Bicarbazole-Benzophenone Based Twisted Donor-Acceptor Derivatives as Potential Blue TADF Emitters for OLEDs
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Thermal and Morphological Properties
2.3. Electrochemical and Photo-Physical Properties
2.4. Electroluminescent Properties
3. Materials and Methods
3.1. Instrumentation
3.2. Synthesis and Structural Analysis
3.3. Fabrication and Characterization of Devices
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hong, G.; Gan, X.; Leonhardt, C.; Zhang, Z.; Seibert, J.; Busch, J.M.; Bräse, S. A Brief History of OLEDs—Emitter Development and Industry Milestones. Adv. Mater. 2021, 33, 2005630. [Google Scholar] [CrossRef]
- Luo, Y.-J.; Lu, Z.-Y.; Huang, Y. Triplet Fusion Delayed Fluorescence Materials for OLEDs. Chin. Chem. Lett. 2016, 27, 1223–1230. [Google Scholar] [CrossRef]
- Zeng, H.; Huang, Q.; Liu, J.; Huang, Y.; Zhou, J.; Zhao, S.; Lu, Z. A Red-Emissive Sextuple Hydrogen-Bonding Self-Assembly Molecular Duplex Bearing Perylene Diimide Fluorophores for Warm-White Organic Light-Emitting Diode Application. Chin. J. Chem. 2016, 34, 387–396. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, W.; Ye, K.; Zhang, H. Synthesis, Structure and Properties of a Novel Benzothiazole-Based Diboron-Bridged π-Conjugated Ladder. Acta Chim. Sin. 2016, 74, 179. [Google Scholar] [CrossRef]
- Yu, Y.; Yang, J.; Ren, Z.; Xie, G.; Li, Q.; Li, Z. Synthesis of Solution Processable Blue AIEgens and the Device Performance. Acta Chim. Sin. 2016, 74, 865. [Google Scholar] [CrossRef]
- Im, Y.; Byun, S.Y.; Kim, J.H.; Lee, D.R.; Oh, C.S.; Yook, K.S.; Lee, J.Y. Recent Progress in High-Efficiency Blue-Light-Emitting Materials for Organic Light-Emitting Diodes. Adv. Funct. Mater. 2017, 27, 1603007. [Google Scholar] [CrossRef]
- Root, S.E.; Savagatrup, S.; Printz, A.D.; Rodriquez, D.; Lipomi, D.J. Mechanical Properties of Organic Semiconductors for Stretchable, Highly Flexible, and Mechanically Robust Electronics. Chem. Rev. 2017, 117, 6467–6499. [Google Scholar] [CrossRef]
- Kim, J.-J.; Han, M.-K.; Noh, Y.-Y. Flexible OLEDs and Organic Electronics. Semicond. Sci. Technol. 2011, 26, 030301. [Google Scholar] [CrossRef]
- Jeong, E.G.; Kwon, J.H.; Kang, K.S.; Jeong, S.Y.; Choi, K.C. A Review of Highly Reliable Flexible Encapsulation Technologies towards Rollable and Foldable OLEDs. J. Inf. Disp. 2020, 21, 19–32. [Google Scholar] [CrossRef]
- Reineke, S.; Lindner, F.; Schwartz, G.; Seidler, N.; Walzer, K.; Lüssem, B.; Leo, K. White Organic Light-Emitting Diodes with Fluorescent Tube Efficiency. Nature 2009, 459, 234–238. [Google Scholar] [CrossRef]
- Sun, Y.; Giebink, N.C.; Kanno, H.; Ma, B.; Thompson, M.E.; Forrest, S.R. Management of Singlet and Triplet Excitons for Efficient White Organic Light-Emitting Devices. Nature 2006, 440, 908–912. [Google Scholar] [CrossRef]
- Wang, J.; Liang, J.; Xu, Y.; Liang, B.; Wei, J.; Li, C.; Mu, X.; Ye, K.; Wang, Y. Purely Organic Phosphorescence Emitter-Based Efficient Electroluminescence Devices. J. Phys. Chem. Lett. 2019, 10, 5983–5988. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yue, L.; Yu, Y.; Liu, B.; Dang, J.; Sun, Y.; Zhou, G.; Wu, Z.; Wong, W. Strategically Formulating Aggregation-Induced Emission-Active Phosphorescent Emitters by Restricting the Coordination Skeletal Deformation of Pt(II) Complexes Containing Two Independent Monodentate Ligands. Adv. Opt. Mater. 2020, 8, 2000079. [Google Scholar] [CrossRef]
- Rajamalli, P.; Senthilkumar, N.; Huang, P.-Y.; Ren-Wu, C.-C.; Lin, H.-W.; Cheng, C.-H. New Molecular Design Concurrently Providing Superior Pure Blue, Thermally Activated Delayed Fluorescence and Optical Out-Coupling Efficiencies. J. Am. Chem. Soc. 2017, 139, 10948–10951. [Google Scholar] [CrossRef]
- Zhu, M.; Yang, C. Blue Fluorescent Emitters: Design Tactics and Applications in Organic Light-Emitting Diodes. Chem. Soc. Rev. 2013, 42, 4963–4976. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Lu, T.; Cheng, Z.; Chang, Y.; Liu, H.; Wang, J.; Wan, L.; Lv, Y.; Lu, P. Rational Molecular Design of Phenanthroimidazole-Based Fluorescent Materials towards High-Efficiency Non-Doped Deep Blue OLEDs. J. Mater. Chem. C Mater. 2022, 10, 14186–14193. [Google Scholar] [CrossRef]
- Xu, H.; Chen, R.; Sun, Q.; Lai, W.; Su, Q.; Huang, W.; Liu, X. Recent Progress in Metal–Organic Complexes for Optoelectronic Applications. Chem. Soc. Rev. 2014, 43, 3259–3302. [Google Scholar] [CrossRef]
- De Leeuw, D.M.; Simenon, M.M.J.; Brown, A.R.; Einerhand, R.E.F. Stability of N-Type Doped Conducting Polymers and Consequences for Polymeric Microelectronic Devices. Synth. Met. 1997, 87, 53–59. [Google Scholar] [CrossRef]
- Scholz, S.; Kondakov, D.; Lüssem, B.; Leo, K. Degradation Mechanisms and Reactions in Organic Light-Emitting Devices. Chem. Rev. 2015, 115, 8449–8503. [Google Scholar] [CrossRef]
- Lee, J.; Jeong, C.; Batagoda, T.; Coburn, C.; Thompson, M.E.; Forrest, S.R. Hot Excited State Management for Long-Lived Blue Phosphorescent Organic Light-Emitting Diodes. Nat. Commun. 2017, 8, 15566. [Google Scholar] [CrossRef]
- Xing, L.; Zhu, Z.-L.; He, J.; Qiu, Z.; Yang, Z.; Lin, D.; Chen, W.-C.; Yang, Q.; Ji, S.; Huo, Y.; et al. Anthracene-Based Fluorescent Emitters toward Superior-Efficiency Nondoped TTA-OLEDs with Deep Blue Emission and Low Efficiency Roll-Off. Chem. Eng. J. 2021, 421, 127748. [Google Scholar] [CrossRef]
- Chen, J.; Tao, W.; Chen, W.; Xiao, Y.; Wang, K.; Cao, C.; Yu, J.; Li, S.; Geng, F.; Adachi, C.; et al. Red/Near-Infrared Thermally Activated Delayed Fluorescence OLEDs with Near 100% Internal Quantum Efficiency. Angew. Chem. Int. Ed. 2019, 58, 14660–14665. [Google Scholar] [CrossRef]
- Albrecht, K.; Matsuoka, K.; Fujita, K.; Yamamoto, K. Carbazole Dendrimers as Solution-Processable Thermally Activated Delayed-Fluorescence Materials. Angew. Chem. Int. Ed. 2015, 54, 5677–5682. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, J.; Shizu, K.; Huang, S.; Hirata, S.; Miyazaki, H.; Adachi, C. Design of Efficient Thermally Activated Delayed Fluorescence Materials for Pure Blue Organic Light Emitting Diodes. J. Am. Chem. Soc. 2012, 134, 14706–14709. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Zhang, T.; Wang, Z.; Wang, L.; Zhan, L.; Gong, S.; Zhong, C.; Lu, Z.-H.; Zhang, S.; Yang, C. De Novo Design of Excited-State Intramolecular Proton Transfer Emitters via a Thermally Activated Delayed Fluorescence Channel. J. Am. Chem. Soc. 2018, 140, 8877–8886. [Google Scholar] [CrossRef] [PubMed]
- Goushi, K.; Yoshida, K.; Sato, K.; Adachi, C. Organic Light-Emitting Diodes Employing Efficient Reverse Intersystem Crossing for Triplet-to-Singlet State Conversion. Nat. Photonics 2012, 6, 253–258. [Google Scholar] [CrossRef]
- Ahn, D.H.; Kim, S.W.; Lee, H.; Ko, I.J.; Karthik, D.; Lee, J.Y.; Kwon, J.H. Highly Efficient Blue Thermally Activated Delayed Fluorescence Emitters Based on Symmetrical and Rigid Oxygen-Bridged Boron Acceptors. Nat. Photonics 2019, 13, 540–546. [Google Scholar] [CrossRef]
- Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Highly Efficient Organic Light-Emitting Diodes from Delayed Fluorescence. Nature 2012, 492, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, Y.; Cai, X.; Chen, D.; Xie, G.; Liu, K.; Wu, Y.-C.; Lo, C.-C.; Lien, A.; Cao, Y.; et al. Structure–Performance Investigation of Thioxanthone Derivatives for Developing Color Tunable Highly Efficient Thermally Activated Delayed Fluorescence Emitters. ACS Appl. Mater. Interfaces 2016, 8, 8627–8636. [Google Scholar] [CrossRef]
- Im, Y.; Kim, M.; Cho, Y.J.; Seo, J.-A.; Yook, K.S.; Lee, J.Y. Molecular Design Strategy of Organic Thermally Activated Delayed Fluorescence Emitters. Chem. Mater. 2017, 29, 1946–1963. [Google Scholar] [CrossRef]
- Cai, X.; Li, X.; Xie, G.; He, Z.; Gao, K.; Liu, K.; Chen, D.; Cao, Y.; Su, S.-J. “Rate-Limited Effect” of Reverse Intersystem Crossing Process: The Key for Tuning Thermally Activated Delayed Fluorescence Lifetime and Efficiency Roll-off of Organic Light Emitting Diodes. Chem. Sci. 2016, 7, 4264–4275. [Google Scholar] [CrossRef] [PubMed]
- Hatakeyama, T.; Shiren, K.; Nakajima, K.; Nomura, S.; Nakatsuka, S.; Kinoshita, K.; Ni, J.; Ono, Y.; Ikuta, T. Ultrapure Blue Thermally Activated Delayed Fluorescence Molecules: Efficient HOMO–LUMO Separation by the Multiple Resonance Effect. Adv. Mater. 2016, 28, 2777–2781. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Huang, R.; Zhong, C.; Xie, G.; Ning, W.; Huang, M.; Ni, F.; Dias, F.B.; Yang, C. Achieving 21% External Quantum Efficiency for Nondoped Solution-Processed Sky-Blue Thermally Activated Delayed Fluorescence OLEDs by Means of Multi-(Donor/Acceptor) Emitter with Through-Space/-Bond Charge Transfer. Adv. Sci. 2020, 7, 1902087. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Ji, H.; Zhang, D.; Xue, K.; Zhang, P.; Qi, Z.; Zhu, H. Adjusting the Photophysical Properties of AIE-Active TADF Emitters from through-Bond to through-Space Charge Transfer for High-Performance Solution-Processed OLEDs. Dye. Pigment. 2021, 188, 109208. [Google Scholar] [CrossRef]
- Rajamalli, P.; Rota Martir, D.; Zysman-Colman, E. Pyridine-Functionalized Carbazole Donor and Benzophenone Acceptor Design for Thermally Activated Delayed Fluorescence Emitters in Blue Organic Light-Emitting Diodes. J. Photonics Energy 2018, 8, 032106. [Google Scholar] [CrossRef]
- Ma, M.; Li, J.; Liu, D.; Li, D.; Dong, R.; Mei, Y. Low Efficiency Roll-off Thermally Activated Delayed Fluorescence Emitters for Non-Doped OLEDs: Substitution Effect of Thioether and Sulfone Groups. Dye. Pigment. 2021, 194, 109649. [Google Scholar] [CrossRef]
- Wu, L.; Wang, K.; Wang, C.; Fan, X.-C.; Shi, Y.-Z.; Zhang, X.; Zhang, S.-L.; Ye, J.; Zheng, C.-J.; Li, Y.-Q.; et al. Using Fluorene to Lock Electronically Active Moieties in Thermally Activated Delayed Fluorescence Emitters for High-Performance Non-Doped Organic Light-Emitting Diodes with Suppressed Roll-Off. Chem. Sci. 2021, 12, 1495–1502. [Google Scholar] [CrossRef] [PubMed]
- Aizawa, N.; Tsou, C.-J.; Park, I.S.; Yasuda, T. Aggregation-Induced Delayed Fluorescence from Phenothiazine-Containing Donor–Acceptor Molecules for High-Efficiency Non-Doped Organic Light-Emitting Diodes. Polym. J. 2017, 49, 197–202. [Google Scholar] [CrossRef]
- Jing, Y.-Y.; Tao, X.-D.; Yang, M.-X.; Chen, X.-L.; Lu, C.-Z. Triptycene-Imbedded Thermally Activated Delayed Fluorescence Emitters with Excellent Film Morphologies for Applications in Efficient Nondoped and Doped Organic Light-Emitting Devices. Chem. Eng. J. 2021, 413, 127418. [Google Scholar] [CrossRef]
- Tani, K.; Yashima, T.; Miyanaga, K.; Hori, K.; Goto, K.; Tani, F.; Habuka, Y.; Suzuki, K.; Shizu, K.; Kaji, H. Carbazole and Benzophenone Based Twisted Donor–Acceptor Systems as Solution Processable Green Thermally Activated Delayed Fluorescence Organic Light Emitters. Chem. Lett. 2018, 47, 1236–1239. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, X.; Chen, Y.; Chen, L.; Li, H.; Wang, W.; Wang, S.; Tian, H.; Tong, H.; Wang, L. Triazatruxene-Based Thermally Activated Delayed Fluorescence Small Molecules with Aggregation-Induced Emission Properties for Solution-Processable Nondoped OLEDs with Low Efficiency Roll-Off. J. Mater. Chem. C Mater. 2019, 7, 9719–9725. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J.; Jiang, C.; Yao, C.; Xi, X. Effective Design Strategy for Aggregation-Induced Emission and Thermally Activated Delayed Fluorescence Emitters Achieving 18% External Quantum Efficiency Pure-Blue OLEDs with Extremely Low Roll-Off. ACS Appl. Mater. Interfaces 2021, 13, 57713–57724. [Google Scholar] [CrossRef] [PubMed]
- Shizu, K.; Lee, J.; Tanaka, H.; Nomura, H.; Yasuda, T.; Kaji, H.; Adachi, C. Highly Efficient Electroluminescence from Purely Organic Donor–Acceptor Systems. Pure Appl. Chem. 2015, 87, 627–638. [Google Scholar] [CrossRef]
- Nishimoto, T.; Yasuda, T.; Lee, S.Y.; Kondo, R.; Adachi, C. A Six-Carbazole-Decorated Cyclophosphazene as a Host with High Triplet Energy to Realize Efficient Delayed-Fluorescence OLEDs. Mater. Horiz. 2014, 1, 264–269. [Google Scholar] [CrossRef]
- Huang, B.; Ban, X.; Sun, K.; Ma, Z.; Mei, Y.; Jiang, W.; Lin, B.; Sun, Y. Thermally Activated Delayed Fluorescence Materials Based on Benzophenone Derivative as Emitter for Efficient Solution-Processed Non-Doped Green OLED. Dye. Pigment. 2016, 133, 380–386. [Google Scholar] [CrossRef]
- Liang, J.; Li, C.; Zhuang, X.; Ye, K.; Liu, Y.; Wang, Y. Novel Blue Bipolar Thermally Activated Delayed Fluorescence Material as Host Emitter for High-Efficiency Hybrid Warm-White OLEDs with Stable High Color-Rendering Index. Adv. Funct. Mater. 2018, 28, 1707002. [Google Scholar] [CrossRef]
- Pocock, I.A.; Alotaibi, A.M.; Jagdev, K.; Prior, C.; Burgess, G.R.; Male, L.; Grainger, R.S. Direct Formation of 4,5-Disubstituted Carbazoles via Regioselective Dilithiation. Chem. Commun. 2021, 57, 7252–7255. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.-D.; Tian, Q.-S.; Zheng, Q.; Tao, X.-C.; Yuan, Y.; Yu, Y.-J.; Li, Y.; Jiang, Z.-Q.; Liao, L.-S. A Sky-Blue Thermally Activated Delayed Fluorescence Emitter Based on Multimodified Carbazole Donor for Efficient Organic Light-Emitting Diodes. Org. Electron. 2019, 68, 113–120. [Google Scholar] [CrossRef]
- Liu, F.; Zou, J.; He, Q.; Tang, C.; Xie, L.; Peng, B.; Wei, W.; Cao, Y.; Huang, W. Carbazole End-capped Pyrene Starburst with Enhanced Electrochemical Stability and Device Performance. J. Polym. Sci. A Polym. Chem. 2010, 48, 4943–4949. [Google Scholar] [CrossRef]
- Sęk, D.; Szlapa-Kula, A.; Siwy, M.; Fabiańczyk, A.; Janeczek, H.; Szalkowski, M.; Maćkowski, S.; Schab-Balcerzak, E. Branched Azomethines Based on Tris(2-Aminoethyl)Amine: Impact of Imine Core Functionalization on Thermal, Electrochemical and Luminescence Properties. Mater. Chem. Phys. 2020, 240, 122246. [Google Scholar] [CrossRef]
- Sebris, A.; Novosjolova, I.; Traskovskis, K.; Kokars, V.; Tetervenoka, N.; Vembris, A.; Turks, M. Photophysical and Electrical Properties of Highly Luminescent 2/6-Triazolyl-Substituted Push–Pull Purines. ACS Omega 2022, 7, 5242–5253. [Google Scholar] [CrossRef]
- Yang, Z.; Chi, Z.; Yu, T.; Zhang, X.; Chen, M.; Xu, B.; Liu, S.; Zhang, Y.; Xu, J. Triphenylethylene Carbazole Derivatives as a New Class of AIE Materials with Strong Blue Light Emission and High Glass Transition Temperature. J. Mater. Chem. 2009, 19, 5541. [Google Scholar] [CrossRef]
- Costa, J.C.S.; Lima, M.A.L.; Mendes, A.; Santos, L.M.N.B.F. The Impact of Phenyl–Phenyl Linkage on the Thermodynamic, Optical and Morphological Behavior of Carbazol Derivatives. RSC Adv. 2020, 10, 11766–11776. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Jiang, W.; Duan, L. Recent Progress in Solution Processable TADF Materials for Organic Light-Emitting Diodes. J. Mater. Chem. C Mater. 2018, 6, 5577–5596. [Google Scholar] [CrossRef]
- Wang, J.; Liu, C.; Jiang, C.; Yao, C.; Gu, M.; Wang, W. Solution-Processed Aggregation-Induced Delayed Fluorescence (AIDF) Emitters Based on Strong π-Accepting Triazine Cores for Highly Efficient Nondoped OLEDs with Low Efficiency Roll-Off. Org. Electron. 2019, 65, 170–178. [Google Scholar] [CrossRef]
- Li, Y.; Xie, G.; Gong, S.; Wu, K.; Yang, C. Dendronized Delayed Fluorescence Emitters for Non-Doped, Solution-Processed Organic Light-Emitting Diodes with High Efficiency and Low Efficiency Roll-off Simultaneously: Two Parallel Emissive Channels. Chem. Sci. 2016, 7, 5441–5447. [Google Scholar] [CrossRef]
- Sun, S.; Wang, J.; Chen, L.; Chen, R.; Jin, J.; Chen, C.; Chen, S.; Xie, G.; Zheng, C.; Huang, W. Thermally Activated Delayed Fluorescence Enantiomers for Solution-Processed Circularly Polarized Electroluminescence. J. Mater. Chem. C Mater. 2019, 7, 14511–14516. [Google Scholar] [CrossRef]
- Inoue, S.; Minemawari, H.; Tsutsumi, J.; Chikamatsu, M.; Yamada, T.; Horiuchi, S.; Tanaka, M.; Kumai, R.; Yoneya, M.; Hasegawa, T. Effects of Substituted Alkyl Chain Length on Solution-Processable Layered Organic Semiconductor Crystals. Chem. Mater. 2015, 27, 3809–3812. [Google Scholar] [CrossRef]
- Schmaljohann, D.; Häußler, L.; Pötschke, P.; Voit, B.I.; Loontjens, T.J.A. Modification with Alkyl Chains and the Influence on Thermal and Mechanical Properties of Aromatic Hyperbranched Polyesters. Macromol. Chem. Phys. 2000, 201, 49–57. [Google Scholar] [CrossRef]
- Makuła, P.; Pacia, M.; Macyk, W. How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV–Vis Spectra. J. Phys. Chem. Lett. 2018, 9, 6814–6817. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, Y.; Wang, S.; Tao, Y.; Wang, F.; Zhang, X.; Huang, W. Novel Hyperbranched Polymers as Host Materials for Green Thermally Activated Delayed Fluorescence OLEDs. Chin. J. Polym. Sci. 2017, 35, 490–502. [Google Scholar] [CrossRef]
- Sworakowski, J. How Accurate Are Energies of HOMO and LUMO Levels in Small-Molecule Organic Semiconductors Determined from Cyclic Voltammetry or Optical Spectroscopy? Synth. Met. 2018, 235, 125–130. [Google Scholar] [CrossRef]
- Li, F.; Gillett, A.J.; Gu, Q.; Ding, J.; Chen, Z.; Hele, T.J.H.; Myers, W.K.; Friend, R.H.; Evans, E.W. Singlet and Triplet to Doublet Energy Transfer: Improving Organic Light-Emitting Diodes with Radicals. Nat. Commun. 2022, 13, 2744. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Huang, R.; Batsanov, A.S.; Pander, P.; Hsu, Y.; Chi, Z.; Dias, F.B.; Bryce, M.R. Intramolecular Charge Transfer Controls Switching Between Room Temperature Phosphorescence and Thermally Activated Delayed Fluorescence. Angew. Chem. Int. Ed. 2018, 57, 16407–16411. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Lv, D.; Wang, S.; Yu, X.; Han, Y. Improving Film Uniformity and Interface Solvent Resistance to Realize Multilayer Printing of OLED Devices. J. Mater. Chem. C Mater. 2024, 12, 4070–4084. [Google Scholar] [CrossRef]
- Wang, G.; Chernikov, A.; Glazov, M.M.; Heinz, T.F.; Marie, X.; Amand, T.; Urbaszek, B. Colloquium: Excitons in Atomically Thin Transition Metal Dichalcogenides. Rev. Mod. Phys. 2018, 90, 021001. [Google Scholar] [CrossRef]
- Trovatello, C.; Katsch, F.; Borys, N.J.; Selig, M.; Yao, K.; Borrego-Varillas, R.; Scotognella, F.; Kriegel, I.; Yan, A.; Zettl, A.; et al. The Ultrafast Onset of Exciton Formation in 2D Semiconductors. Nat. Commun. 2020, 11, 5277. [Google Scholar] [CrossRef]
- Vaitkeviciene, V.; Grigalevicius, S.; Grazulevicius, J.V.; Jankauskas, V.; Syromyatnikov, V.G. Hole-Transporting [3,3′]Bicarbazolyl-Based Polymers and Well-Defined Model Compounds. Eur. Polym. J. 2006, 42, 2254–2260. [Google Scholar] [CrossRef]
- Gautam, P.; Shahnawaz; Siddiqui, I.; Blazevicius, D.; Krucaite, G.; Tavgeniene, D.; Jou, J.-H.; Grigalevicius, S. Bifunctional Bicarbazole-Benzophenone-Based Twisted Donor–Acceptor–Donor Derivatives for Deep-Blue and Green OLEDs. Nanomaterials 2023, 13, 1408. [Google Scholar] [CrossRef]
- Blazevicius, D.; Siddiqui, I.; Gautam, P.; Krucaite, G.; Tavgeniene, D.; Nagar, M.R.; Kumar, K.; Banik, S.; Jou, J.-H.; Grigalevicius, S. Bicarbazole-Benzophenone-Based Twisted Donor-Acceptor-Donor Derivatives as Blue Emitters for Highly Efficient Fluorescent Organic Light-Emitting Diodes. Nanomaterials 2024, 14, 146. [Google Scholar] [CrossRef]
- De Sa Pereira, D.; Data, P.; Monkman, A.P. Methods of Analysis of Organic Light Emitting Diodes. Display 2017, 2, 323–337. [Google Scholar]
Emitter | λex (nm) | λem (nm) | Φ (%) | Homo (eV) | Lumo (eV) | Eg (eV) | Decay (ns) | S1 (eV) | T1 (eV) | ΔEST | Td (°C) | Tg (°C) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
DB37 | 384.5, 395.6 | 509 | 65.5 | −5.67 | −2.58 | 3.09 | 5.53 | 3.04 | 2.76 | 0.28 | 406 | 102 |
DB38 | 383.5, 400 | 510 | 45.3 | −5.70 | −2.61 | 3.09 | 1.88 | 2.94 | 2.89 | 0.05 | 398 | 80 |
DB39 | 382.7, 400 | 528 | 75.5 | −5.68 | −2.60 | 3.08 | 4.27 | 3.10 | 2.81 | 0.29 | 383 | 77 |
DB40 | 384.5, 408.2 | 513 | 52.5 | −5.69 | −2.59 | 3.10 | 2.41 | 3.06 | 2.80 | 0.26 | 397 | 68 |
DB41 | 381.0, 399.7 | 528 | 62.5 | −5.73 | −2.64 | 3.09 | 2.24 | 3.22 | 2.80 | 0.42 | 374 | 64 |
DB44 | 383.9, 398.6 | 529 | 68.5 | −5.69 | −2.62 | 3.07 | 6.28 | 3.18 | 2.82 | 0.15 | 389 | 57 |
Emitter | Concentration (wt%) | Turn-On Voltage (Von) a | Power Efficacy (lm/W) | Current Efficacy (cd/A) | EQE (%) | CIExy | LMax (cd/m2) |
---|---|---|---|---|---|---|---|
@100 cd/m2/@1000 cd/m2/max | @100 cd/m2/@1000 cd/m2 | ||||||
DB37 | 5.0 | 4.0 | 2.1/1.1/3.4 | 3.4/2.4/3.9 | 2.1/1.6/2.1 | (0.17, 0.22)/(0.17, 0.30) | 3449 |
10 | 3.5 | 2.5/1.3/3.4 | 3.5/2.5/3.8 | 1.8/1.5/1.9 | (0.18, 0.26)/(0.18, 0.23) | 3658 | |
15 | 3.4 | 2.8/1.5/3.6 | 3.7/2.7/4.0 | 1.7/1.5/1.8 | (0.19, 0.28)/(0.18, 0.25) | 3464 | |
100 | 3.1 | 0.3/-/- | 0.3/-/- | 0.1/-/- | (0.24, 0.40)/- | 616 | |
DB38 | 5.0 | 3.9 | 1.9/1.0/3.4 | 3.1/2.2/3.8 | 1.9/1.5/1.9 | (0.18, 0.22)/(0.17, 0.20) | 2801 |
10 | 3.5 | 2.7/1.4/2.9 | 3.7/2.7/3.8 | 2.0/1.6/1.9 | (0.18, 0.25)/(0.18, 0.22) | 3430 | |
15 | 3.4 | 2.8/1.5/3.5 | 3.6/2.8/4.2 | 1.7/1.6/1.8 | (0.19, 0.27)/(0.18, 0.24) | 3555 | |
100 | 3.2 | 0.2/-/- | 0.3/-/- | 0.1/-/- | (0.22, 0.38)/- | 618 | |
DB39 | 5.0 | 4.0 | 1.8/0.9/3.3 | 3.1/2.2/3.7 | 2.0/1.6/2.1 | (0.18, 0.20)/(0.17, 0.18) | 2818 |
10 | 3.5 | 2.5/1.3/4.4 | 3.5/2.7/4.9 | 2.0/1.8/2.2 | (0.18, 0.23)/(0.18, 0.21) | 3430 | |
15 | 3.9 | 3.0/1.4/4.1 | 4.4/2.8/5.7 | 2.2/1.6/2.7 | (0.19, 0.27)/(0.19, 0.24) | 3581 | |
100 | 3.4 | 0.3/-/- | 0.4/-/- | 0.4/-/- | (0.24, 0.39)/- | 615 | |
DB40 | 5.0 | 4.2 | 2.0/1.1/2.1 | 3.4/2.4/3.4 | 2.2/1.6/2.3 | (0.17, 0.22)/(0.17, 0.20) | 3166 |
10 | 3.5 | 2.8/1.5/2.9 | 3.8/2.8/3.7 | 2.0/1.7/2.0 | (0.18, 0.25)/(0.18, 0.22) | 3840 | |
15 | 3.3 | 2.8/1.6/2/8 | 3.6/2.8/3.6 | 1.8/1.6/1.8 | (0.18, 0.27)/(0.18, 0.24) | 3950 | |
100 | 3.2 | 0.2/-/- | 0.3/-/- | 0.1/-/- | (0.22, 0.38)/- | 685 | |
DB41 | 5.0 | 4.4 | 1.6/0.8/1.9 | 2.9/1.9/3.1 | 1.9/1.3/2.0 | (0.18, 0.21)/(0.18, 0.19) | 2687 |
10 | 3.8 | 2.4/1.1/2.4 | 3.6/2.5/3.6 | 2.0/1.5/2.0 | (0.19, 0.26)/(0.19, 0.23) | 3347 | |
15 | 3.5 | 2.6/1.3/2.7 | 3.6/2.5/3.6 | 1.7/1.1/1.8 | (0.20, 0.28)/(0.19, 0.24) | 3128 | |
100 | 3.1 | 0.2/-/- | 0.3/-/- | 0.1/-/- | (0.30, 0.45)/- | 486 | |
DB44 | 5.0 | 4.8 | 1.6/0.7/1.6 | 3.3/2.2/3.3 | 2.3/-/2.3 | (0.17, 0.20)/- | 1718 |
10 | 4.0 | 2.1/0.8/2.7 | 3.9/2.3/4.1 | 2.1/1.4/2.3 | (0.18, 0.24)/(0.18, 0.22) | 1283 | |
15 | 3.8 | 2.1/0.5/2.3 | 3.6/1.5/3.7 | 1.9/-/2.0 | (0.19, 0.26)/- | 1275 | |
100 | 5.1 | -/-/- | -/-/- | -/-/- | -/- | 55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siddiqui, I.; Gautam, P.; Blazevicius, D.; Jayakumar, J.; Lenka, S.; Tavgeniene, D.; Zaleckas, E.; Grigalevicius, S.; Jou, J.-H. Bicarbazole-Benzophenone Based Twisted Donor-Acceptor Derivatives as Potential Blue TADF Emitters for OLEDs. Molecules 2024, 29, 1672. https://doi.org/10.3390/molecules29071672
Siddiqui I, Gautam P, Blazevicius D, Jayakumar J, Lenka S, Tavgeniene D, Zaleckas E, Grigalevicius S, Jou J-H. Bicarbazole-Benzophenone Based Twisted Donor-Acceptor Derivatives as Potential Blue TADF Emitters for OLEDs. Molecules. 2024; 29(7):1672. https://doi.org/10.3390/molecules29071672
Chicago/Turabian StyleSiddiqui, Iram, Prakalp Gautam, Dovydas Blazevicius, Jayachandran Jayakumar, Sushanta Lenka, Daiva Tavgeniene, Ernestas Zaleckas, Saulius Grigalevicius, and Jwo-Huei Jou. 2024. "Bicarbazole-Benzophenone Based Twisted Donor-Acceptor Derivatives as Potential Blue TADF Emitters for OLEDs" Molecules 29, no. 7: 1672. https://doi.org/10.3390/molecules29071672
APA StyleSiddiqui, I., Gautam, P., Blazevicius, D., Jayakumar, J., Lenka, S., Tavgeniene, D., Zaleckas, E., Grigalevicius, S., & Jou, J. -H. (2024). Bicarbazole-Benzophenone Based Twisted Donor-Acceptor Derivatives as Potential Blue TADF Emitters for OLEDs. Molecules, 29(7), 1672. https://doi.org/10.3390/molecules29071672