Co-Doped Porous Carbon/Carbon Nanotube Heterostructures Derived from ZIF-L@ZIF-67 for Efficient Microwave Absorption
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Experiments
2.2.1. Synthesis of ZIF-L Precursors
2.2.2. Synthesis of ZIF-L@ZIF-67
2.2.3. Carbonization of the Materials
2.3. Characterization
2.4. Electromagnetic Parameter Measurement
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, L.; Xu, J.; Zhang, N.; Xue, S.; Wang, X.; Jin, Q. Hollow multi-shelled structured BaTiO3/Fe3O4 composite: Confined space and interface effect with boosted microwave absorption. Ceram. Int. 2023, 49, 14255–14265. [Google Scholar] [CrossRef]
- He, L.; He, L.; Xu, H.; Wang, X.; Jin, Q. Space-Confined multiple interface in super-structured TiO2@PPy composite for enhanced electromagnetic wave absorption. Appl. Surf. Sci. 2024, 646, 158898. [Google Scholar] [CrossRef]
- Yin, P.; Zhang, L.; Wang, J.; Feng, X.; Zhao, L.; Rao, H.; Wang, Y.; Dai, J. Preparation of SiO2-MnFe2O4 Composites via One-Pot Hydrothermal Synthesis Method and Microwave Absorption Investigation in S-Band. Molecules 2019, 24, 2605. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Li, L.; Yu, R.; Ma, X.; Jin, S.; Chen, K.; Chen, S.; Lv, X.; Shu, Q. Synthesis and Microwave Absorption Properties of Sulfur-Free Expanded Graphite/Fe3O4 Composites. Molecules 2020, 25, 3044. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Yang, P.; Li, Y.; Wen, D.; Luo, J.; Wang, S.; Wu, F.; Fang, L.; Pang, Y. A Facile Synthesis of NiFe-Layered Double Hydroxide and Mixed Metal Oxide with Excellent Microwave Absorption Properties. Molecules 2021, 26, 5046. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Wang, Y.; Liu, W.; Liu, P.; Chen, W. Two-Dimensional Metal Organic Framework derived Nitrogen-doped Graphene-like Carbon Nanomesh toward Efficient Electromagnetic Wave Absorption. J. Colloid Interface Sci. 2023, 643, 318–327. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.-B.; Wu, X.; Deng, Z.; Zhou, E.; Yu, Z.-Z. Nanolayered Cobalt@Carbon Hybrids Derived from Metal–Organic Frameworks for Microwave Absorption. ACS Appl. Nano Mater. 2019, 2, 2325–2335. [Google Scholar] [CrossRef]
- Qu, Z.; Wang, Y.; Yang, P.; Zheng, W.; Li, N.; Bai, J.; Zhang, Y.; Li, K.; Wang, D.; Liu, Z.; et al. Enhanced Electromagnetic Wave Absorption Properties of Ultrathin MnO2 Nanosheet-Decorated Spherical Flower-Shaped Carbonyl Iron Powder. Molecules 2021, 27, 135. [Google Scholar] [CrossRef]
- Wang, Y.-Y.; Sun, W.-J.; Yan, D.-X.; Dai, K.; Li, Z.-M. Ultralight carbon nanotube/graphene/polyimide foam with heterogeneous interfaces for efficient electromagnetic interference shielding and electromagnetic wave absorption. Carbon 2021, 176, 118–125. [Google Scholar] [CrossRef]
- Cruz-Martinez, H.; Garcia-Hilerio, B.; Montejo-Alvaro, F.; Gazga-Villalobos, A.; Rojas-Chavez, H.; Sanchez-Rodriguez, E.P. Density Functional Theory-Based Approaches to Improving Hydrogen Storage in Graphene-Based Materials. Molecules 2024, 29, 436. [Google Scholar] [CrossRef]
- Gu, W.; Shi, J.; Zhang, J.; Jia, Q.; Liu, C.; Ge, H.; Sun, Q.; Zhu, L. Fabrication and Investigation of the Microwave Absorption of Nonwovens Modified by Carbon Nanotubes and Graphene Flakes. Molecules 2023, 28, 6419. [Google Scholar] [CrossRef] [PubMed]
- Abutaleb, A.; Imran, M.; Zouli, N.; Khan, A.H.; Hussain, S.; Ali, M.A.; Bakather, O.; Gondal, M.A.; Khan, N.A.; Panchal, H.; et al. Fe3O4-multiwalled carbon nanotubes-bentonite as adsorbent for removal of methylene blue from aqueous solutions. Chemosphere 2023, 316, 137824. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Jiang, J.; Deng, S.; He, Q.; Wang, Y. Rational construction of mushroom-like Ni@N-doped carbon tubes composites with enhanced electromagnetic wave absorption. J. Alloys Compd. 2023, 963, 171230. [Google Scholar] [CrossRef]
- Peng, S.; Wang, S.; Hao, G.; Zhu, C.; Zhang, Y.; Lv, X.; Hu, Y.; Jiang, W. Preparation of magnetic flower-like carbon-matrix composites with efficient electromagnetic wave absorption properties by carbonization of MIL-101(Fe). J. Magn. Magn. Mater. 2019, 487, 165306. [Google Scholar] [CrossRef]
- Li, L.; Li, G.; Ouyang, W.; Zhang, Y.; Zeng, F.; Liu, C.; Lin, Z. Bimetallic MOFs derived FeM(II)-alloy@C composites with high-performance electromagnetic wave absorption. Chem. Eng. J. 2021, 420, 127609. [Google Scholar] [CrossRef]
- Ma, J.; Liu, W.; Liang, X.; Quan, B.; Cheng, Y.; Ji, G.; Meng, W. Nanoporous TiO2/C composites synthesized from directly pyrolysis of a Ti-based MOFs MIL-125(Ti) for efficient microwave absorption. J. Alloys Compd. 2017, 728, 138–144. [Google Scholar] [CrossRef]
- Wang, K.; Chen, Y.; Tian, R.; Li, H.; Zhou, Y.; Duan, H.; Liu, H. Porous Co-C Core-Shell Nanocomposites Derived from Co-MOF-74 with Enhanced Electromagnetic Wave Absorption Performance. ACS Appl. Mater. Interfaces 2018, 10, 11333–11342. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, D.; Wang, J.; Tian, Y.; Liu, H.; Liu, C.; Shen, C. Hierarchical HCF@NC/Co Derived from Hollow Loofah Fiber Anchored with Metal-Organic Frameworks for Highly Efficient Microwave Absorption. ACS Appl. Mater. Interfaces 2022, 14, 2038–2050. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Ran, F.; Fan, Z.; Cheng, Z.; Lv, T.; Shao, L.; Xie, Z.; Liu, Y. Acidified bimetallic MOFs constructed Co/N co-doped low dimensional hybrid carbon networks for high-efficiency microwave absorption. Carbon 2021, 171, 211–220. [Google Scholar] [CrossRef]
- Bi, Y.; Ma, M.; Liu, Y.; Tong, Z.; Wang, R.; Chung, K.L.; Ma, A.; Wu, G.; Ma, Y.; He, C.; et al. Microwave absorption enhancement of 2-dimensional CoZn/C@MoS2@PPy composites derived from metal-organic framework. J. Colloid Interface Sci. 2021, 600, 209–218. [Google Scholar] [CrossRef]
- Zou, L.; Zhong, G.; Nie, Y.; Tan, Z.; Liao, W.; Fu, X.; Pan, Z. Porous Carbon Nanosheets Derived from ZIF-8 Treated with KCl as Highly Efficient Electrocatalysts for the Oxygen Reduction Reaction. Energy Technol. 2021, 9, 2100035. [Google Scholar] [CrossRef]
- Yang, K.; Long, L.; Feng, Y.; Wei, Y.; Wu, T.; Gao, Z.; Zhang, J. Tunable regulation of metal-semiconductor heterostructures toward Ag/ZnO hybrids for electromagnetic wave absorption. J. Alloys Compd. 2022, 926, 166899. [Google Scholar] [CrossRef]
- Lee, S.; Oh, S.; Oh, M. Atypical Hybrid Metal-Organic Frameworks (MOFs): A Combinative Process for MOF-on-MOF Growth, Etching, and Structure Transformation. Angew. Chem. 2020, 59, 1327–1333. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Lin, L.; Sun, Q.; Wang, J.; Huang, R.; Chen, W.; Li, S.; Wan, J.; Zou, J.; Yu, C. Site-specific growth of MOF-on-MOF heterostructures with controllable nano-architectures: Beyond the combination of MOF analogues. Chem. Sci. 2020, 11, 3680–3686. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Xia, W.; Sun, X.; Wang, T.; Li, J.; Sheng, L.; He, J. Improvement of interfacial polarization and impedance matching for two-dimensional leaf-like bimetallic (Co, Zn) doped porous carbon nanocomposites with broadband microwave absorption. Appl. Surf. Sci. 2020, 512, 144894. [Google Scholar] [CrossRef]
- Liang, X.; Quan, B.; Ji, G.; Liu, W.; Cheng, Y.; Zhang, B.; Du, Y. Novel nanoporous carbon derived from metal–organic frameworks with tunable electromagnetic wave absorption capabilities. Inorg. Chem. Front. 2016, 3, 1516–1526. [Google Scholar] [CrossRef]
- Wen, H.; Qu, W.; Lin, M.; Zhou, L.; Guo, X.; Ma, P.; Wu, T.; Zhao, H.; Zhong, T.; He, C. Nitrogen-coordinated cobalt embedded in hollow carbon polyhedron for catalytic ozonation of odor CH3SH at ambient temperature. Chem. Eng. J. 2023, 471, 144567. [Google Scholar] [CrossRef]
- Yin, Y.; Liu, X.; Wei, X.; Yu, R.; Shui, J. Porous CNTs/Co Composite Derived from Zeolitic Imidazolate Framework: A Lightweight, Ultrathin, and Highly Efficient Electromagnetic Wave Absorber. ACS Appl. Mater. Interfaces 2016, 8, 34686–34698. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Niu, C.; Xu, L.; Li, J.; Liu, X.; Wang, X.; Wu, Y.; Xu, X.; Chen, W.; Li, Q.; et al. General Oriented Formation of Carbon Nanotubes from Metal-Organic Frameworks. J. Am. Chem. Soc. 2017, 139, 8212–8221. [Google Scholar] [CrossRef]
- Xu, X.; Ran, F.; Fan, Z.; Lai, H.; Cheng, Z.; Lv, T.; Shao, L.; Liu, Y. Cactus-Inspired Bimetallic Metal-Organic Framework-Derived 1D-2D Hierarchical Co/N-Decorated Carbon Architecture toward Enhanced Electromagnetic Wave Absorbing Performance. ACS Appl. Mater. Interfaces 2019, 11, 13564–13573. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, J.; Zhang, S.; Shang, N.; Zhao, X.; Alshehri, S.M.; Ahamad, T.; Yamauchi, Y.; Xu, X.; Bando, Y. MOF-on-MOF nanoarchitectures for selectively functionalized nitrogen-doped carbon-graphitic carbon/carbon nanotubes heterostructure with high capacitive deionization performance. Nano Energy 2022, 97, 107146. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, H.; Yao, J. Synthesis of 2D nanoporous zeolitic imidazolate framework nanosheets for diverse applications. Coord. Chem. Rev. 2021, 431, 213677. [Google Scholar] [CrossRef]
- Zhang, X.; Qiao, J.; Jiang, Y.; Wang, F.; Tian, X.; Wang, Z.; Wu, L.; Liu, W.; Liu, J. Carbon-Based MOF Derivatives: Emerging Efficient Electromagnetic Wave Absorption Agents. Nano-Micro Lett. 2021, 13, 135. [Google Scholar] [CrossRef] [PubMed]
- Parsapour, F.; Moradi, M.; Bahadoran, A. Metal-organic frameworks-derived layered double hydroxides: From controllable synthesis to various electrochemical energy storage/conversion applications. Adv. Colloid Interface Sci. 2023, 313, 102865. [Google Scholar] [CrossRef]
- Song, A.; Yang, W.; Yang, W.; Sun, G.; Yin, X.; Gao, L.; Wang, Y.; Qin, X.; Shao, G. Facile Synthesis of Cobalt Nanoparticles Entirely Encapsulated in Slim Nitrogen-Doped Carbon Nanotubes as Oxygen Reduction Catalyst. ACS Sustain. Chem. Eng. 2017, 5, 3973–3981. [Google Scholar] [CrossRef]
- Yang, L.; Wang, Y.; Lu, Z.; Cheng, R.; Wang, N.; Li, Y. Construction of multi-dimensional NiCo/C/CNT/rGO aerogel by MOF derivative for efficient microwave absorption. Carbon 2023, 205, 411–421. [Google Scholar] [CrossRef]
- Wang, Y.-Y.; Zhu, J.-L.; Li, N.; Shi, J.-F.; Tang, J.-H.; Yan, D.-X.; Li, Z.-M. Carbon aerogel microspheres with in-situ mineralized TiO2 for efficient microwave absorption. Nano Res. 2022, 15, 7723–7730. [Google Scholar] [CrossRef]
- Li, J.; Wu, Q.; Wang, X.; Wang, B.; Liu, T. Metal-organic framework-derived Co/CoO nanoparticles with tunable particle size for strong low-frequency microwave absorption in the S and C bands. J. Colloid Interface Sci. 2022, 628 Pt A, 10–21. [Google Scholar] [CrossRef]
- Wang, X.; Bao, X.; Zhou, X.; Shi, G. Excellent microwave absorption of lamellar LaOCl/C nanocomposites with LaOCl nanoparticles embedded in carbon matrix. J. Alloys Compd. 2018, 764, 701–708. [Google Scholar] [CrossRef]
- Khan, A.; Cong, J.; Kumar, R.R.; Ahmed, S.; Yang, D.; Yu, X. Chemical Vapor Deposition of Graphene on Self-Limited SiC Interfacial Layers Formed on Silicon Substrates for Heterojunction Devices. ACS Appl. Nano Mater. 2022, 5, 17544–17555. [Google Scholar] [CrossRef]
- Khan, A.; Habib, M.R.; Jingkun, C.; Xu, M.; Yang, D.; Yu, X. New Insight into the Metal-Catalyst-Free Direct Chemical Vapor Deposition Growth of Graphene on Silicon Substrates. J. Phys. Chem. C 2021, 125, 1774–1783. [Google Scholar] [CrossRef]
- Wang, W.; Ye, W.; Hou, X.; Ran, K.; Huang, Y.; Zhang, Z.; Fang, Y.; Wang, S.; Zhao, R.; Xue, W. Salt-assisted pyrolysis of carbon nanosheet and carbon nanoparticle hybrids for efficient microwave absorption. J. Mater. Chem. C 2023, 11, 2941–2948. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, H.; Wang, D.; Yang, X.; Xing, H.; Feng, J.; Zong, Y.; Zhu, X.; Li, X.; Zheng, X. Insight to the enhanced microwave absorption of porous N-doped carbon driven by ZIF-8: Competition between graphitization and porosity. Int. J. Miner. Metall. Mater. 2023, 30, 474–484. [Google Scholar] [CrossRef]
- Imran, M.; Zouli, N.; Ahamad, T.; Alshehri, S.M.; Chandan, M.R.; Hussain, S.; Aziz, A.; Dar, M.A.; Khan, A. Carbon-coated Fe3O4 core-shell super-paramagnetic nanoparticle-based ferrofluid for heat transfer applications. Nanoscale Adv. 2021, 3, 1962–1975. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Wang, G.; Gu, W.; Ji, G. Prussian blue analogue derived carbon-based composites toward lightweight microwave absorption. Carbon 2021, 177, 97–106. [Google Scholar] [CrossRef]
- Quan, B.; Xu, G.; Yi, H.; Yang, Z.; Xiang, J.; Chen, Y.; Ji, G. Enhanced electromagnetic wave response of nickel nanoparticles encapsulated in nanoporous carbon. J. Alloys Compd. 2018, 769, 961–968. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Ye, J.; Shi, L.; Feng, X. Magnetic CoFe alloy@C nanocomposites derived from ZnCo-MOF for electromagnetic wave absorption. Chem. Eng. J. 2020, 383, 123096. [Google Scholar] [CrossRef]
- Liao, Q.; He, M.; Zhou, Y.; Nie, S.; Wang, Y.; Wang, B.; Yang, X.; Bu, X.; Wang, R. Rational Construction of Ti3C2T x/Co-MOF-Derived Laminated Co/TiO2-C Hybrids for Enhanced Electromagnetic Wave Absorption. Langmuir 2018, 34, 15854–15863. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, Y.; Li, H.; Lin, Y.; Jiang, Z.; Xie, Z.; Kuang, Q.; Zheng, L. MOF-Derived Porous Co/C Nanocomposites with Excellent Electromagnetic Wave Absorption Properties. ACS Appl. Mater. Interfaces 2015, 7, 13604–13611. [Google Scholar] [CrossRef]
- Wang, H.; Xiang, L.; Wei, W.; An, J.; He, J.; Gong, C.; Hou, Y. Efficient and Lightweight Electromagnetic Wave Absorber Derived from Metal Organic Framework-Encapsulated Cobalt Nanoparticles. ACS Appl. Mater. Interfaces 2017, 9, 42102–42110. [Google Scholar] [CrossRef]
- Zhao, Z.; Xu, S.; Du, Z.; Jiang, C.; Huang, X. Metal–Organic Framework-Based PB@MoS2 Core–Shell Microcubes with High Efficiency and Broad Bandwidth for Microwave Absorption Performance. ACS Sustain. Chem. Eng. 2019, 7, 7183–7192. [Google Scholar] [CrossRef]
- Zhang, X.; Ji, G.; Liu, W.; Zhang, X.; Gao, Q.; Li, Y.; Du, Y. A novel Co/TiO2 nanocomposite derived from a metal–organic framework: Synthesis and efficient microwave absorption. J. Mater. Chem. C 2016, 4, 1860–1870. [Google Scholar] [CrossRef]
- Huang, J.; Gu, H.; Li, N.; Yang, H.; Chen, G.; Zhang, L.; Dong, C.; Guan, H. Polypyrrole/Schiff Base Composite as Electromagnetic Absorbing Material with High and Tunable Absorption Performance. Molecules 2022, 27, 6160. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Yang, X.; Shu, T.; Yang, X.; Qiao, M.; Wang, D.; Liu, Z.; Li, X.; Rao, J.; Zhang, Y.; et al. In Situ Synthesis of C-N@NiFe2O4@MXene/Ni Nanocomposites for Efficient Electromagnetic Wave Absorption at an Ultralow Thickness Level. Molecules 2022, 28, 233. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Z.; Wang, Y.; Yin, X.; He, Q. Microwave absorption performance of porous heterogeneous SiC/SiO2 microspheres. Chem. Eng. J. 2023, 451, 138742. [Google Scholar] [CrossRef]
- Huang, Y.; Xue, W.; Hou, X.; Zhao, R. Metal Oxide/Nitrogen-Doped Carbon Nanosheet Heteronanostructures as Highly Efficient Electromagnetic Wave Absorbing Materials. Molecules 2021, 26, 7537. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Ran, F.; Lai, H.; Cheng, Z.; Lv, T.; Shao, L.; Liu, Y. In Situ Confined Bimetallic Metal-Organic Framework Derived Nanostructure within 3D Interconnected Bamboo-like Carbon Nanotube Networks for Boosting Electromagnetic Wave Absorbing Performances. ACS Appl. Mater. Interfaces 2019, 11, 35999–36009. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Xiu, T.; Zhang, Y.; Zhang, B. Controlled fabrication and microwave absorption performance of cucurbit-like carbon nanofibers. Diam. Relat. Mater. 2024, 142, 110835. [Google Scholar] [CrossRef]
- Wang, X.; Geng, Q.; Shi, G.; Xu, G.; Yu, J.; Guan, Y.; Zhang, Y.; Li, D. One-pot solvothermal synthesis of Fe/Fe3O4 composites with broadband microwave absorption. J. Alloys Compd. 2019, 803, 818–825. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, S.; Zhu, J. Constructing ordered macropores in hollow Co/C polyhedral nanocages shell toward superior microwave absorbing performance. J. Colloid Interface Sci. 2022, 624, 423–432. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, B.; Yuan, Y.; Liu, W.; Wu, H.; Qin, S.; Fang, Q.; Yu, G.; Wang, B. Kapok derived microtubular FeCo/CMT with high specific surface area for broadband microwave absorption. Ceram. Int. 2024, 50, 9407–9419. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, K.; Zhang, H.; Huang, S.; Xie, N.; Wang, Q.; Zhu, H.; Liu, Y.; Zhao, X. Solvothermally Synthesized Co(CoO)/Ti3C2Tx/TiO2 Nanocomposites for Enhanced Microwave Absorption. ACS Appl. Nano Mater. 2024, 7, 5488–5497. [Google Scholar] [CrossRef]
- Li, Z.; Liang, J.; Wei, Z.; Cao, X.; Shan, J.; Li, C.; Chen, X.; Zhou, D.; Xing, R.; Luo, C.; et al. Lightweight foam-like nitrogen-doped carbon nanotube complex achieving highly efficient electromagnetic wave absorption. J. Mater. Sci. Technol. 2024, 168, 114–123. [Google Scholar] [CrossRef]
- Ge, J.; Cui, Y.; Qian, J.; Liu, L.; Meng, F.; Wang, F. Morphology-controlled CoNi/C hybrids with bifunctions of efficient anti-corrosion and microwave absorption. J. Mater. Sci. Technol. 2022, 102, 24–35. [Google Scholar] [CrossRef]
- Gu, H.; Huang, J.; Li, N.; Yang, H.; Chen, G.; Dong, C.; Gong, C.; Guan, H. Reactive MnO2 template-assisted synthesis of double-shelled PPy hollow nanotubes to boost microwave absorption. J. Mater. Sci. Technol. 2023, 146, 145–153. [Google Scholar] [CrossRef]
- Jiao, Z.; Hu, J.; Ma, M.; Liu, Y.; Zhao, J.; Wang, X.; Luan, S.; Zhang, L. One-dimensional core-shell CoC@CoFe/C@PPy composites for high-efficiency microwave absorption. J. Colloid Interface Sci. 2023, 650 Pt B, 2014–2023. [Google Scholar] [CrossRef]
- Chen, J.; Zheng, J.; Wang, F.; Huang, Q.; Ji, G. Carbon fibers embedded with FeIII-MOF-5-derived composites for enhanced microwave absorption. Carbon 2021, 174, 509–517. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, L.; Xu, H.; Cui, Y.; Qi, J.; Wang, X.; Jin, Q. Co-Doped Porous Carbon/Carbon Nanotube Heterostructures Derived from ZIF-L@ZIF-67 for Efficient Microwave Absorption. Molecules 2024, 29, 2426. https://doi.org/10.3390/molecules29112426
He L, Xu H, Cui Y, Qi J, Wang X, Jin Q. Co-Doped Porous Carbon/Carbon Nanotube Heterostructures Derived from ZIF-L@ZIF-67 for Efficient Microwave Absorption. Molecules. 2024; 29(11):2426. https://doi.org/10.3390/molecules29112426
Chicago/Turabian StyleHe, Liming, Hongda Xu, Yang Cui, Jian Qi, Xiaolong Wang, and Quan Jin. 2024. "Co-Doped Porous Carbon/Carbon Nanotube Heterostructures Derived from ZIF-L@ZIF-67 for Efficient Microwave Absorption" Molecules 29, no. 11: 2426. https://doi.org/10.3390/molecules29112426
APA StyleHe, L., Xu, H., Cui, Y., Qi, J., Wang, X., & Jin, Q. (2024). Co-Doped Porous Carbon/Carbon Nanotube Heterostructures Derived from ZIF-L@ZIF-67 for Efficient Microwave Absorption. Molecules, 29(11), 2426. https://doi.org/10.3390/molecules29112426