Nitric Oxide (NO) Synthase Inhibitors: Potential Candidates for the Treatment of Anxiety Disorders?
Abstract
:1. Introduction
2. Nitric Oxide (NO)
3. NO and Anxiety
4. NOS Inhibitors
5. NOS Inhibitors and Anxiety
5.1. Effects of Non-Selective NOS Inhibitors in Preclinical Models of Anxiety
5.2. Effects of Selective nNOS Inhibitors in Preclinical Models of Anxiety
5.3. Effects of Selective iNOS Inhibitors in Preclinical Models of Anxiety
6. Potential Mechanism(s) of Action of NOSIs in Anxiety
7. Conclusions
Funding
Conflicts of Interest
References
- Steimer, T. The biology of fear-and anxiety-related behaviors. Dialogues Clin. Neurosci. 2002, 28, 123–137. [Google Scholar] [CrossRef]
- Kessler, R.C.; Berglund, P.; Demler, O.; Jin, R.; Merikangas, K.R.; Walters, E.E. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the national comorbidity survey replication. Arch. Gen. Psychiatry 2005, 62, 593–602. [Google Scholar] [CrossRef] [PubMed]
- Kessler, R.C.; Chiu, W.T.; Demler, O.; Merikangas, K.R.; Walters, E.E. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the national comorbidity survey replication. Arch. Gen. Psychiatry 2005, 62, 617–627. [Google Scholar] [CrossRef] [PubMed]
- Kessler, R.C. The global burden of anxiety and mood disorders: Putting the European Study of the Epidemiology of Mental Disorders (ESEMeD) findings into perspective. J. Clin. Psychiatry 2007, 68 (Suppl. S2), 10–19. [Google Scholar] [PubMed]
- Hammer, M.B.; Robert, S.; Fruech, B.S. Treatment-resistant posttraumatic stress disorder: Strategies for intervention. CNS Spectr. 2004, 9, 740–752. [Google Scholar] [CrossRef] [PubMed]
- Van Ameringen, M.; Mancini, C.; Pipe, B.; Bennett, M. Optimizing treatment in social phobia: A review of treatment resistance. CNS Spectr. 2004, 9, 753–762. [Google Scholar] [CrossRef]
- Cryan, J.F.; Sweeney, F.F. The age of anxiety: Role of animal models of anxiolytic action in drug discovery. Br. J. Pharmacol. 2011, 164, 1129–1161. [Google Scholar] [CrossRef] [PubMed]
- Gorman, J.M. New molecule targets for antianxiety interventions. J. Clin. Psychiatry 2003, 64, 28–35. [Google Scholar] [PubMed]
- Garthwaite, J.; Charles, S.L.; Chess-Williams, R. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests a role as intercellular messenger in the brain. Nature 1988, 336, 385–387. [Google Scholar] [CrossRef]
- Knowles, R.G.; Moncada, S. Nitric oxide synthases in mammals. Biochem. J. 1994, 298, 249–258. [Google Scholar] [CrossRef]
- Arnold, W.P.; Mittal, C.K.; Katsuki, S.; Murad, F. Nitric oxide activates guanylate cyclase and increases guanosine 3′5′-cyclic monophosphate levels in various tissue preparations. Proc. Natl. Acad. Sci. USA 1977, 74, 3203–3207. [Google Scholar] [CrossRef]
- Kleppisch, T. Phosphodiesterases in the central nervous system. Hand. Exp. Pharmacol. 2009, 191, 71–92. [Google Scholar]
- Edwards, T.M.; Rickard, N.S. New perspectives on the mechanisms through which nitric oxide may affect learning and memory processes. Neurosci. Biobehav. Rev. 2007, 31, 413–425. [Google Scholar] [CrossRef]
- Stamler, J.S. Redox signaling: Nitrosylation and related target interactions of nitric oxide. Cell 1994, 78, 931–936. [Google Scholar] [CrossRef]
- Socco, S.; Bovee, R.H.; Palczewski, M.B.; Hickok, J.R.; Thomas, D.D. Epigenetics: The third pillar of nitric oxide signaling. Pharmacol. Res. 2017, 121, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.J.; Fan, X. Current understanding on the role of nitric oxide and therapeutic potential of NO supplementation in schizophrenia. Schizophr. Res. 2020, 222, 23–30. [Google Scholar] [CrossRef]
- Hibbs, J.B., Jr.; Taintor, R.R.; Vavrin, Z.; Rachlin, E.M. Nitric oxide a cytotoxic activated macrophage effector molecule. Biochem. Biophys. Res. Commun. 1988, 157, 87–94. [Google Scholar] [CrossRef]
- Palmer, R.M.; Ferrige, A.G.; Moncada, S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987, 327, 524–526. [Google Scholar] [CrossRef] [PubMed]
- Prast, H.; Philippu, A. Nitric oxide as modulator of neuronal function. Prog. Neurobiol. 2001, 64, 51–68. [Google Scholar] [CrossRef]
- Pitsikas, N. The role of nitric oxide in the object recognition memory. Behav. Brain Res. 2015, 285, 200–207. [Google Scholar] [CrossRef]
- Lonart, G.; Wang, J.; Johnson, K.M. Nitric oxide induces neurotransmitter release from the hippocampal slices. Eur. J. Pharmacol. 1992, 220, 271–272. [Google Scholar] [CrossRef] [PubMed]
- West, A.R.; Galloway, M.P.; Grace, A.A. Regulation of striatal dopamine neurotransmission by nitric oxide: Effector pathways and signalling mechanisms. Synapse 2002, 44, 227–245. [Google Scholar] [CrossRef] [PubMed]
- Trabace, L.; Cassano, T.; Tucci, P.; Steardo, L.; Kendrick, K.M.; Cuomo, V. The effects of nitric oxide on striatal serotoninergic transmission involve multiple targets: An in vivo microdialysis study in the awake rat. Brain Res. 2004, 1008, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, V.; Mancuso, C.; Calvani, M.; Rizzarelli, E.; Butterfield, D.A.; Stella, A.M. Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity. Nat. Rev. Neurosci. 2007, 8, 766–775. [Google Scholar] [CrossRef]
- Gulati, K.; Rai, N.; Ray, A. Nitric oxide and anxiety. Vitam. Horm. 2017, 103, 169–192. [Google Scholar] [PubMed]
- Kumar, A.; Chanana, P. Role of nitric oxide in stress-induced anxiety: From pathophysiology to therapeutic target. Vitam. Horm. 2017, 103, 147–167. [Google Scholar]
- Kurrikoff, T.; Lesch, K.P.; Kiive, E.; Konstabel, K.; Herterich, S.; Veidebaum, T.; Reif, E.; Harro, J. Association of a functional variant of the nitric oxide synthase 1 gene with personality, anxiety, and depressivness. Dev. Psychopathol. 2012, 24, 1225–1235. [Google Scholar] [CrossRef]
- Kaya, B.; Unal, S.; Karabulut, A.B.; Turkoz, Y. Altered diurnal variation of nitric oxide production in patients with panic disorder. Tohoku J. Exp. Med. 2004, 204, 147–154. [Google Scholar] [CrossRef]
- Zhu, Q.G.; Zhu, X.H.; Nemes, A.D.; Zhu, D.Y. Neuronal nitric oxide synthase and affective disorders. IBRO Rep. 2018, 5, 116–132. [Google Scholar] [CrossRef]
- Guimaraes, F.S.; de Aguiar, J.C.; Del Bel, E.A.; Ballejo, G. Anxiolytic effect of nitric oxide inhibitors microinjected into the dorsal central grey. Neuroreport 1994, 5, 1929–1932. [Google Scholar] [CrossRef]
- Vincent, S.R.; Kimura, H. Histochemical mapping of nitric oxide synthase in the rat brain. Neuroscience 1992, 46, 755–784. [Google Scholar] [CrossRef]
- Dun, N.J.; Dun, S.; Wong, R.K.; Förstermann, U. Colocalization of nitric oxide synthase and somatostatin immunoreactivity in rat dentate hilar neurons. Proc. Natl. Acad. Sci. USA 1994, 91, 2955–2959. [Google Scholar] [CrossRef]
- Bilbo, S.D.; Hotchkiss, A.K.; Chiavegatto, S.; Nelson, R.J. Blunted stress responses in delayed type hypersensitivity in mice lacking the neuronal isoform of nitric oxide synthase. J. Neuroimmunol. 2003, 140, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Workman, J.L.; Trainor, B.C.; Finy, M.S.; Nelson, R.J. Inhibition of neuronal nitric oxide reduces anxiety-like responses to pair housing. Behav. Brain Res. 2008, 187, 109–115. [Google Scholar] [CrossRef]
- Dunn, R.W.; Reed, T.A.; Copeland, P.D.; Frye, C.A. The nitric oxide synthase inhibitor 7-nitroindazole displays enhanced anxiolytic efficacy without tolerance in rats following subchronic administration. Neuropharmacology 1998, 37, 899–904. [Google Scholar] [CrossRef] [PubMed]
- Joung, H.Y.; Jung, E.Y.; Kim, K.; Lee, M.S.; Her, S.; Shim, I. The differential role of NOS inhibitors on stress-induced anxiety and neuroendocrine alterations in the rat. Behav. Brain Res. 2012, 235, 176–181. [Google Scholar] [CrossRef]
- Zhang, J.; Xuang, X.Y.; Ye, M.L.; Luo, C.X.; Wu, H.Y.; Hu, Y.; Zhou, Q.G.; Wu, D.L.; Zhu, L.J.; Zhu, D.Y. Neuronal nitric oxide synthase alteration accounts for the role of 5-HT1A receptor in modulating anxiety-related behaviors. J. Neurosci. 2010, 30, 2433–2441. [Google Scholar] [CrossRef]
- Southan, G.J.; Szabo, C. Selective pharmacological inhibition of distinct nitric oxide synthase isoforms. Biochem. Pharmacol. 1996, 51, 383–394. [Google Scholar] [CrossRef]
- Moore, P.K.; Handy, R.L. Selective inhibitors of neuronal nitric oxide synthase—Is no NOS really good fort the nervous system? Trends Pharmacol. Sci. 1997, 18, 204–211. [Google Scholar] [PubMed]
- Contestabile, A.; Monti, B.; Contestabile, A.; Ciani, E. Brain nitric oxide and its dual effect in neuroprotection/neurodegeneration: Understanding molecular mechanisms to devise drug approaches. Curr. Med. Chem. 2003, 10, 1241–1253. [Google Scholar] [CrossRef]
- Rees, D.D.; Palmer, R.M.; Schulz, R.; Hodson, H.F.; Moncada, S. Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. Br. J. Pharmacol. 1990, 101, 746–752. [Google Scholar] [CrossRef]
- Moncada, S.; Rees, D.D.; Schulz, R.; Palmer, R.M. Development and mechanism of specific supersensitivity to nitrovasodilators after inhibition of vascular nitric oxide synthesis in vivo. Proc. Natl. Acad. Sci. USA 1991, 88, 2166–2170. [Google Scholar] [CrossRef]
- Moore, P.K.; Babbedge, R.C.; Wallace, P.; Hart, S. L-NG-nitro arginine methyl ester exhibits antinociceptive activity in the mouse. Br. J. Pharmacol. 1991, 102, 198–202. [Google Scholar] [CrossRef]
- Nava, E.; Palmer, R.M.; Moncada, S. Inhibition of nitric oxide synthesis in septic shock: How much is beneficial? Lancet 1991, 338, 1555–1557. [Google Scholar] [CrossRef]
- Nagafuji, T.; Sugiyama, M.; Muto, A.; Makino, T.; Miyauchi, T.; Nabata, H. The neuroprotective effect of a potent and selective inhibitor of type I NOS (L-MIN) in a rat model of focal cerebral ischemia. Neuroreport 1995, 6, 1541–1545. [Google Scholar] [CrossRef]
- Zhang, F.; Ross, M.E.; Iadecola, C. Aminoguanidine ameliorates and L-arginine worsens brain damage from intraluminal middle cerebral artery occlusion. Stroke 1996, 27, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Dingman, A.; Lee, S.Y.; Derugin, N.; Wendland, M.F.; Vexler, Z.S. Aminoguanidine inhibits caspase-3 and calpain activation without affecting microglial activation following neonatal transient cerebral ischemia. J. Neurochem. 2006, 96, 1467–1479. [Google Scholar] [CrossRef] [PubMed]
- McNaught, K.S.; Jenner, P. Altered glial function causes neuronal death and increases neuronal susceptibility to 1-methyl-4-phenylpyridinium- and 6-hydroxydopamine-induced toxicity in astrocytic/ventral mesencephalic co-cultures. J. Neurochem. 1999, 73, 2469–2475. [Google Scholar] [CrossRef]
- Kurosaki, R.; Muramatsu, Y.; Michimata, M.; Matsubara, M.; Kato, H.; Imai, Y.; Itoyama, Y.; Araki, T. Role of nitric oxide synthase against MPTP neurotoxicity in mice. Neurol. Res. 2002, 24, 655–662. [Google Scholar] [CrossRef]
- Watanabe, Y.; Kato, H.; Araki, T. Protective action of neuronal nitric oxide synthase inhibitor in the MPTP mouse model of Parkinson’s disease. Metab. Brain Dis. 2008, 23, 51–69. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, L.; Biasibetti, R.; Swarowsky, A.; Leite, M.C.; Quincozes-Santos, A.; Quilfeldt, J.A.; Achaval, M.; Goncalves, C.A. Hippocampal alterations in rats submitted to streptozocin-induced dementia model are prevented by aminoguanidine. J. Alzheimers Dis. 2009, 17, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Quock, R.M.; Nguyen, E. Possible involvement of nitric oxide in chlordiazepoxide-induced anxiolysis in mice. Life Sci. 1992, 51, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Caton, P.W.; Tousman, S.A.; Quock, R.M. Involvement of nitric oxide in nitrous oxide anxiolysis in the elevated plus-maze. Pharmacol. Biochem. Behav. 1994, 48, 689–692. [Google Scholar] [CrossRef] [PubMed]
- Volke, V.; Kõks, S.; Vasar, E.; Bourin, M.; Bradwejn, J.; Männistö, P.T. Inhibition of nitric oxide synthase causes anxiolytic-like behaviour in an elevated plus-maze. Neuroreport 1995, 6, 1413–1416. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, C.L.; Del Bel, E.A.; Guimaraes, F.S. Effects of l-NOARG on plus maze performance in rats. Pharmacol. Biochem. Behav. 1997, 56, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Faria, M.S.; Muscara, M.N.; Moreno, H.; Teixeira, S.A.; Dias, H.B.; De Oliveira, B.; Graeff, F.G.; De Nucci, G. Acute inhibition of nitric oxide synthesis induces anxiolysis in the plus maze test. Eur. J. Pharmacol. 1997, 323, 37–43. [Google Scholar] [CrossRef]
- Vale, A.L.; Green, S.; Montgomery, A.M.; Shafi, S. The nitric oxide synthesis inhibitor L-NAME produces anxiogenic-like effects in the rat elevated plus-maze test, but not in the social interaction test. J. Psychopharmacol. 1998, 12, 268–272. [Google Scholar] [CrossRef]
- Calixto, A.V.; Vandresen, N.; De Nucci, G.; Moreno, H.; Faria, M.S. Nitric oxide may underlie learned fear in the elevated T-maze. Brain Res. Bull. 2001, 55, 37–42. [Google Scholar] [CrossRef]
- Monzon, M.E.; Varas, M.M.; De Barioglio, S.R. Anxiogenesis induced by nitric oxide synthase inhibition and anxiolytic effect of melanin-concentrating hormone (MCH) in rat brain. Peptides 2001, 22, 1043–1047. [Google Scholar] [CrossRef]
- Pokk, P.; Vali, M. The effects of the nitric oxide synthase inhibitors on the behavior of small-platform-stressed mice in the plus-maze test. Prog. Neuropsychopharmacol. Biol. Psychiatry 2002, 26, 241–247. [Google Scholar] [CrossRef]
- Czech, D.A.; Jacobson, E.B.; LeSueur-Reed, K.T.; Kazel, M.R. Putative anxiety-linked effects of the nitric oxide synthase inhibitor l-NAME in three murine exploratory behavior models. Pharmacol. Biochem. Behav. 2003, 75, 741–748. [Google Scholar] [CrossRef]
- Forestiero, D.; Manfrim, C.M.; Guimarães, F.S.; de Oliveira, R.M. Anxiolytic-like effects induced by nitric oxide synthase inhibitors microinjected into the medial amygdala of rats. Psychopharmacology 2006, 184, 166–172. [Google Scholar] [CrossRef]
- Spolidorio, P.C.M.; Echeverry, M.B.; Iomasa, M.; Guimaraes, F.S.; Del Bel, E.A. Anxiolytic effects induced by inhibition of the nitric oxide-cGMP pathway in the rat dorsal hippocampus. J. Psychopharmacol. 2007, 195, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Spiacci, A.J.; Kanamaru, F.; Guimarães, F.S.; Oliveira, R.M. Nitric oxide-mediated anxiolytic-like and antidepressant-like effects in animal models of anxiety and depression. Pharmacol. Biochem. Behav. 2008, 88, 247–255. [Google Scholar] [CrossRef]
- Calixto, A.V.; Duarte, F.S.; Moraes, C.K.; Faria, M.S.; De Lima, T.C. Nitric oxide involvement and neural substrates of the conditioned and innate fear as evaluated in the T-maze test in rats. Behav. Brain Res. 2008, 189, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Garg, R.; Kumar, P. Nitric oxide modulation mediates the protective effect of trazodone in a mouse model of chronic fatigue syndrome. Pharmacol. Rep. 2008, 60, 664–672. [Google Scholar]
- Masood, A.; Huang, Y.; Hajjhussein, H.; Xiao, L.; Li, H.; Wang, W.; Hamza, A.; Zhan, C.G.; O’Donnell, J.M. Anxiolytic effects of phosphodiesterase-2 inhibitors associated with increased cGMP signaling. J. Exp. Pharmacol. Ther. 2009, 331, 690–699. [Google Scholar] [CrossRef]
- Calixto, A.V.; Duarte, F.S.; Duzzioni, M.; Nascimento Häckla, L.P.; Faria, M.S.; De Lima, T.C.M. Role of ventral hippocampal nitric oxide/cGMP pathway in anxiety-related behaviors in rats submitted to the elevated T-maze. Behav. Brain. Res. 2010, 207, 112–117. [Google Scholar] [CrossRef]
- Gulati, K.; Ray, A. Differential neuromodulatory role of NO in anxiety and seizures: An experimental study. Nitric Oxide 2014, 43, 55–61. [Google Scholar] [CrossRef]
- Chakraborti, A.; Gulati, K.; Ray, A. Possible role of nitric oxide (NO) in the regulation of gender related differences in stress induced anxiogenesis in rats. Nitric Oxide 2014, 43, 74–80. [Google Scholar] [CrossRef]
- Zarrabian, S.; Jamali, S.; Fazli-Tabaei, S.; Haghparast, A. The cross-talk between dopaminergic and nitric oxide systems in the medial septal nucleus, and their distinct effects on anxiety-like behaviors in male rats. J. Psychiatr. Res. 2021, 141, 124–135. [Google Scholar] [CrossRef]
- Volke, V.; Soosaar, A.; Koks, S.; Bourin, M.; Mannisto, P.T.; Vasa, E. 7-Nitroindazole, a nitric oxide synthase inhibitor, has anxiolyticlike properties in exploratory models of anxiety. Psychopharmacology 1997, 131, 399–405. [Google Scholar] [CrossRef]
- Yildiz, F.; Ulak, G.; Erden, B.F.; Gacar, N. Anxiolytic-like effects of 7-nitroindazole in the rat plus-maze test. Pharmacol. Biochem. Behav. 2000, 65, 199–202. [Google Scholar] [CrossRef]
- Volke, V.; Wegener, G.; Bourin, M.; Vasar, E. Antidepressant- and anxiolytic-like effects of selective neuronal NOS inhibitor 1-(2-trifluoromethylphenyl)-imidazole in mice. Behav. Brain Res. 2003, 140, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Tonetto, L.L.M.; Terzian, A.L.; Del Bel, E.A.; Guimaraes, F.S.; Resstel, L.B.M. Inhibition of the NMDA receptor/Nitric Oxide pathway in the dorsolateral periaqueductal gray causes anxiolytic-like effects in rats submitted to the Vogel conflict test. Behav. Brain Funct. 2009, 5, 40. [Google Scholar] [CrossRef] [PubMed]
- Gilhotra, N.; Jain, H.; Dhingra, D. Differential effects of nitric oxide synthase inhibitors on anxiety in unstressed and stressed mice. Indian J. Exp. Biol. 2010, 48, 365–372. [Google Scholar] [PubMed]
- Aguiar, D.C.; Hott, S.C.; Deolindo, M.V.; Guimaraes, S.F.; Resstel, L.B.M. The dorsolateral periaqueductal grey N-methyl-D-aspartate/nitric oxide/cyclic guanosine monophosphate pathway modulates the expression of contextual fear conditioning in rats. J. Psychopharmacol. 2014, 28, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Lisboa, S.F.; Magesto, A.C.; Aguiar, J.C.; Resstel, L.B.; Guimaraes, F.S. Complex interaction between anandamide and the nitrergic system in the dorsolateral periaqueductal gray to modulate anxiety-like behavior in rats. Neuropharmacology 2013, 75C, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Vila-Verde, C.; Marinho, A.L.; Lisboa, S.F.; Guimarães, F.S. Nitric oxide in the prelimbic medial prefrontal cortex is involved in the anxiogenic-like effect induced by acute restraint stress in rats. Neuroscience 2016, 320, 30–42. [Google Scholar] [CrossRef] [PubMed]
- Hott, S.C.; Gomes, F.V.; Uliana, D.L.; Vale, G.T.; Tirapelli, C.R.; Resstel, L.B.M. Bed nucleus of the stria terminalis NMDA receptors and nitric oxide modulate contextual fear conditioning in rats. Neuropharmacology 2017, 112, 135–141. [Google Scholar] [CrossRef]
- Gilhotra, N.; Dhingra, D. Involvement of NO–cGMP pathway in anti-anxiety effect of aminoguanidine in stressed mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 2009, 13, 1502–1507. [Google Scholar] [CrossRef] [PubMed]
- Gilhotra, N.; Dhingra, D. Possible involvement of GABAergic and nitriergic systems for antianxiety-like activity of piperine in unstressed and stressed mice. Pharmacol. Rep. 2014, 66, 885–891. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, D.E.; Casarotto, P.C.; Spiacci, A.J.; Fernandes, G.G.; Pinheiro, L.C.; Tanus-Santos, J.E.; Zangrossi, H.J.; Guimaraes, F.S.; Joca, S.R.L.; Biojone, C. Activation of the TRKB receptor mediates the panicolytic-like effect of the NOS inhibitor aminoguanidine. Prog. Neuropsychopharmacol. Biol. Psychiatry 2019, 93, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Gomes, J.A.S.; Silva, J.F.; Marçal, A.P.; Silva, G.C.; Gomes, G.F.; de Oliveira, A.C.P.; Soares, V.L.; Oliveira, M.C.; Ferreira, A.V.M.; Aguiar, D.C. High-refined carbohydrate diet consumption induces neuroinflammation and anxiety-like behavior in mice. J. Nutr. Biochem. 2020, 77, 180317. [Google Scholar] [CrossRef] [PubMed]
- Coelho, A.A.; Villa-Verde, C.; Sartim, A.G.; Uliana, D.L.; Braga, L.A.; Guimaraes, F.S.; Lisboa, S.F. Inducible nitric oxide synthase inhibition in the medial prefrontal cortex attenuates the anxiogenic-like effect of acute restraint stress via CB1 receptors. Front. Psychiatry 2022, 13, 923177. [Google Scholar] [CrossRef]
- Gordon, J.A.; Hen, R. The serotonergic system and anxiety. Neuromolecular Med. 2004, 5, 27–40. [Google Scholar] [CrossRef]
- Nikolaus, S.; Mamlins, E.; Hautzel, H.; Muller, H.W. Acute anxiety disorder, major depressive disorder, bipolar disorder and schizophrenia are related to different patterns of nigrostriatal and mesolimbic dopamine dysfunction. Rev. Neurosci. 2019, 30, 381–426. [Google Scholar] [CrossRef]
- Rasmusson, A.M.; Shi, L.; Duman, R. Downregulation of BDNF mRNA in the hippocampal dentate gyrus after re-exposure to cues previously associated with footshock. Neuropsychopharmacology 2002, 27, 133–142. [Google Scholar] [CrossRef]
- Michopoulos, V.; Powers, A.; Gillespie, C.F.; Ressler, K.J.; Jovanovic, T. Inflammation in fear and anxiety-based disorders: PTSD, GAD and beyond. Neuropsychopharmacology 2017, 42, 254–270. [Google Scholar] [CrossRef]
- Salim, S. Oxidative stress and psychological disorders. Curr. Neuropharmacol. 2014, 12, 140–147. [Google Scholar] [CrossRef]
- Smaga, I.; Niedzielska, E.; Gawlik, M.; Moniczewski, A.; Krzek, I.; Przegalinski, E.; Pera, J.; Filip, M. Oxidative stress as an etiological factor and a potential treatment target of psychiatric disorders. Part 2. Depression, anxiety, schizophrenia and autism. Pharmacol. Rep. 2015, 67, 569–580. [Google Scholar] [CrossRef]
- Wegener, G.; Volke, V.; Rosenberg, R. Endogenous nitric oxide decreases hippocampal levels of serotonin and dopamine in vivo. Br. J. Pharmacol. 2000, 130, 575–580. [Google Scholar] [CrossRef]
- Matsumoto, K.; Yobimoto, K.; Huong, N.T.; Abdel-Fattah, M.; Van Hien, T.; Watanabe, H. Psychological stress-induced enhancement of brain lipid peroxidation via nitric oxide systems and its modulation by anxiolytic and anxiogenic drugs in mice. Brain Res. 1999, 839, 74–84. [Google Scholar] [CrossRef]
- Permpoonputtana, K.; Govitrappong, P. The anti-inflammatory effect of melatonin on methamphetamine-induced pro-inflammatory mediators in human neuroblastoma dopamine SH-SY5Y cells. Neurotox. Res. 2013, 23, 189–199. [Google Scholar] [CrossRef]
- Beheshti, F.; Hashemzehi, M.; Hosseini, M.; Marefati, N.; Memarpour, S. Inducible nitric oxide synthase plays a role in depression- and anxiety-like behaviors chronically induced by lipopolysaccharide in rats: Evidence from inflammation and oxidative stress. Behav. Brain Res. 2020, 392, 112720. [Google Scholar] [CrossRef]
- Amir, S.; Rackover, M.; Frunk, D. Blockers of nitric oxide synthase inhibit stress activation of c-fos expression in neurons of the hypothalamic paraventricular nucleus in the rat. Neuroscience 1997, 77, 623–627. [Google Scholar]
- Canossa, M.; Giordano, E.; Cappello, S.; Guarnieri, C.; Ferri, S. Nitric oxide downregulates brain-derived neurotrophic factor secretion in cultured hippocampal neurons. Proc. Natl. Acad. Sci. USA 2002, 99, 3282–3287. [Google Scholar] [CrossRef] [PubMed]
- Salehpour, M.; Khodagholi, F.; Meymand, Z.A.; Nourshahi, M.; Ashabi, G. Exercise training with concomitant nitric oxide synthase inhibition improved anxiogenic behavior, spatial cognition, and BDNF/P70S6 kinase activation in 20-month-old rat. Appl. Physiol. Nutr. Metab. 2018, 43, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zhu, D.Y. Hippocampus and nitric oxide. Vitam. Horm. 2017, 96, 127–160. [Google Scholar]
Species | Gender | Drug | Dose Range | Route | Behavioural Task | Effect | Reference |
---|---|---|---|---|---|---|---|
Mouse | Male | L-NOARG | 10 mg/kg | s.c. acute | EPM | Reversed chlordiazepoxide-induced anxiolytic effects. | [52] |
Mouse | Male | L-NOARG | 10 mg/kg | s.c. acute | EPM | Antagonized N2O-induced anxiolytic effects. | [53] |
Rat | Male | L-NAME L-NOARG | 10–200 nmol 10–100 nmol | intra-dlPAG intra-dlPAG | EPM | Anxiolytic effect. Anxiolytic effect. | [30] |
Rat | Male | L-NAME | 1–20 mg/kg | i.p. acute | EPM | Anxiolytic effect (10 mg/kg). | [54] |
Rat | Male | L-NOARG L-NOARG | 7.5–120 mg/kg 3.75–60 mg/kg | i.p. acute i.p. chronic | EPM | Anxiogenic (30–120 mg/kg). No effect. | [55] |
Rat | Male | L-NAME L-NAME | 10–60 mg/kg 15–60 mg/kg | i.p. acute i.p. chronic | EPM | Anxiolytic effect. No effect | [56] |
Rat | Male | L-NAME | 12.5–50 mg/kg | i.p. acute | EPM SI | Anxiogenic effect. No effect. | [57] |
Rat | Male | L-NAME | 5, 10, 50 mg/kg | i.p. acute | ETM | Anxiolytic effect (50 mg/kg). | [58] |
Rat | Male | L-NOARG | 4 μL | intra-hipp. | EPM | Anxiogenic effect. | [59] |
Mouse | Male | L-NOARG L-NAME | 20, 40 mg/kg 20, 40 mg/kg | i.p. acute i.p. acute | SP model EPM | Anxiolytic effect (20 in control but not in stressed mice. Anxiogenic effect (40 mg/kg) in control, ineffective in stressed mice. | [60] |
Mouse | Male | L-NAME | 10, 25, 50 mg/kg | i.p. acute | EPM LD HB | Anxiogenic effect (25 and 50 mg/kg) evidenced in LD and HB. | [61] |
Rat | Male | L-NAME | 50–200 nmol | intra-MeA | EPM | Anxiolytic effect. | [62] |
Rat | Male | L-NAME | 15–300 nmol | intra-DG | EPM | Anxiolytic effect. | [63] |
Rat | Male | L-NOARG L-NAME | 50–300 nmol 25, 400 nmol | intra-DRN | Vogel test EPM | Anxiolytic effect (25 nmol) and hypomotility (400 nmol). | [64] |
Rat | Male | L-NAME | 200 nmol | intra-BLA intra-dlPAG intra-LSN | ETM | Anxiolytic effect (200 nmol). Anxiolytic effect (200 nmol). Anxiolytic effect (200 nmol). | [65] |
Mouse | Male | L-NAME | 5 mg/kg | i.p. acute i | cFST EPM MC | Anxiolytic effect. Potentiated the antioxidant action of trazodone. | [66] |
Mouse | Male | L-NAME | 50 mg/kg | i.p. acute | EPM HB OF | Anxiogenic effect. Decreased cGMP. | [67] |
Rat | Male | L-NAME | 50, 200, 400 nmol | intra-VH | ETM | Anxiolytic effect (200 nmol). | [68] |
Rat | Male | L-NAME | 10 mg/kg | i.p. acute | RS EPM | Attenuated stress-induced anxiety response. | [36] |
Rat | Male | L-NAME | 30 mg/kg | i.p. acute | EPM | Aggravated the anxiogenic effect of aminophylline. | [69] |
Rat | Male Female | L-NAME | 50 mg/kg | i.p acute | RS EPM | Aggravated the anxiogenic action of RS either in male or female rats. | [70] |
Rat | Male | L-NAME | 10 μg/rat | intra-MS | EPM | Antagonized the anxiogenic effect of the D2/D3 receptor agonist quinpirole. | [71] |
Species | Gender | Drug | Dose Range | Route | Behavioural Task | Effect | Reference |
---|---|---|---|---|---|---|---|
Rat | Male | 7-NI | 1–80 mg/kg | i.p. acute | EPM SI OF | Anxiolytic effect (20–40 mg/kg). Sedative effect (10 mg/kg). | [72] |
Mouse | Male | 7-NI | 0.1–120 mg/kg | i.p. acute | EPM LD OF | Anxiolytic/sedative effect (80–120 mg/kg). | |
Rat | Male | 7-NI | 3–30 mg/kg 30 mg/kg | i.p. acute i.p. chronic | EPM | Anxiolytic effect (30 mg/kg). Anxiolytic effect (30 mg/kg). | [35] |
Rat | Male | 7-NI | 20–120 mg/kg | i.p. acute | EPM | Anxiolytic effect (90 mg/kg). Sedative effect (120 mg/kg). | [73] |
Mouse | Male | 7-NI | 20–120 mg/kg | i.p. acute | SP EPM | Anxiolytic effect (20–80 mg/kg) in control mice. Anxiogenic effect (20 mg/kg) in stressed mice. | [60] |
Mouse | Male | 7-NI TRIM | 10–50 mg/kg 10–50 mg/kg | i.p. acute i.p. acute | LD OF RR | TRIM (50 mg/kg) but not 7-NI expressed an anxiolytic effect. Both compounds caused sedation and motor incoordination. | [74] |
Rat | Male | 7-NI | 5, 10 nmol | intra-MeA | EPM LD | Anxiolytic effect (10 nmol). | [61] |
Rat | Male | 7-NI | 10–100 nmol | intra-DG | EPM Vogel | Anxiolytic effect (100 nmol). | [62] |
Rat | Male | 7-NI | 1–10 nmol | intra-DRN | EPM | Anxiolytic effect (1 nmol) and hypomotility (10 nmol). | [63] |
Rat | Male | L-NPA | 0.08 nmol | intra-dlPAG | Vogel | Anxiolytic effect. | [75] |
Rat | Male | 7-NI | 10, 20 nmol | intra-VH | ETM | Anxiolytic effect (20 nmol). | [68] |
Mouse | Male | 7-NI | 20, 40 mg/kg | i.p. acute | stress EPM LD | Anxiolytic effect in unstressed mice. | [76] |
Rat | Male | L-NPA | 0.04 nmol | intra-dlPAG | CFC | Anxiolytic effect. Attenuated freezing behavior. | [77] |
Rat | Male | L-NPA | 0.1–100 nmol | intra-dlPAG | EPM | Anxiolytic effect (10 nmol). Anxiogenic effect (100 nmol). At a sub-effective dose (0.1 nmol) in combination with a sub-effective dose (0.1 pmol) of the CB1 cannabinoid receptor agonist anandamide induced an anxiolytic effect. | [78] |
Rat | Male | 7-NI | 30 mg/kg | i.p., acute | EPM | Aggravated the anxiogenic effect of aminophylline. | [69] |
Mouse | Male | L-NPA | 0.04 nmol | vmPFC | RS EPM | Prevented the anxiogenic effects of restrained stress. | [79] |
Rat | Male | L-NPA | 0.4 nmol | BNST | CFC | Attenuated freezing behavior. | [80] |
Species | Gender | Drug | Dose Range | Route | Behavioural Task | Effect | Reference |
---|---|---|---|---|---|---|---|
Mouse | Male Female | AG | 12.5, 25, 50 mg/kg | i.p. acute | RS EPM LD OF | Anxiolytic effect and normalization of nitrite levels (50 mg/kg) of the stressed but not unstressed mice’ Attenuated the anxiogenic effect of the phosphodiesterase 5 inhibitor sildenafil. | [76,81] |
Mouse | Male | AG | 50, 100 mg/kg | i.p. acute | RS EPM LD | Anxiolytic effect in stressed mice. | [81] |
Mouse | Male | AG | 50 mg/kg | i.p. acute | RS EPM LD SI | Potentiated the anxiolytic effect of piperine in stressed mice. | [82] |
Rat | Male | AG | 1–20 mg/kg | i.p. acute i.p. chronic | ETM | Anxiolytic effect (chronic treatment). | [83] |
Mouse | Male | AG | 50 mg/kg 3.75–60 mg/kg | i.p. acute | HRCD NSFT | Attenuated the anxiogenic effect and the increased nitrite plasmatic levels caused by HRCD. | [84] |
Rat | Male | 1400 W | 10−4, 10−3, 10−2 nmol | intra-mPFC | RS EPM | Anxiolytic effect in stressed but not unstressed rats. | [85] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pitsikas, N. Nitric Oxide (NO) Synthase Inhibitors: Potential Candidates for the Treatment of Anxiety Disorders? Molecules 2024, 29, 1411. https://doi.org/10.3390/molecules29061411
Pitsikas N. Nitric Oxide (NO) Synthase Inhibitors: Potential Candidates for the Treatment of Anxiety Disorders? Molecules. 2024; 29(6):1411. https://doi.org/10.3390/molecules29061411
Chicago/Turabian StylePitsikas, Nikolaos. 2024. "Nitric Oxide (NO) Synthase Inhibitors: Potential Candidates for the Treatment of Anxiety Disorders?" Molecules 29, no. 6: 1411. https://doi.org/10.3390/molecules29061411
APA StylePitsikas, N. (2024). Nitric Oxide (NO) Synthase Inhibitors: Potential Candidates for the Treatment of Anxiety Disorders? Molecules, 29(6), 1411. https://doi.org/10.3390/molecules29061411