The Validation and Determination of Empagliflozin Concentration in the Presence of Grapefruit Juice Using HPLC for Pharmacokinetic Applications
Abstract
:1. Introduction
2. Results
2.1. Results of Validation
2.2. Accuracy and Precision
2.3. Absolute Recovery (Result of Matrix Effect)
2.4. Grapefruit Effect on Empagliflozin Pharmacokinetics
2.5. Group A (Empagliflozin Alone)
2.6. Group B (Empagliflozin and Grapefruit) in Normal Rats
2.7. Group C (Empagliflozin and Grapefruit) on Diabetes-Induced Rats
3. Discussion
4. Materials and Methods
4.1. Instruments
4.2. Animal Handling
4.3. Collection of Blood Samples
4.4. Sample Preparation
4.4.1. Mobile Phase Preparation
4.4.2. Selection of Wavelength (λ) for the Chromatography
4.4.3. Preparation of Drug Solution
4.4.4. Stock Working Solution Preparation of Empagliflozin
4.4.5. Stock Working Solution Preparation of Metformin
4.4.6. Preparation of Calibration Curve
4.5. Method Validation
4.5.1. Precision, Accuracy, and Absolute Recovery
4.5.2. Pharmacokinetic Analysis
4.5.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sweidan, N.I.; Abu Khalaf, R.A.; Shatat, A.M.; Hammad, W.A. Therapeutic Potential of Silybum Marianum and Pergularia Tomentosa Extracts from Jordanian Origin in Diabetes Mellitus. Curr. Bioact. Compd. 2022, 18, 64–71. [Google Scholar] [CrossRef]
- Harreiter, J.; Roden, M. Diabetes Mellitus: Definition, Classification, Diagnosis, Screening and Prevention (Update 2023). Wien. Klin. Wochenschr. 2023, 135, 7–17. [Google Scholar] [CrossRef]
- Dostalek, M.; Akhlaghi, F.; Puzanovova, M. Effect of Diabetes Mellitus on Pharmacokinetic and Pharmacodynamic Properties of Drugs. Clin. Pharmacokinet. 2012, 51, 481–499. [Google Scholar] [CrossRef]
- Chawla, G.; Chaudhary, K.K. A Complete Review of Empagliflozin: Most Specific and Potent SGLT2 Inhibitor Used for the Treatment of Type 2 Diabetes Mellitus. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 2001–2008. [Google Scholar] [CrossRef]
- Hailat, M.; Zakaraya, Z.; Al-Ani, I.; Al Meanazel, O.; Al-Shdefat, R.; Anwer, M.K.; Saadh, M.J.; Dayyih, W.A. Pharmacokinetics and Bioequivalence of Two Empagliflozin, with Evaluation in Healthy Jordanian Subjects under Fasting and Fed Conditions. Pharmaceuticals 2022, 15, 193. [Google Scholar] [CrossRef] [PubMed]
- Hsia, D.S.; Grove, O.; Cefalu, W.T. An Update on SGLT2 Inhibitors for the Treatment of Diabetes Mellitus. Curr. Opin. Endocrinol. Diabetes Obes. 2017, 24, 73. [Google Scholar] [CrossRef] [PubMed]
- Steiner, S. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. Z. Gefassmedizin 2016, 13, 17–18. [Google Scholar]
- Briguglio, M.; Hrelia, S.; Malaguti, M.; Serpe, L.; Canaparo, R.; Dell’osso, B.; Galentino, R.; De Michele, S.; Dina, C.Z.; Porta, M.; et al. Food Bioactive Compounds and Their Interference in Drug Pharmacokinetic/Pharmacodynamic Profiles. Pharmaceutics 2018, 10, 277. [Google Scholar] [CrossRef] [PubMed]
- Awad, R.; Mallah, E.; Alkhawaja, B.; Abudayyih, W.; El-Hajji, F.; Matalka, K.Z.; Arafat, T. Pomegranate and Licorice Juices Modulate Metformin Pharmacokinetics in Rats. Neuroendocrinol. Lett. 2016, 37, 202–206. [Google Scholar]
- Bailey, D.G. Fruit Juice Inhibition of Uptake Transport: A New Type of Food-Drug Interaction. Br. J. Clin. Pharmacol. 2010, 70, 645–655. [Google Scholar] [CrossRef]
- Fares, M.; Al-Ani, I.; Hailat, M.; Khaleel, A.; Collier, P.; Al-Ani, A.; Abu Dayyih, W. Evaluation the Impact of Grapefruit Juice on Sitagliptin Pharmacokinetics in Healthy Rats. Int. J. Pharm. Res. 2021, 13. [Google Scholar] [CrossRef]
- Santes-Palacios, R.; Romo-Mancillas, A.; Camacho-Carranza, R.; Espinosa-Aguirre, J.J. Inhibition of Human and Rat CYP1A1 Enzyme by Grapefruit Juice Compounds Rafael. Toxicol. Lett. 2016, 258, 267–275. [Google Scholar] [CrossRef]
- Trang, N.N.; Chung, C.-C.; Lee, T.-W.; Cheng, W.-L.; Kao, Y.-H.; Huang, S.-Y.; Lee, T.-I.; Chen, Y.-J. Empagliflozin and Liraglutide Differentially Modulate Cardiac Metabolism in Diabetic Cardiomyopathy in Rats. Int. J. Mol. Sci. 2021, 22, 1177. [Google Scholar] [CrossRef]
- Schwaiger, E.; Burghart, L.; Signorini, L.; Ristl, R.; Kopecky, C.; Tura, A.; Pacini, G.; Wrba, T.; Antlanger, M.; Schmaldienst, S.; et al. Empagliflozin in Posttransplantation Diabetes Mellitus: A Prospective, Interventional Pilot Study on Glucose Metabolism, Fluid Volume, and Patient Safety. Am. J. Transplant. 2019, 19, 907–919. [Google Scholar] [CrossRef] [PubMed]
- Jojima, T.; Sakurai, S.; Wakamatsu, S.; Iijima, T.; Saito, M.; Tomaru, T.; Kogai, T.; Usui, I.; Aso, Y. Empagliflozin Increases Plasma Levels of Campesterol, a Marker of Cholesterol Absorption, in Patients with Type 2 Diabetes: Association with a Slight Increase in High-Density Lipoprotein Cholesterol. Int. J. Cardiol. 2021, 331, 243–248. [Google Scholar] [CrossRef]
- Patoulias, D.; Papadopoulos, C.; Doumas, M. Effect of Empagliflozin on Cholesterol Synthesis and Absorption Markers in Patients with Type 2 Diabetes: Any Role of DPP-4 Inhibitors? Int. J. Cardiol. 2021, 330, 228. [Google Scholar] [CrossRef] [PubMed]
- Di Marco, M.P.; Edwards, D.J.; Wainer, I.W.; Ducharme, M.P. The Effect of Grapefruit Juice and Seville Orange Juice on the Pharmacokinetics of Dextromethorphan: The Role of Gut CYP3A and P-Glycoprotein. Life Sci. 2002, 71, 1149–1160. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, I.S.; Hassan, M.A.; Kondo, T. Effect of Lyophilized Grapefruit Juice on P-Glycoprotein-Mediated Drug Transport in-Vitro and in-Vivo. Drug Dev. Ind. Pharm. 2015, 41, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Chen, F.; Wang, F.; Huang, P.; Luo, W. The Effect of Grapefruit Juice on the Pharmacokinetics of Tadalafil in Rats. Biomed. Res. Int. 2020, 2020, 1631735. [Google Scholar] [CrossRef] [PubMed]
- Sattar, N.; Fitchett, D.; Hantel, S.; George, J.T.; Zinman, B. Empagliflozin Is Associated with Improvements in Liver Enzymes Potentially Consistent with Reductions in Liver Fat: Results from Randomised Trials Including the EMPA-REG OUTCOME® Trial. Diabetologia 2018, 61, 2155–2163. [Google Scholar] [CrossRef] [PubMed]
- Lv, Q.; Le, L.; Xiang, J.; Jiang, B.; Chen, S.; Xiao, P. Liver Transcriptomic Reveals Novel Pathways of Empagliflozin Associated with Type 2 Diabetic Rats. Front. Endocrinol. 2020, 11, 111. [Google Scholar] [CrossRef] [PubMed]
- Pingili, R.; Vemulapalli, S.; Mullapudi, S.S.; Nuthakki, S.; Pendyala, S.; Kilaru, N. Pharmacokinetic Interaction Study between Flavanones (Hesperetin, Naringenin) and Rasagiline Mesylate in Wistar Rats. Drug Dev. Ind. Pharm. 2016, 42, 1110–1117. [Google Scholar] [CrossRef] [PubMed]
- Alkather, Z.; Hailat, M.; Al-Shdefat, R.; Abu Dayyih, W. Development and Validation of HPLC Method for Five Gliptins in Pharmaceutical Dosage Forms in Finished Marketed Products. Curr. Pharm. Anal. 2020, 17, 1263–1271. [Google Scholar] [CrossRef]
Mobile phase composition | 1 mL of triethylamine adjusted to pH 3.5 using orthophosphate, then (50:50 v/v) acetonitrile–potassium dihydrophosphate buffer. |
Column type | C18 column (Hypersil-Silica, C-18, 250 mm × 4.6 mm, particle size—5 µm) |
Wavelength | 230 nm |
Pump flow rate | 0.75 mL/min |
Auto-sampler temperature | 25 °C |
Column oven temperature | 25 °C |
Auto-sampler injection volume | 20 μL |
Retention Times (min) | |
Metformin | 2.4 min |
Empagliflozin | 3.7 min |
IS-Normalized Empagliflozin | |||
---|---|---|---|
Mean | SD | RSD% | |
QCLow | 270.14 | 10.19 | 3.8 |
QCHigh | 865 | 8.64 | 1.0 |
Absolute recovery | 101.9 | 3.6 | 3.5 |
100.6 | 0.9 | 0.9 |
Feature | Empagliflozin Study | Sitagliptin Study |
---|---|---|
Drug Dose | 0.16 mg/kg | 5.75 mg/kg |
Rat Groups | Healthy (alone), Healthy (grapefruit), Diabetic (grapefruit), Negative Control | Control, Grapefruit Juice |
Grapefruit Juice Administration | Seven days pre-dose | Grapefruit was given to the B group instead of drinking water two days before the study |
Impact of Grapefruit Juice on the Cmax, AUC, and Tmax compared with the controls | Cmax increased, AUC increased, Tmax decreased | Cmax increased, AUC increased, Tmax not changed |
Grapefruit Juice Impact on the Cmax | Doubled in both healthy and diabetic groups | Significantly increased |
Grapefruit Juice Impact on the AUC | Doubled in the healthy group, tripled in the diabetic group | Significantly increased |
Grapefruit Juice Impact on the Tmax | Decreased by half in the healthy group | No significant increase |
Conclusion | Avoid co-administration due to significant increase in drug levels | Drug–food interaction observed; avoid grapefruit juice at the same time. |
Group Number and Description | Pharmacokinetics Parameter Summary for Empagliflozin after Administration of Specific Treatment(s) |
---|---|
Group (A): healthy—treated with empagliflozin 0.5 mL (0.16 mg/mL) only | Cmax (730 ng/mL), AUC (9264.6 ng × h/mL), Tmax (2 h) |
Group (B): healthy—treated with grapefruit juice (10 mL/day) for four days. On the fourth day, they were treated with empagliflozin 0.5 mL (0.16 mg/mL) | Cmax (1907 ng/mL), AUC (10,290.75 ng × h/mL), Tmax (1 h) |
Group (C): A diabetic group was treated with grapefruit juice (10 mL/day) for four days (grapefruit juice replaced water for seven days). On the fourth day, the group was treated with 0.5 mL of empagliflozin (25 mg/150 mL). | Cmax (2936 ng/mL), AUC (18,657 ng × h/mL), Tmax (2 h) |
Group (D): healthy (negative control) no drugs were given | no drugs were given |
Animal Species | Wisteria Rat |
---|---|
Weight | 200 g |
Number of animals | 40 |
Gender | Males |
Age | Eight weeks |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu Dayyih, W.; Zakaraya, Z.; Hailat, M.; Al-Tawarah, N.M.; Alkharabsheh, S.; Nadher, H.K.; Hailat, Z.; Alarman, S.M.; Khaleel, A.; Awad, R. The Validation and Determination of Empagliflozin Concentration in the Presence of Grapefruit Juice Using HPLC for Pharmacokinetic Applications. Molecules 2024, 29, 1236. https://doi.org/10.3390/molecules29061236
Abu Dayyih W, Zakaraya Z, Hailat M, Al-Tawarah NM, Alkharabsheh S, Nadher HK, Hailat Z, Alarman SM, Khaleel A, Awad R. The Validation and Determination of Empagliflozin Concentration in the Presence of Grapefruit Juice Using HPLC for Pharmacokinetic Applications. Molecules. 2024; 29(6):1236. https://doi.org/10.3390/molecules29061236
Chicago/Turabian StyleAbu Dayyih, Wael, Zainab Zakaraya, Mohammad Hailat, Nafe M. Al-Tawarah, Sahem Alkharabsheh, Haya Khalid Nadher, Zeyad Hailat, Samia M. Alarman, Anas Khaleel, and Riad Awad. 2024. "The Validation and Determination of Empagliflozin Concentration in the Presence of Grapefruit Juice Using HPLC for Pharmacokinetic Applications" Molecules 29, no. 6: 1236. https://doi.org/10.3390/molecules29061236
APA StyleAbu Dayyih, W., Zakaraya, Z., Hailat, M., Al-Tawarah, N. M., Alkharabsheh, S., Nadher, H. K., Hailat, Z., Alarman, S. M., Khaleel, A., & Awad, R. (2024). The Validation and Determination of Empagliflozin Concentration in the Presence of Grapefruit Juice Using HPLC for Pharmacokinetic Applications. Molecules, 29(6), 1236. https://doi.org/10.3390/molecules29061236