bohlmann, J. Toxicity of pine monoterpenes to mountain pine beetle. Sci. Rep. 2017, 7, 8858. [Google Scholar] [CrossRef]
- Kobayashi, D.; Kondo, K.; Uehara, N.; Otokozawa, S.; Tsuji, N.; Yagihashi, A.; Watanabe, N. Endogenous reactive oxygen species is an important mediator of miconazole antifungal effect. Antimicrob. Agents Chemother. 2002, 46, 3113–3117. [Google Scholar] [CrossRef]
- CLSI M100; Performance Standards for Antimicrobial Susceptibility Testing. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020.
- Leigh-de Rapper, S.; Viljoen, A.; Van vuuren, S. Essential oil blends: The potential of combined use for respiratory tract infections. Antibiotics 2021, 10, 1517. [Google Scholar] [CrossRef]
- Eloff, J.N. A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med. 1998, 64, 711–713. [Google Scholar] [CrossRef] [PubMed]
- van Vuuren, S.; Viljoen, A. Plant-based antimicrobial studies–methods and approaches to study the interaction between natural products. Planta Med. 2011, 77, 1168–1182. [Google Scholar] [CrossRef] [PubMed]
- Hübsch, Z.; Van Zyl, R.; Cock, I.; Van Vuuren, S. Interactive antimicrobial and toxicity profiles of conventional antimicrobials with Southern African medicinal plants. S. Afr. J. Bot. 2014, 93, 185–197. [Google Scholar] [CrossRef]
- Finney, D.J. Probit analysis: A statistical treatment of the sigmoid response curve. Ann. Entomol. Soc. Am. 1952, 45, 256. [Google Scholar] [CrossRef]
- Famuyide, I.M.; Aro, A.O.; Fasina, F.O.; Eloff, J.N.; McGaw, L.J. Antibacterial and antibiofilm activity of acetone leaf extracts of nine under-investigated South African Eugenia and Syzygium (Myrtaceae) species and their selectivity indices. BMC Complement. Altern. Med. 2019, 19, 141. [Google Scholar] [CrossRef] [PubMed]
- Indrayanto, G.; Putra, G.S.; Suhud, F. Validation of in-vitro bioassay methods: Application in herbal drug research. In Profiles of Drug Substances, Excipients and Related Methodology; Al-Majed, A.A., Ed.; Academic Press: London, UK, 2021; Volume 46, pp. 273–307. [Google Scholar]
Conventional Antibiotic | Micro-Organisms | |||||
---|---|---|---|---|---|---|
S. aureus (ATCC 25923) | S. epidermidis (ATCC 12228) | C. acnes (ATCC 11827) | P. aeruginosa (ATCC 27853) | A. baumannii (ATCC 19606) | C. albicans (ATCC 10231) | |
Amoxicillin | 0.90 ± 0.13 | 0.51 ± 0.16 | 0.24 ± 0.09 | NS 1 | NS | NS |
Ciprofloxacin | 1.06 ± 0.24 | 0.94 ± 0.36 | 1.25 ± 0.00 | 0.57 ± 0.28 | 0.52 ± 0.16 | NS |
Erythromycin | 0.63 ± 0.00 | 0.42 ± 0.22 | 0.12 ± 0.06 | NS | NS | NS |
Gentamicin | 1.41 ± 0.18 | 3.13 ± 0.00 | 1.56 ± 0.00 | 0.78 ± 0.00 | 2.73 ± 0.78 | NS |
Meropenem | 3.13 ± 0.00 | 3.52 ± 0.45 | 0.20 ± 0.00 | 0.78 ± 0.00 | 1.53 ± 0.31 | NS |
Tetracycline | 1.25 ± 0.00 | 1.25 ± 0.00 | 0.70 ± 0.09 | 18.75 ± 7.21 | 3.91 ± 1.91 | NS |
Miconazole | 1.88 ± 0.96 | 1.72 ± 0.64 | 0.63 ± 0.00 | NS | NS | 0.78 ± 0.29 |
Nystatin | NS | NS | NS | NS | NS | 1.56 ± 0.63 |
Essential Oil Compounds | ||||||
α-Pinene | 6000 ± 0.00 | 4000 ± 0.00 | 1500 ± 577 | 3750 ± 250 | 4000 ± 0.00 | 1500 ± 577 |
γ-Terpinene | 4000 ± 0.00 | 3000 ± 1154 | 1500 ± 577 | 3500 ± 1788 | 4000 ± 0.00 | 2500 ± 1000 |
±Linalool | 2750 ± 1035 | 4000 ± 0.00 | 1500 ± 547 | 3000 ± 1673 | 2000 ± 0.00 | 1250 ± 500 |
Eugenol | 1667 ± 517 | 2000 ± 0.00 | 1000 ± 0.00 | 1500 ± 837 | 1500 ± 837 | 750 ± 288 |
Carvacrol | 2000 ± 0.00 | 750 ± 274 | 500 ± 0.00 | 750 ± 478 | 1000 ± 0.00 | 500 ± 0.00 |
Cinnamaldehyde | 417 ± 129 | 1000 ± 250 | 208 ± 65.0 | 500 ± 0.00 | 500 ± 0.00 | 125 ± 0.00 |
Negative control | >8000 ± 0.00 | >8000 ± 0.00 | >8000 ± 0.00 | >8000 ± 0.00 | >8000 ± 0.00 | >8000 ± 0.00 |
Culture control | >8000 ± 0.00 | >8000 ± 0.00 | >8000 ± 0.00 | >8000 ± 0.00 | >8000 ± 0.00 | >8000 ± 0.00 |
Conventional Antibiotic | Essential Oil Compounds | S. aureus (ATCC 25923) | S. epidermidis (ATCC 12228) | C. acnes (ATCC 11827) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
FIC(A) 1 | FIC(B) 2 | ΣFIC 3 | FIC(A) | FIC(B) | ΣFIC | FIC(A) | FIC(B) | ΣFIC | ||
Amoxicillin | α-pinene | 0.69 | 0.33 | 1.02 | 0.62 | 0.25 | 0.87 | 0.50 | 0.25 | 0.75 |
γ-terpinene | 0.69 | 0.50 | 1.19 | 0.92 | 0.50 | 1.12 | 0.67 | 0.33 | 1.00 | |
±Linalool | 0.69 | 0.73 | 1.42 | 0.62 | 0.25 | 0.87 | 0.67 | 0.33 | 1.00 | |
Eugenol | 0.35 | 0.60 | 0.85 | 0.31 | 0.25 | 0.56 | 0.17 | 0.13 | 0.30 | |
Carvacrol | 0.17 | 0.25 | 0.42 | 0.31 | 0.67 | 0.98 | 0.33 | 0.50 | 0.83 | |
Cinnamaldehyde | 0.17 | 1.20 | 1.37 | 0.31 | 0.50 | 0.81 | 0.25 | 0.90 | 1.15 | |
Ciprofloxacin | α-pinene | 0.59 | 0.33 | 0.92 | 0.67 | 0.50 | 1.17 | 0.50 | 1.33 | 1.85 |
γ-terpinene | 0.29 | 0.25 | 0.54 | 0.33 | 0.33 | 0.66 | 0.50 | 1.33 | 1.83 | |
±Linalool | 0.59 | 0.73 | 1.32 | 0.33 | 0.25 | 0.58 | 0.50 | 1.33 | 1.83 | |
Eugenol | 0.59 | 1.20 | 1.79 | 0.50 | 0.75 | 1.25 | 0.25 | 1.00 | 1.25 | |
Carvacrol | 0.29 | 0.50 | 0.79 | 0.17 | 0.67 | 0.84 | 0.13 | 1.00 | 1.13 | |
Cinnamaldehyde | 0.15 | 1.20 | 1.35 | 0.17 | 0.50 | 0.67 | 0.06 | 1.20 | 1.26 | |
Erythromycin | α-pinene | 0.50 | 0.17 | 0.67 | 2.99 | 1.00 | 3.99 | 0.50 | 0.13 | 0.63 |
γ-terpinene | 0.50 | 0.25 | 0.75 | 1.50 | 0.67 | 2.17 | 0.67 | 0.17 | 0.84 | |
±Linalool | 0.50 | 0.37 | 0.87 | 1.50 | 0.50 | 2.00 | 0.67 | 0.17 | 0.84 | |
Eugenol | 0.50 | 0.60 | 1.10 | 1.12 | 0.75 | 1.87 | 1.00 | 0.38 | 1.38 | |
Carvacrol | 0.50 | 0.50 | 1.00 | 0.75 | 1.33 | 2.08 | 0.67 | 0.50 | 1.17 | |
Cinnamaldehyde | 0.13 | 0.60 | 0.73 | 0.19 | 0.25 | 0.44 | 0.67 | 1.20 | 1.87 | |
Gentamicin | α-pinene | 0.44 | 0.33 | 0.77 | 0.50 | 0.83 | 1.33 | 1.00 | 0.67 | 1.67 |
γ-terpinene | 0.44 | 0.50 | 0.94 | 0.50 | 2.00 | 2.50 | 1.00 | 0.67 | 1.67 | |
±Linalool | 0.44 | 0.73 | 1.17 | 0.50 | 0.25 | 0.75 | 1.00 | 0.67 | 1.67 | |
Eugenol | 0.22 | 0.60 | 0.82 | 0.50 | 0.50 | 1.00 | 0.50 | 0.50 | 1.00 | |
Carvacrol | 0.11 | 0.25 | 0.36 | 0.25 | 0.67 | 0.92 | 0.25 | 0.50 | 0.75 | |
Cinnamaldehyde | 0.08 | 0.60 | 0.68 | 0.25 | 0.50 | 0.75 | 0.12 | 0.60 | 0.72 | |
Meropenem | α-pinene | 0.50 | 0.17 | 0.67 | 0.44 | 0.25 | 0.69 | 0.50 | 0.04 | 0.54 |
γ-terpinene | 0.50 | 0.25 | 0.75 | 0.44 | 0.33 | 0.77 | 1.00 | 0.08 | 1.08 | |
±Linalool | 0.50 | 0.36 | 0.86 | 0.44 | 0.25 | 0.69 | 0.50 | 0.04 | 0.54 | |
Eugenol | 0.25 | 1.20 | 1.45 | 0.44 | 0.50 | 0.94 | 0.50 | 0.06 | 0.56 | |
Carvacrol | 0.38 | 0.38 | 0.76 | 0.22 | 0.67 | 0.89 | 0.50 | 0.12 | 0.62 | |
Cinnamaldehyde | 0.25 | 1.20 | 1.45 | 0.22 | 0.50 | 0.72 | 0.50 | 0.30 | 0.80 | |
Miconazole | α-pinene | 0.67 | 0.67 | 1.34 | 0.36 | 0.50 | 0.86 | 1.00 | 1.33 | 2.33 |
γ-terpinene | 0.33 | 0.50 | 0.83 | 0.36 | 0.67 | 1.03 | 1.00 | 1.33 | 2.33 | |
±Linalool | 0.33 | 1.46 | 1.79 | 0.36 | 0.50 | 0.86 | 0.50 | 0.67 | 1.17 | |
Eugenol | 0.33 | 1.20 | 1.53 | 0.36 | 1.00 | 1.36 | 1.25 | 0.50 | 1.75 | |
Carvacrol | 0.08 | 0.25 | 0.33 | 0.14 | 1.00 | 1.14 | 0.12 | 0.50 | 0.62 | |
Cinnamaldehyde | 0.02 | 0.30 | 0.32 | 0.01 | 0.06 | 0.07 | 0.06 | 0.60 | 0.66 | |
Tetracycline | α-pinene | 0.50 | 0.33 | 0.83 | 0.50 | 0.50 | 1.00 | 0.89 | 1.33 | 2.20 |
γ-terpinene | 0.50 | 0.50 | 1.00 | 1.00 | 1.33 | 2.33 | 0.89 | 1.33 | 2.22 | |
±Linalool | 0.50 | 0.73 | 1.23 | 0.50 | 0.50 | 1.00 | 0.44 | 0.67 | 1.11 | |
Eugenol | 0.25 | 0.60 | 0.82 | 0.25 | 0.50 | 0.75 | 0.22 | 0.67 | 0.89 | |
Carvacrol | 0.25 | 0.50 | 0.75 | 0.25 | 0.67 | 0.92 | 0.11 | 0.50 | 0.61 | |
Cinnamaldehyde | 0.13 | 1.20 | 1.33 | 0.13 | 0.50 | 0.63 | 0.05 | 0.60 | 0.65 |
Conventional Antibiotic | Essential Oil Compounds | P. aeruginosa (ATCC 27853) | A. baumannii (ATCC 19606) | ||||
---|---|---|---|---|---|---|---|
FIC(A) 1 | FIC(B) 2 | ΣFIC 3 | FIC(A) | FIC(B) | ΣFIC | ||
Ciprofloxacin | α-pinene | 0.54 | 0.27 | 0.81 | 1.20 | 0.50 | 1.70 |
γ-terpinene | 0.54 | 0.29 | 0.83 | 1.20 | 0.50 | 1.70 | |
±Linalool | 0.54 | 0.33 | 0.87 | 1.20 | 1.00 | 2.20 | |
Eugenol | 0.27 | 0.33 | 0.60 | 0.60 | 0.67 | 1.27 | |
Carvacrol | 0.27 | 0.67 | 0.94 | 0.60 | 1.00 | 1.60 | |
Cinnamaldehyde | 0.07 | 0.25 | 0.32 | 0.30 | 1.00 | 1.30 | |
Gentamicin | α-pinene | 0.75 | 0.10 | 0.85 | 0.57 | 0.25 | 0.82 |
γ-terpinene | 1.51 | 0.21 | 1.72 | 1.14 | 0.50 | 1.64 | |
±Linalool | 2.00 | 0.17 | 2.17 | 0.57 | 0.50 | 1.07 | |
Eugenol | 1.00 | 0.33 | 1.33 | 0.29 | 0.33 | 0.62 | |
Carvacrol | 0.50 | 0.33 | 0.83 | 0.57 | 1.00 | 1.57 | |
Cinnamaldehyde | 1.00 | 1.00 | 2.00 | 0.29 | 1.00 | 1.29 | |
Meropenem | α-pinene | 2.00 | 0.53 | 2.53 | 1.04 | 0.25 | 1.29 |
γ-terpinene | 1.00 | 0.13 | 1.13 | 1.04 | 0.25 | 1.29 | |
±Linalool | 1.00 | 0.17 | 1.17 | 1.04 | 0.50 | 1.54 | |
Eugenol | 0.75 | 0.25 | 1.00 | 0.39 | 0.25 | 0.64 | |
Carvacrol | 0.75 | 0.50 | 1.25 | 0.39 | 0.38 | 0.77 | |
Cinnamaldehyde | 0.50 | 0.50 | 1.00 | 0.26 | 0.50 | 0.76 | |
Tetracycline | α-pinene | 0.33 | 0.53 | 0.86 | 0.40 | 0.25 | 0.65 |
γ-terpinene | 0.33 | 0.57 | 0.90 | 0.60 | 0.38 | 0.98 | |
±Linalool | 0.33 | 0.67 | 1.00 | 0.80 | 1.00 | 1.80 | |
Eugenol | 0.33 | 1.33 | 1.66 | 0.40 | 0.67 | 1.07 | |
Carvacrol | 0.17 | 1.33 | 1.50 | 0.40 | 1.00 | 1.40 | |
Cinnamaldehyde | 0.08 | 1.00 | 1.08 | 0.20 | 1.00 | 1.20 |
Antifungals | Essential Oil Compounds | C. albicans (ATCC 10231) | ||
---|---|---|---|---|
FIC(A) 1 | FIC(B) 2 | ΣFIC 3 | ||
Miconazole | α-pinene | 0.80 | 1.33 | 2.13 |
γ-terpinene | 0.80 | 0.80 | 1.60 | |
±Linalool | 0.40 | 0.80 | 1.20 | |
Eugenol | 0.20 | 0.67 | 0.87 | |
Carvacrol | 0.15 | 0.75 | 0.90 | |
Cinnamaldehyde | 0.05 | 1.00 | 1.05 | |
Nystatin | α-pinene | 0.40 | 1.33 | 1.73 |
γ-terpinene | 0.40 | 0.80 | 1.20 | |
±Linalool | 0.20 | 1.33 | 1.53 | |
Eugenol | 0.10 | 0.67 | 0.77 | |
Carvacrol | 0.10 | 1.00 | 1.10 | |
Cinnamaldehyde | 0.03 | 1.00 | 1.03 |
Conventional Antibiotics | Concentrations | |||
---|---|---|---|---|
0.01 mg/mL | 0.05 mg/mL | |||
24 h | 48 h | 24 h | 48 h | |
Amoxicillin | 0.00 ± 0.00 | 2.67 ± 3.06 | 0.00 ± 0.00 | 0.67 ± 1.15 |
Ciprofloxacin | 0.00 ± 0.00 | 0.00 ± 0.00 | 1.67 ± 2.89 | 3.67 ± 6.35 |
Erythromycin | 1.00 ± 2.31 | 5.67 ± 1.15 | 11.00 ± 7.94 | 15.67 ± 7.77 |
Gentamicin | 0.00 ± 0.00 | 0.00 ± 0.00 | 2.67 ± 2.31 | 7.00 ± 2.64 |
Meropenem | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 |
Tetracycline | 1.00 ± 1.15 | 6.00 ± 5.29 | 5.67 ± 4.73 | 12.00 ± 3.61 |
Miconazole | 0.00 ± 0.00 | 0.00 ± 0.00 | 7.67 ± 3.06 | 17.00 ± 1.73 |
Nystatin | 3.00 ± 2.31 | 7.67 ± 3.79 | 5.33 ± 7.57 | 12.00 ± 7.94 |
Controls | 24 h | 48 h | ||
Potassium dichromate (positive control) | 100.00 ± 0.00 | 100.00 ± 0.00 | ||
2.00% DMSO (negative control) | 3.00 ± 1.41 | 4.50 ± 0.71 | ||
Distilled water (negative control) | 0.00 ± 0.00 | 0.00 ± 0.00 | ||
Saltwater (negative control) | 1.93 ± 0.03 | 2.10 ± 0.01 |
Essential Oil Compounds | LC50 (µg/mL) at 24 h | LC50 (µg/mL) at 48 h |
---|---|---|
α-pinene | >1000 1 (>1000) | >1000 (>1000) |
γ-terpinene | >1000 (>1000) | >1000 (>1000) |
±Linalool | 73.04 (71.24–74.85) | 84.12 (82.23–86.01) |
Eugenol | 77.62 (75.41–79.83) | 56.47 (54.80–58.14) |
Carvacrol | 64.43 (62.46–66.40) | 37.14 (35.67–38.61) |
Cinnamaldehyde | 74.01 (71.91–76.11) | 64.05 (62.26–65.84) |
Antimicrobial Synergistic Combination | LC50 (µg/mL) at 24 h | LC50 (µg/mL) at 48 h |
---|---|---|
Amoxicillin + Carvacrol | 522.95 (520.99–524.91) | 513.89 (511.77–516.01) |
Gentamicin + Carvacrol | 764.77 (762.61–766.94) | 696.07 (693.85–698.29) |
Miconazole + Carvacrol | 707.03 (704.83–709.24) | 657.45 (655.12–659.78) |
Ciprofloxacin + Cinnamaldehyde | 827.92 (825.85–829.99) | 640.04 (638.25–641.83) |
Erythromycin + Cinnamaldehyde | 736.85 (734.84–738.86) | 573.63 (571.86–575.40) |
Miconazole + Cinnamaldehyde | 704.23 (702.34–706.12) | 636.05 (633.99–638.11) |
Amoxicillin + Eugenol | 806.43 (804.42–808.44) | 628.81 (626.77–630.85) |
Synergistic Combinations | Pathogen | Synergistic Ratios (AB:EOC) | LC50 (µg/mL) of Combinations at Synergistic Ratios | SI of Combinations at Synergistic Ratios | ||
---|---|---|---|---|---|---|
24 h | 48 h | 24 h | 48 h | |||
Amoxicillin + Carvacrol | S. aureus | 60:40 | 612.03 1 | 601.54 | 1.53 | 1.50 |
50:50 | 522.95 | 513.89 | 1.05 | 1.03 | ||
40:60 | 433.87 | 426.24 | 0.87 | 0.85 | ||
30:70 | 344.79 | 338.60 | 0.98 | 0.97 | ||
20:80 | 255.71 | 250.95 | 0.32 | 0.31 | ||
Gentamicin + Carvacrol | S. aureus | 70:30 | 1025.32 2 | 931.44 | 3.42 | 3.10 |
60:40 | 895.04 | 813.75 | 4.47 3 | 4.07 | ||
50:50 | 764.77 | 696.07 | 3.06 | 2.78 | ||
40:60 | 634.49 | 578.38 | 2.11 | 1.93 | ||
30:70 | 504.21 | 460.69 | 0.72 | 0.66 | ||
Miconazole + Carvacrol | S. aureus | 60:40 | 826.80 | 769.44 | 2.07 | 1.92 |
50:50 | 707.03 | 657.45 | 2.83 | 2.63 | ||
40:60 | 587.25 | 545.45 | 1.96 | 1.82 | ||
30:70 | 467.48 | 433.46 | 1.34 | 1.24 | ||
Miconazole + Cinnamaldehyde | S. aureus, S. epidermidis | 70:30 | 944.15 | 852.75 | 3.14 | 2.84 |
60:40 | 824.19 | 744.40 | 4.12 | 3.72 | ||
50:50 | 704.23 | 636.05 | 5.63 | 5.09 | ||
40:60 | 584.27 | 527.70 | 3.89 | 3.52 | ||
30:70 | 464.31 | 419.35 | 1.32 | 1.20 | ||
Ciprofloxacin + Cinnamaldehyde | P. aeruginosa | 60:40 | 968.95 | 749.06 | 9.68 | 7.49 |
50:50 | 827.92 | 640.04 | 6.62 | 5.12 | ||
40:60 | 686.88 | 531.01 | 4.58 | 3.54 | ||
30:70 | 545.85 | 421.98 | 3.12 | 2.41 | ||
20:80 | 404.81 | 312.95 | 1.01 | 0.78 | ||
Erythromycin + Cinnamaldehyde | S. epidermidis | 70:30 | 987.89 | 769.06 | 6.58 | 5.12 |
60:40 | 862.37 | 671.34 | 4.31 | 3.36 | ||
50:50 | 736.85 | 573.63 | 5.89 | 4.59 | ||
40:60 | 611.33 | 475.92 | 4.07 | 3.17 | ||
30:70 | 485.81 | 378.20 | 1.39 | 1.08 | ||
Amoxicillin + Eugenol | C. acnes | 70:30 | 1081.17 | 843.04 | 14.41 | 11.23 |
60:40 | 943.80 | 735.93 | 9.43 | 7.36 | ||
50:50 | 806.43 | 628.81 | 6.45 | 5.03 | ||
40:60 | 669.05 | 521.69 | 4.46 | 3.48 | ||
30:70 | 531.68 | 414.58 | 3.04 | 2.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simbu, S.; Orchard, A.; Vuuren, S.v. Essential Oil Compounds in Combination with Conventional Antibiotics for Dermatology. Molecules 2024, 29, 1225. https://doi.org/10.3390/molecules29061225
Simbu S, Orchard A, Vuuren Sv. Essential Oil Compounds in Combination with Conventional Antibiotics for Dermatology. Molecules. 2024; 29(6):1225. https://doi.org/10.3390/molecules29061225
Chicago/Turabian StyleSimbu, Shivar, Ané Orchard, and Sandy van Vuuren. 2024. "Essential Oil Compounds in Combination with Conventional Antibiotics for Dermatology" Molecules 29, no. 6: 1225. https://doi.org/10.3390/molecules29061225
APA StyleSimbu, S., Orchard, A., & Vuuren, S. v. (2024). Essential Oil Compounds in Combination with Conventional Antibiotics for Dermatology. Molecules, 29(6), 1225. https://doi.org/10.3390/molecules29061225