Atomistic Insights into the Influence of High Concentration H2O2/H2O on Al Nanoparticles Combustion: ReaxFF Molecules Dynamics Simulation
Abstract
:1. Introduction
2. Results
2.1. Reactive Force Field (ReaxFF) Molecular Dynamics
2.2. Model Construction
2.3. Computational Details and Post-Processing
3. Discussion
3.1. Influence of the Addition of H2O on the Combustion of ANPs in H2O2
3.2. Atomic Perspective of the Reaction Mechanism of ANPs/H2O2/H2O
3.3. Adiabatic Combustion Processes in the ANPs/H2O2/H2O System
3.4. Influence of the Heating Speed on the Combustion of the System
3.5. Influence of the Oxide Layer on the Combustion of the System
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Q.H.; Shreeve, J.M. Ionic liquid propellants: Future fuels for space propulsion. Chem. Eur. J. 2013, 19, 15446–15451. [Google Scholar] [CrossRef] [PubMed]
- Gohardani, A.S.; Stanojev, J.; Demaire, A.; Anflo, K.; Persson, M.; Wingborg, N.; Nilsson, C. Green space propulsion: Opportunities and prospects. Prog. Aerosp. Sci. 2014, 71, 128–149. [Google Scholar] [CrossRef]
- Nosseir, A.E.S.; Cervone, A.; Pasini, A. Review of state-of-the-art green monopropellants: For propulsion systems analysts and designers. Aerospace 2021, 8, 20. [Google Scholar] [CrossRef]
- Barato, F. Review of alternative sustainable fuels for hybrid rocket propulsion. Aerospace 2023, 10, 643. [Google Scholar] [CrossRef]
- Santos, L.B.; Ribeiro, C.A.; Capela, J.M.V.; Crespi, M.S.; Pimentel, M.A.S.; De Julio, M. Kinetic parameters for thermal decomposition of hydrazine. J. Therm. Anal. Calorim. 2013, 113, 1209–1216. [Google Scholar] [CrossRef]
- Kumar, P. Advances in phase stabilization techniques of AN using KDN and other chemical compounds for preparing green oxidizers. Def. Technol. 2019, 15, 949–957. [Google Scholar] [CrossRef]
- Guseinov, S.L.; Fedorov, S.G.; Kosykh, V.A.; Storozhenko, P.A. Hydrogen peroxide decomposition catalysts used in rocket engines. Russ. J. Appl. Chem. 2020, 93, 467–487. [Google Scholar] [CrossRef]
- Jung, S.; Choi, S.; Heo, S.; Kwon, S. Scaling of catalyst bed for hydrogen peroxide monopropellant thrusters using catalytic decomposition modeling. Acta Astronaut. 2021, 187, 167–180. [Google Scholar] [CrossRef]
- Okninski, A.; Surmacz, P.; Bartkowiak, B.; Mayer, T.; Sobczak, K.; Pakosz, M.; Kaniewski, D.; Matyszewski, J.; Rarata, G.; Wolanski, P. Development of green storable hybrid rocket propulsion technology using 98% hydrogen peroxide as oxidizer. Aerospace 2021, 8, 234–257. [Google Scholar] [CrossRef]
- Markandan, K.; Chin, J.K.; Cheah, K.H.; Tan, M.T.T. Recent developments in ceramic microthrusters and the potential applications with green propellants: A review. Clean Technol. Environ. Policy 2018, 20, 1941–1950. [Google Scholar] [CrossRef]
- Wang, Z.D.; Herbinet, O.; Hansen, N.; Battin-Leclerc, F. Exploring hydroperoxides in combustion: History, recent advances and perspectives. Prog. Energy Combust. Sci. 2019, 73, 132–181. [Google Scholar] [CrossRef]
- Parzybut, A.; Surmacz, P.; Gut, Z. Impact of hydrogen peroxide concentration on manganese oxide and platinum catalyst bed performance. Aerospace 2023, 10, 556. [Google Scholar] [CrossRef]
- Cong, Y.; Zhang, T.; Li, T.; Suo, J.W.; Wang, X.D.; Ma, L.; Liang, D.B.; Lin, L.W. Propulsive performance of a hypergolic H2O2/kerosene bipropellant. J. Propuls. Power 2004, 20, 83–86. [Google Scholar] [CrossRef]
- Li, X.T.; Tian, H.; Yu, N.J.; Cai, G.B. Experimental investigation of fuel regression rate in a HTPB based lab-scale hybrid rocket motor. Acta Astronaut. 2014, 105, 95–100. [Google Scholar] [CrossRef]
- Tian, H.; Sun, X.L.; Guo, Y.D.; Wang, P.F. Combustion characteristics of hybrid rocket motor with segmented grain. Aerosp. Sci. Technol. 2015, 46, 537–547. [Google Scholar] [CrossRef]
- Li, S.; Ge, Y.F.; Wei, X.L.; Li, T. Mixing and combustion modeling of hydrogen peroxide/kerosene shear-coaxial jet flame in lab-scale rocket engine. Aerosp. Sci. Technol. 2016, 56, 148–154. [Google Scholar] [CrossRef]
- Li, H.X.; Ye, L.; Wei, X.L.; Li, T.; Li, S. The design and main performance of a hydrogen peroxide/kerosene coaxial-swirl injector in a lab-scale rocket engine. Aerosp. Sci. Technol. 2017, 70, 636–643. [Google Scholar] [CrossRef]
- John, J.; Nandagopalan, P.; Baek, S.W.; Cho, S.J. Hypergolic ignition delay studies of solidified ethanol fuel with hydrogen peroxide for hybrid rockets. Combust. Flame 2020, 212, 205–215. [Google Scholar] [CrossRef]
- Okninski, A. On use of hybrid rocket propulsion for suborbital vehicles. Acta Astronaut. 2018, 145, 1–10. [Google Scholar] [CrossRef]
- Starik, A.M.; Savel’ev, A.M.; Titova, N.S. Specific features of ignition and combustion of composite fuels containing aluminum nanoparticles (Review). Combust. Explos. Shock. Waves 2015, 51, 197–222. [Google Scholar] [CrossRef]
- Sundaram, D.S.; Yang, V.; Zarko, V.E. Combustion of nano aluminum particles (Review). Combust. Explos. Shock. Waves 2015, 51, 173–196. [Google Scholar] [CrossRef]
- DeLuca, L.T. Overview of Al-based nanoenergetic ingredients for solid rocket propulsion. Def. Technol. 2018, 14, 357–365. [Google Scholar] [CrossRef]
- Vadhe, P.P.; Pawar, R.B.; Sinha, R.K.; Asthana, S.N.; Rao, A.S. Cast aluminized explosives. Combust. Explos. Shock. Waves 2008, 44, 461–477. [Google Scholar] [CrossRef]
- Kim, Y.; Park, Y.; Yoh, J.J. Slow and rapid thermal decomposition characteristics of enhanced blast explosives for burning in fuel-rich, oxygen-rich conditions. Thermochim. Acta 2019, 678, 178300. [Google Scholar] [CrossRef]
- Pang, W.Q.; Fan, X.Z.; Wang, K.; Chao, Y.M.; Xu, H.X.; Qin, Z.; Zhao, F.Q. Al-based nano-sized composite energetic materials (Nano-CEMs): Preparation, characterization, and performance. Nanomaterials 2020, 10, 1039. [Google Scholar] [CrossRef] [PubMed]
- Jayaraman, K.; Sivakumar, P.M.; Zarrabi, A.; Sivakumar, R.; Jeyakumar, S. Combustion characteristics of nanoaluminium-based composite solid propellants: An overview. J. Chem. 2021, 2021, 5520430. [Google Scholar] [CrossRef]
- He, Q.Q.; Wang, J.; Mao, Y.F.; Cao, W.; Chen, J.; Nie, F.D. An effective strategy to improve combustion and pressure output performance of HMX/Al. Combust. Flame 2022, 244, 112281. [Google Scholar] [CrossRef]
- Sabourin, J.L.; Risha, G.A.; Yetter, R.A.; Son, S.F.; Tappan, B.C. Combustion characteristics of nanoaluminum, liquid water, and hydrogen peroxide mixtures. Combust. Flame 2008, 154, 587–600. [Google Scholar] [CrossRef]
- Zaseck, C.R.; Son, S.F.; Pourpoint, T.L. Combustion of micron-aluminum and hydrogen peroxide propellants. Combust. Flame 2013, 160, 184–190. [Google Scholar] [CrossRef]
- Schmitt, M.M.; Bowden, P.R.; Tappan, B.C.; Henneke, D. Steady-state shock-driven reactions in mixtures of nano-sized aluminum and dilute hydrogen peroxide. J. Energetic Mater. 2018, 36, 266–277. [Google Scholar] [CrossRef]
- Sundaram, D.S.; Yang, V. Combustion of micron-sized aluminum particle, liquid water, and hydrogen peroxide mixtures. Combust. Flame 2014, 161, 2469–2478. [Google Scholar] [CrossRef]
- Chu, Q.Z.; Shi, B.L.; Liao, L.J.; Luo, K.H.; Wang, N.F.; Huang, C.G. Ignition and oxidation of core-shell Al/Al2O3 nanoparticles in an oxygen atmosphere: Insights from molecular dynamics simulation. J. Phys. Chem. C 2018, 122, 29620–29627. [Google Scholar] [CrossRef]
- Ashraf, C.; van Duin, A.C.T. Extension of the ReaxFF combustion force field toward syngas combustion and initial oxidation kinetics. J. Phys. Chem. A 2017, 121, 1051–1068. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.D.; Cheng, X.L.; Zhang, C.Y.; Lu, Z.P. Responses of core-shell Al/Al2O3 nanoparticles to heating: ReaxFF molecular dynamics simulations. J. Phys. Chem. C 2018, 122, 9191–9197. [Google Scholar] [CrossRef]
- Hong, D.K.; Li, Z.H.; Si, T.; Guo, X. A study of the effect of H2O on char oxidation during O2/H2O combustion using reactive dynamic simulation. Fuel 2020, 280, 118713. [Google Scholar] [CrossRef]
- Liu, J.P.; Liu, P.G.; Wang, M.J.; Wang, W.C.; Lv, F.W.; Sun, R.C.; Yang, Y.X. Combustion of Al nanoparticles coated with ethanol/ether molecules by non-equilibrium molecular dynamics simulations. Mater. Today Commun. 2020, 22, 100819. [Google Scholar] [CrossRef]
- Cheng, Y.X.; Zhao, Y.; Zhao, F.Q.; Xu, S.Y.; Ju, X.H.; Ye, C.C. ReaxFF simulations on the combustion of Al and n-butanol nanofluid. Fuel 2022, 330, 125465. [Google Scholar] [CrossRef]
- Bai, Z.Z.; Jiang, X.Z.; Luo, K.H. Understanding mechanisms of pyridine oxidation with ozone addition via reactive force field molecular dynamics simulations. Chem. Eng. Sci. 2023, 266, 118290. [Google Scholar] [CrossRef]
- Li, G.; Niu, L.L.; Hao, W.Z.; Liu, Y.; Zhang, C.Y. Atomistic insight into the microexplosion-accelerated oxidation process of molten aluminum nanoparticles. Combust. Flame 2020, 214, 238–250. [Google Scholar] [CrossRef]
- Zhao, Y.; Ma, D.X.; Zhao, F.Q.; Xu, S.Y.; Ju, X.H. Atomic insights into the combustion behavior of Al nano-droplets with H2O vapor at high temperature. Appl. Surf. Sci. 2022, 586, 152777. [Google Scholar] [CrossRef]
- Hao, W.Z.; Li, G.; Niu, L.L.; Gou, R.J.; Zhang, C.Y. Molecular dynamics insight into the evolution of Al nanoparticles in the thermal decomposition of energetic materials. J. Phys. Chem. C 2020, 124, 10783–10792. [Google Scholar] [CrossRef]
- Zhao, Y.; Mei, Z.; Zhao, F.Q.; Xu, S.Y.; Ju, X.H. Atomic perspectives revealing the evolution behavior of aluminum nanoparticles in energetic materials. Appl. Surf. Sci. 2021, 563, 150296. [Google Scholar] [CrossRef]
- van Duin, A.C.T.; Dasgupta, S.; Lorant, F.; Goddard, W.A. ReaxFF: A reactive force field for hydrocarbons. J. Phys. Chem. A 2001, 105, 9396–9409. [Google Scholar] [CrossRef]
- Chenoweth, K.; van Duin, A.C.T.; Goddard, W.A. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. J. Phys. Chem. A 2008, 112, 1040–1053. [Google Scholar] [CrossRef] [PubMed]
- Senftle, T.P.; Hong, S.; Islam, M.M.; Kylasa, S.B.; Zheng, Y.X.; Shin, Y.K.; Junkermeier, C.; Engel-Herbert, R.; Janik, M.J.; Aktulga, H.M.; et al. The ReaxFF reactive force-field: Development, applications and future directions. npj Comput. Mater. 2016, 2, 15011. [Google Scholar] [CrossRef]
- Plimpton, S. Fast parallel algorithms for short-range molecular-dynamics. J. Comput. Phys. 1995, 117, 15011. [Google Scholar] [CrossRef]
- Aktulga, H.M.; Fogarty, J.C.; Pandit, S.A.; Grama, A.Y. Parallel reactive molecular dynamics: Numerical methods and algorithmic techniques. Parallel Comput. 2012, 38, 245–259. [Google Scholar] [CrossRef]
- Hong, S.; van Duin, A.C.T. Atomistic-scale analysis of carbon coating and its effect on the oxidation of aluminum nanoparticles by ReaxFF-molecular dynamics simulations. J. Phys. Chem. C 2016, 120, 9464–9474. [Google Scholar] [CrossRef]
- Li, G.; Niu, L.L.; Xue, X.G.; Hao, W.Z.; Liu, Y.; Zhang, C.Y. Atomic perspective about the reaction mechanism and H2 production during the combustion of Al nanoparticles/H2O2 bipropellants. J. Phys. Chem. A 2020, 124, 7399–7410. [Google Scholar] [CrossRef]
- Dong, R.K.; Mei, Z.; Zhao, F.Q.; Xu, S.Y.; Ju, X.H. Initial oxidation of nano-aluminum particles by H2O/H2O2: Molecular dynamics simulation. Int. J. Hydrogen Energy 2021, 46, 1234–1245. [Google Scholar] [CrossRef]
- Martínez, L.; Andrade, R.; Birgin, E.G.; Martínez, J.M. PACKMOL: A package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 2009, 30, 2157–2164. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Li, X.X.; Wang, M.J.; Guo, L. Dynamic profiles of tar products during Naomaohu coal pyrolysis revealed by large-scale reactive molecular dynamic simulation. Fuel 2019, 253, 910–920. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 2010, 18, 15012. [Google Scholar] [CrossRef]
- Luo, Y.R.; Kerr, J.A. Bond Dissociation Energies; CRC Press: Boca Raton, FL, USA, 2012; Volume 89, p. 89. [Google Scholar]
Molar Ratio (H2O) | System Component | Size (Angstrom3) | Total Atoms |
---|---|---|---|
0 | 1000H2O2 + 675Al | 100 × 100 × 100 | 4675 |
10% | 900H2O2 + 100H2O + 675Al | 100 × 100 × 100 | 4575 |
20% | 800H2O2 + 200H2O + 675Al | 100 × 100 × 100 | 4475 |
30% | 700H2O2 + 300H2O + 675Al | 100 × 100 × 100 | 4375 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, X.; Zhang, P.; Zhang, H.; Yuan, S. Atomistic Insights into the Influence of High Concentration H2O2/H2O on Al Nanoparticles Combustion: ReaxFF Molecules Dynamics Simulation. Molecules 2024, 29, 1567. https://doi.org/10.3390/molecules29071567
Yu X, Zhang P, Zhang H, Yuan S. Atomistic Insights into the Influence of High Concentration H2O2/H2O on Al Nanoparticles Combustion: ReaxFF Molecules Dynamics Simulation. Molecules. 2024; 29(7):1567. https://doi.org/10.3390/molecules29071567
Chicago/Turabian StyleYu, Xindong, Pengtu Zhang, Heng Zhang, and Shiling Yuan. 2024. "Atomistic Insights into the Influence of High Concentration H2O2/H2O on Al Nanoparticles Combustion: ReaxFF Molecules Dynamics Simulation" Molecules 29, no. 7: 1567. https://doi.org/10.3390/molecules29071567
APA StyleYu, X., Zhang, P., Zhang, H., & Yuan, S. (2024). Atomistic Insights into the Influence of High Concentration H2O2/H2O on Al Nanoparticles Combustion: ReaxFF Molecules Dynamics Simulation. Molecules, 29(7), 1567. https://doi.org/10.3390/molecules29071567