Chemical Composition of Volatile and Extractive Components of Canary (Tenerife) Propolis
Abstract
:1. Introduction
2. Results
2.1. Composition of Volatile Components of Propolis
2.2. Extractive Components
3. Discussion
4. Materials and Methods
4.1. Chemicals and Material
4.2. Determination of Volatiles
4.3. Determination of Extractive Components
4.4. Component Identification
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bastos, E.M.A.F.; Simone, M.; Jorge, D.M.; Soares, A.E.E.; Spivak, M. In vitro study of antimicrobial activity of Brazilian propolis against Paenibacillus larvae. J. Invertebr. Pathol. 2008, 97, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.B.; Brinkman, D.; Spivak, M.; Gardner, J.; Cohen, J.D. Regional variation in composition and antibacterial activity of US propolis against Paenibacillus larvae and Ascosphaera apis. J. Invertebr. Pathol. 2015, 124, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Isidorov, V.A.; Buczek, K.; Zambrowski, G.; Miastkowski, K.; Swiecicka, I. In vitro study of the antimicrobial activity of European propolis against Paenibacillus larvae. Apidologie 2017, 48, 411–422. [Google Scholar] [CrossRef]
- Evans, J.D.; Spivak, M. Socialized medicine: Individual and communical disease barriers in honey bees. J. Invertebr. Pathol. 2010, 103, S62–S72. [Google Scholar] [CrossRef] [PubMed]
- Simone-Finstrom, M.; Spivak, M. Propolis and bee health: The natural history and significance of resin use by honey bees. Apidologie 2010, 41, 295–311. [Google Scholar] [CrossRef]
- El-Seedi, H.; El-Wahed, A.A.; Yosri, N.; Musharraf, S.G.; Chen, L.; Moustafa, M.; Zou, X.; Al-Mousawi, S.; Guo, Z.; Khatib, A.; et al. Antimicrobial properties of Apis mellifera’s bee venom. Toxins 2020, 12, 451. [Google Scholar] [CrossRef] [PubMed]
- Elswaby, S.; Sadik, M.; Azouz, A.; Emam, N.; Ali, M. In vitro evaluation of antimicrobial and antioxidant activities of honeybee venom and propolis collected from various regions in Egypt. Egypt. Pharm. J. 2022, 21, 207–213. [Google Scholar] [CrossRef]
- Isidorov, V.; Zalewski, A.; Zambrowski, G.; Swiecicka, I. Chemical composition and antimicrobial properties of honey bee venom. Molecules 2023, 28, 4135. [Google Scholar] [CrossRef] [PubMed]
- Cornara, L.; Biagi, M.; Xiao, J.; Burlando, B. Therapeutic properties of bioactive compounds from different honeybee product. Front. Pharmacol. 2017, 8, 412. [Google Scholar] [CrossRef]
- Pasupuleti, V.R.; Sammugam, L.; Ramesh, N.; Guan, S.H. Honey, propolis, and royal jelly: A comprehensive review of their biological actions and health benefits. Oxidative Med. Cell. Longev. 2017, 2017, 1259510. [Google Scholar] [CrossRef]
- Nader, R.A.; Mackieh, R.; Wehbe, R.; el Obeid, D.; Sabatier, J.M.; Fajloun, Z. Beehive product as antibacterial agents: A review. Antibiotics 2021, 10, 717. [Google Scholar] [CrossRef] [PubMed]
- Ratajczak, M.; Kaminska, D.; Matuszewska, E.; Hołderna-Kedzia, E.; Rogacki, J.; Matysiak, J. Promising antimicrobial properties of bioactive compounds from different honeybee products. Molecules 2021, 26, 4007. [Google Scholar] [CrossRef] [PubMed]
- Imhof, M.; Lipovac, M.; Kurz, C.H.; Barta, J.; Verhoeven, H.C.; Huber, J.C. Propolis solution for the treatment of chronic vaginitis. Intern. J. Ginaecol. Obstet. 2005, 89, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Olczyk, P.; Komosinska-Vassev, K.; Wisowski, G.; Mencner, L.; Stojko, J.; Kozma, E.M. Propolis modulates fibronectin expression in the matrix of thermal injury. BioMed Res. Intern. 2014, 2014, 748101. [Google Scholar] [CrossRef] [PubMed]
- Benguedouar, L.; Lahouel, M.; Gangloff, S.; Durlach, A.; Grange, F.; Bernard, P.; Antonicelli, F. Algerian ethanolic extract of propolis and galangin decreased melanoma tumor progression in C57BL6 mice. In Annales de Dermatologie et de Vénéréologie; Elsevier: Paris, France, 2015; p. S294. [Google Scholar]
- Demir, S.; Aliyazicioglu, Y.; Turan, I.; Misir, S.; Mentese, A.; Yaman, S.O.; Akbulut, K.; Kilinc, K.; Deger, O. Antiproliferative and proapoptotic activity of Turkish propolis on human lung cancer cell line. Nutrit. Canc. 2016, 68, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Xuan, H.; Li, Z.; Yan, H.; Sang, Q.; Wang, K.; He, Q.; Wang, Y.; Hu, F. Antitumor activity of Chinese propolis in Human breast cancer MCF-7 and MDA-MB-231 cells. Evid.-Based Complement. Altern. Med. 2014, 2014, 280120. [Google Scholar] [CrossRef] [PubMed]
- Popova, M.P.; Bankova, V.S.; Bogdanov, S.; Tsvetkova, I.; Naydenski, C.; Marcazzan, G.I.; Sabatini, A.-G. Chemical characteristics of poplar type propolis of different geographic origin. Apidologie 2007, 38, 306–311. [Google Scholar] [CrossRef]
- Wilson, M.B.; Spivak, M.; Hageman, A.D.; Rendahl, A.; Cohen, J.D. Metabolomics reveals the origin of antimicrobial plant resins collected by honey bees. PLoS ONE 2013, 8, e77512. [Google Scholar] [CrossRef]
- Isidorov, V.A.; Bakier, S.; Pirożnikow, E.; Zambrzycka, M.; Swiecicka, I. Selective behavior of honeybees in acquiring European propolis plant precursors. J. Chem. Ecol. 2016, 42, 475–485. [Google Scholar] [CrossRef]
- Salatino, A.; Salatino, M.L.F. Why do honeybees exploit so few plant species as propolis sources? MOJ Food Process Technol. 2017, 4, 158–160. [Google Scholar] [CrossRef]
- Bankova, V.; Popova, M.; Trusheva, B. The phytochemistry of the honey bee. Phytochemistry 2018, 155, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Isidorov, V.A.; Szczepaniak, L.; Bakier, S. Rapid GC/MS determination of botanical precursors of Eurasian propolis. Food Chem. 2014, 142, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Isidorov, V.A.; Nazaruk, J.; Stocki, M.; Bakier, S. Secondary metabolites of downy birch buds. Z. Naturforschung C 2021, 77, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Isidorov, V.A.; Brzozowska, M.; Czyżewska, U.; Glinka, L. Gas chromatographic investigation of phenylpropenoid glycerides from aspen (Populus tremula L.) buds. J. Chromatogr. A 2009, 1198–1199, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Christov, R.; Trusheva, B.; Popova, M.; Bankova, V.; Bertrand, M. Chemical composition of propolis from Canada, its antiradical activity and plant origin. Nat. Prod. Res. 2006, 23, 1160–1161. [Google Scholar] [CrossRef] [PubMed]
- Popova, M.; Trusheva, B.; Khismatullin, R.; Gavrilova, N.; Legotkina, G.; Lyapunov, J.; Bankova, V. The triple botanical origin of Russian propolis from the Perm region, its phenolic content and antimicrobial activity. Nat. Prod. Commun. 2013, 8, 617–620. [Google Scholar] [CrossRef]
- Salatino, A.; Weinstein Teixeira, W.; Nrgri, G.; Message, D. Origin and chemical variation of Brazilian propolis. Evid.-Based Complement. Altern. Med. 2005, 2, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Agüero, M.B.; Svetaz, L.; Sánchez, M.; Luna, L.; Lima, B.; López, M.L.; Zacchino, S.; Palermo, J.; Wunderlin, D.; Feresin, G.E.; et al. Argentinean Andean propolis associated with the medicinal plant Larrea nitida Cav. (Zygophyllaceae). HPLC-MS and GC-MS characterization and antifungal activity. Food Chem. Toxicol. 2011, 49, 1970–1978. [Google Scholar] [CrossRef]
- Popova, M.P.; Graikou, K.; Chinou, I.; Bankova, V.S. GC-MS profiling of diterpene compounds in Mediterranean propolis from Greece. J. Agric. Food Chem. 2010, 58, 3167–3176. [Google Scholar] [CrossRef]
- Kumazawa, S.; Nakamura, J.; Murase, M.; Miyagawa, M.; Ahn, M.R.; Fukumoto, S. Plant origin of Okinawa propolis: Honeybee behavior observation and phytochemical analysis. Naturwissenschaften 2008, 95, 781–786. [Google Scholar] [CrossRef]
- Bankova, V.S.; Christov, R.S.; Tejera, A.D. Lignans and other constituents of propolis from the Canary Islands. Phytochemistry 1998, 49, 1411–1415. [Google Scholar] [CrossRef]
- Santos Vilar, J.M.; Bentabol Manzanares, A.; Hernández García, Z.; Modino García, D. Catálogo de flora de interés apícola de Tenerife. Descriptión morfológica de sus pólenes. In Casa de la Miel, Excmo Cabildo Insular de Tenerife; Casa de la Miel: Santa Cruz de Tenerife, Spain, 2004; ISBN 84-8734-076-8. [Google Scholar]
- Skakovsky, E.D.; Tychinskaya, L.Y.; Gapankova, E.I.; Latyshevich, I.A.; Shutova, A.G.; Shish, S.N.; Lamotkin, S.A. Composition of pine subgenus Pinus study by NMR method. Bul. SPb. Forest Acad. 2021, 237, 242–257. (In Russian) [Google Scholar] [CrossRef]
- Trusheva, B.; Popova, M.; Koendhori, E.B.; Tsvetkova, I.; Naydenski, C.; Bankova, V. Indonesian propolis: Chemical composition, biological activity and botanical origin. Nat. Prod. Res. 2011, 25, 606–613. [Google Scholar] [CrossRef] [PubMed]
- Sanpa, S.; Popova, M.; Tunkasiri, T.; Eitssayeam, S.; Bankova, V.; Chantawannakul, P. Chemical profiles and antimicrobial activities of Thai propolis collected from Apis mellifera. Chiang Mai J. Sci. 2017, 44, 438–444. [Google Scholar]
- Rios, M.Y.; Ocampo-Acuña, Y.D.; Ramírez-Cisneros, M.Á.; Salazar-Rios, M.E. Furofuranone lignans from Leucophyllum ambiguum. J. Nat. Prod. 2020, 83, 424–1431. [Google Scholar] [CrossRef] [PubMed]
- Han, N.; Wen, Y.; Liu, Z.; Zhai, J.; Li, S.; Yin, J. Advances in the roles and mechanisms of lignans against Alzheimer’s disease. Front. Pharmacol. 2022, 13, 960112. [Google Scholar] [CrossRef]
- Orabi, M.A.; Abdelhamid, R.A.; Elimam, H.; Elshaier, Y.A.; Ali, A.A.; Aldabaan, N.; Alhasaniah, A.H.; Refaey, M.S. Furofuranoid-type lignans and related phenolics from Anisacanthus virgularis (Salisb.) Nees with promising anticholinesterase and anti-ageing properties: A study supported by molecular modelling. Plants 2024, 13, 150. [Google Scholar] [CrossRef]
- Adams, R.A. Identification of Essential Oil Components by Gas Chromatography/Mass Spectromethy, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Tkachev, A.V. Investigation of Plant’s Volatile Compounds; Ofset Publ.: Novosibirsk, Russia, 2008. [Google Scholar]
- NIST Chemistry WebBook. National Institute of Standards and Technology: Gaitherburg, MD, USA. Available online: http://webbook.nist.gov/chemistry (accessed on 1 January 2022).
- Isidorov, V.A. GC-MS of Biologically and Environmentally Significant Organic Compounds. In TMS Derivatives; Wiley: Hoboken, NJ, USA, 2020. [Google Scholar]
Monoterpene/Monoterpenoids, Including: | RIExp | RILit | Sample | ||
---|---|---|---|---|---|
Pr-1 | Pr-2 | Pr-3 | |||
27.07 | 55.84 | 38.10 | |||
tricyclene | 919 | 921 | 0.19 | 0.16 | 0.21 |
α-thujene | 925 | 926 | 1.35 | N.d. * | 2.58 |
α-pinene | 936 | 936 | 6.43 | 10.07 | 18.68 |
camphene | 945 | 946 | 0.59 | 1.03 | 0.28 |
dehydrosabinene | 956 | 957 | N.d. | 1.49 | N.d. |
sabinene | 970 | 973 | 0.68 | N.d. | 5.55 |
β-pinene | 975 | 975 | 0.42 | 2.43 | 1.06 |
myrcene | 990 | 991 | 0.36 | 1.54 | 0.51 |
3-carene | 1010 | 1011 | 0.26 | trace ** | 1.76 |
α-terpinene | 1016 | 1017 | 0.18 | N.d. | 0.42 |
limonene | 1028 | 1028 | 13.36 | 4.77 | 1.49 |
cis-β-ocimene | 1044 | 1042 | N.d. | 0.56 | N.d. |
trans-β-ocimene | 1050 | 1048 | N.d. | 0.21 | N.d. |
γ-terpinene | 1056 | 1057 | 0.30 | N.d. | 0.86 |
dihydromyrcenol | 1071 | 1073 | 0.35 | N.d. | N.d. |
terpinolene | 1086 | 1088 | N.d. | N.d. | 0.57 |
trans-sabinene hydrate | 1096 | 1097 | N.d. | N.d. | 0.19 |
α-campholenal | 1124 | 1226 | N.d. | 2.18 | 0.47 |
trans-pinocarveol | 1135 | 1140 | 0.54 | 1.97 | 0.35 |
trans-verbenol | 1142 | 1142 | 0.51 | 0.57 | 0.49 |
pinocarvone | 1161 | 1164 | N.d. | 1.22 | N.d. |
borneol | 1165 | 1168 | 0.36 | 1.01 | N.d. |
isopinocamphone | 1174 | 1175 | N.d. | 0.29 | N.d. |
4-terpineol | 1178 | 1178 | 0.11 | 0.84 | 1.16 |
α-terpineol | 1189 | 1191 | 0.12 | 7.82 | 0.23 |
α-thujenal | 1195 | 1190 | N.d. | 0.38 | N.d. |
myrtenol | 1198 | 1196 | N.d. | 1.26 | N.d. |
verbenone | 1209 | 1212 | N.d. | 2.20 | N.d. |
trans-carveol | 1220 | 1218 | N.d. | 2.40 | N.d. |
cis-carveol | 1230 | 1229 | N.d. | 0.59 | N.d. |
carvone | 1243 | 1245 | N.d. | 0.92 | N.d. |
carvotanacetone | 1246 | 1249 | N.d. | 0.47 | N.d. |
bornyl acetate | 1285 | 1287 | N.d. | 3.36 | 0.30 |
piperitenone | 1340 | 1340 | N.d. | 0.20 | - |
Sesquiterpene/sesquiterpenois, including: | 16.50 | 12.18 | 3.78 | ||
δ-elemene | 1340 | 1342 | N.d. | N.d. | 1.17 |
α-cubebene | 1350 | 1351 | 2.43 | N.d. | N.d. |
α-longipinene | 1353 | 1357 | N.d. | 0.40 | N.d. |
α-copaene | 1376 | 1376 | 0.41 | 0.16 | N.d. |
β-bourbonene | 1383 | 1385 | N.d. | 1.21 | N.d. |
sativene? | 1388 | 1394 | N.d. | 0.27 | N.d. |
β-cubebene | 1391 | 1392 | 0.31 | N.d. | N.d. |
β-elemene | 1393 | 1391 | 0.28 | N.d. | N.d. |
longifolene | 1405 | 1405 | N.d. | 2.08 | N.d. |
acora-3,7(14)-diene | 1408 | 1408 | N.d. | 0.29 | N.d. |
β-funebrene | 1410 | 1412 | N.d. | N.d. | 0.29 |
β-caryophyllene | 1417 | 1419 | 3.49 | 3.29 | 1.10 |
β-copaene | 1433 | 1432 | N.d. | 0.19 | N.d. |
γ-elemene | 1433 | 1433 | N.d. | N.d. | 0.23 |
α-humulene | 1454 | 1454 | 0.30 | 1.16 | N.d. |
γ-muurolene | 1478 | 1479 | 0.39 | 0.21 | N.d. |
β-selinene | 1485 | 1486 | 0.55 | N.d. | N.d. |
valencene | 1494 | 1493 | 0.47 | N.d. | N.d. |
α-selinene | 1496 | 1496 | 0.31 | N.d. | N.d. |
α-muurolene | 1503 | 1500 | 0.19 | N.d. | N.d. |
β-bisabolene | 1509 | 1508 | N.d. | 0.13 | N.d. |
γ-cadinene | 1516 | 1515 | 0.41 | 0.19 | N.d. |
δ-cadinene | 1526 | 1524 | 0.96 | N.d. | 0.14 |
selina-4(15),7(11)-diene? *** | 1536 | - | 0.21 | N.d. | N.d. |
selina-3,7(11)-diene | 1542 | 1541 | 0.25 | N.d. | N.d. |
elemol | 1555 | 1550 | 0.45 | N.d. | N.d. |
germacrene B | 1557 | 1557 | N.d. | N.d. | 0.49 |
caryophyllene oxide | 1582 | 1583 | 0.66 | 1.39 | N.d. |
cedrol | 1600 | 1600 | 0.25 | N.d. | 0.37 |
humulene epoxide II | 1608 | 1606 | N.d. | 0.19 | N.d. |
eremoligenol | 1630 | 1630 | 1.71 | N.d. | N.d. |
caryophylladienol II | 1635 | 1636 | N.d. | 0.12 | N.d. |
β-eudesmol | 1648 | 1650 | 1.15 | N.d. | N.d. |
α-eudesmol | 1651 | 1653 | 0.92 | N.d. | N.d. |
14-hydroxy-β-caryophyllene? | 1657 | 1667 | N.d. | 0.59 | N.d. |
unidentified sesquiterpenol C15H22O2 | 1662 | - | 0.24 | N.d. | N.d. |
Diterpene hydrocarbons, including: | 0.40 | N.d. | N.d. | ||
unidentified diterpene C20H32 | 1762 | - | 0.15 | N.d. | N.d. |
unidentified diterpene C20H32 | 1805 | - | 0.25 | N.d. | N.d. |
Aliphatic acid, including: | 7.3 | 1.94 | 6.23 | ||
formic acid | 538 | 535 | 2.78 | trace | 1.32 |
acetic acid | 626 | 616 | 3.03 | 1.94 | 4.64 |
isobutyric acid | 765 | 762 | 0.72 | trace | N.d. |
isovaleric acid | 842 | 848 | 0.32 | N.d. | 0.14 |
2-methylbutanoic acid | 862 | 868 | trace | N.d. | 0.13 |
hexanoic acid | 983 | 989 | 0.27 | N.d. | N.d. |
Aliphatic alcohol, including: | 4.87 | 0.82 | 1.75 | ||
ethanol | 480 | 484 | 2.64 | 0.03 | 0.81 |
isopentanol | 730 | 734 | 0.26 | trace | 0.53 |
2,3-butanediol, isomer 1 | 737 | 734 | 0.22 | N.d. | 0.15 |
3-methyl-2-buten-1-ol (prenol) | 770 | 771 | 0.81 | N.d. | N.d. |
2,3-butanediol, isomer2 | 782 | 779 | 0.52 | N.d. | 0.35 |
1-hexanol | 866 | 870 | 0.44 | N.d. | N.d. |
1-heptanol | 970 | 968 | N.d. | 0.13 | N.d. |
1-octanol | 1070 | 1070 | N.d. | 0.40 | N.d. |
Esters, including: | 2.96 | N.d. | N.d. | ||
n-propyl propionate | 810 | 808 | 0.16 | N.d. | N.d. |
n-butyl butanoate | 997 | 998 | 0.32 | N.d. | N.d. |
n-butyl hexanoate | 1193 | 1192 | 1.68 | N.d. | N.d. |
ethyl octanoate | 1199 | 1198 | 0.17 | N.d. | N.d. |
glycerol 1,2-diacetate? | 1355 | - | 0.41 | N.d. | N.d. |
n-hexyl hexanoate | 1387 | 1387 | 0.22 | N.d. | N.d. |
Aliphatic carbonyls, including: | 20.13 | 12.76 | 8.90 | ||
acetone | 500 | 501 | 2.73 | 2.31 | 2.28 |
isopentanal | 648 | 648 | trace | N.d. | N.d. |
Acetol (hydroxyacetone) | 667 | 673 | N.d. | N.d. | 0.48 |
acetoin (3-hydroxy-butanone) | 722 | 722 | 0.51 | N.d. | 1.00 |
3-methyl-2-butenal (prenal) | 780 | 776 | 0.79 | 0.34 | 0.26 |
hexanal | 801 | 801 | 1.97 | 071 | N.d. |
2-hexenal | 851 | 853 | N.d. | 0.36 | N.d. |
3-heptanone | 885 | 890 | N.d. | N.d. | 0.22 |
heptanal | 902 | 902 | 1.12 | 0.80 | 0.19 |
trans-2-heptenal | 954 | 956 | N.d. | 0.13 | N.d. |
6-methyl-5-hepten-2-one | 986 | 987 | 0.28 | 0.24 | 0.66 |
octanal | 1002 | 1004 | 0.52 | 1.68 | 1.42 |
2-nonanone | 1092 | 1089 | N.d. | 0.95 | N.d. |
nonanal | 1103 | 1104 | 6.34 | 3.17 | 1.91 |
2,6-(E,Z)-nonadienal | 1153 | 1156 | N.d. | 0.38 | N.d. |
decanal | 1208 | 1207 | 2.11 | 0.63 | N.d. |
(E)-2-decenal | 1261 | 1261 | N.d. | 0.40 | N.d. |
2-undecanone | 1296 | 1294 | N.d. | 0.66 | N.d. |
undecanal | 1309 | 1308 | 0.02 | N.d. | N.d. |
Aromatics, including: | 7.38 | 3.99 | 6.61 | ||
toluene | 761 | 761 | 2.80 | 0.37 | 1.03 |
p-xylene | 865 | 866 | N.d. | N.d. | 0.16 |
styrene | 894 | 893 | N.d. | 2.65 | N.d. |
benzaldehyde | 964 | 960 | 0.11 | 0.46 | N.d. |
p-cymene | 1022 | 1023 | 4.44 | 0.52 | 2.14 |
m-cymen-8-ol | 1181 | 1184 | 0.02 | N.d. | N.d. |
p-cymen-8-ol | 1184 | 1187 | 0.14 | N.d. | 0.28 |
Alkane & alkene, including: | 6.00 | 9.33 | 32.48 | ||
n-hexane | 600 | 600 | 4.30 | N.d. | 1.50 |
n-heptane | 700 | 700 | 1.39 | 0.18 | 0.68 |
1-octene | 790 | 791 | 0.31 | N.d. | 0.30 |
n-octane | 800 | 800 | N.d. | N.d. | 0.54 |
n-nonane | 900 | 900 | trace | trace | 0.12 |
2-methylnonane | 962 | 962 | N.d. | N.d. | 0.13 |
n-decane | 1000 | 1000 | N.d. | trace | 6.03 |
4-methyldecane | 1060 | 1060 | N.d. | 0.40 | 0.25 |
2-methyldecane | 1063 | 1063 | N.d. | 0.18 | 1.55 |
3-methyldecane | 1070 | 1070 | N.d. | N.d. | 0.48 |
n-undecane | 1100 | 1100 | N.d. | 0.45 | 2.05 |
2,6-dimethyldecane | 1109 | 1109 | N.d. | 0.63 | N.d. |
2,9-dimethyldecane | 1127 | 1126 | N.d. | N.d. | 0.13 |
6-methylundecane | 1163 | 1062 | N.d. | N.d. | 0.61 |
1-dodecene | 1190 | 1193 | N.d. | N.d. | 0.22 |
n-dodecane | 1200 | 1200 | N.d. | 0.98 | 11.85 |
4-methyldodecane | 1260 | 1259 | N.d. | N.d. | 0.15 |
2-methyldodecane | 1263 | 1263 | N.d. | N.d. | 0.77 |
n-tridecane | 1300 | 1300 | N.d. | N.d. | 0.78 |
n-tetradecane | 1400 | 1400 | N.d. | trace | 2.28 |
n-pentadecane | 1500 | 150 | N.d. | 1.64 | 0.32 |
n-heptadecane | 1600 | 1600 | N.d. | N.d. | 0.50 |
Other, including: | 4.25 | 1.16 | 1.47 | ||
chloroform | 615 | 615 | 3.67 | N.d. | N.d. |
pyridine | 742 | 742 | N.d. | N.d. | 1.10 |
furfural | 830 | 834 | 0.33 | 0.17 | N.d. |
γ-butyrolactone | 916 | 914 | N.d. | 0.14 | N.d. |
3,7,7-trimethyl-1,3,5-cycloheptatriene | 967 | 970 | 0.25 | N.d. | 0.37 |
γ-caprolactone | 1056 | 1060 | N.d. | 0.39 | N.d. |
4-acetyl-1-methylcyclohexene | 1130 | 1131 | N.d. | 0.25 | N.d. |
2-methylene-6,6-dimethylbicyclo [3.2.0]heptan-3ol | 1156 | 1157 | N.d. | 0.21 | N.d. |
NN | 4.55 | 1.98 | 2.68 |
Group of Compounds | RIExp | RILit | Sample | ||
---|---|---|---|---|---|
Pr-1 | Pr-2 | Pr-3 | |||
Sesquiterpene/Sesquiterpenoids, Including: | 1.71 | N.d. * | 1.28 | ||
β-caryophyllene | 1417 | 1419 | 0.05 | N.d. | 0.07 |
caryophyllene oxide | 1583 | 1583 | 0.07 | N.d. | 0.06 |
α-copaen-11-ol, TMS | 1634 | 1636 | 0.13 | N.d. | N.d. |
elemol, TMS | 1637 | 1638 | 0.06 | N.d. | N.d. |
τ-cadinol, TMS | 1699 | 1701 | 0.05 | N.d. | N.d. |
α-acorenol, TMS | 1723 | 1722 | 0.14 | N.d. | 0.05 |
agarospirol, TMS | 1734 | 1734 | 0.05 | N.d. | N.d. |
γ-eudesmol, TMS | 1744 | 1741 | 0.76 | N.d. | 0.38 |
β-eudesmol, TMS | 1753 | 1750 | 0.40 | N.d. | 0.18 |
(2E,6Z)-farnesol, TMS | 1814 | 1811 | 0.05 | N.d. | N.d. |
Diterpenoids, including: | 10.42 | 55.18 | 2.48 | ||
pimaric acid, TMS | 2301 | 2302 | 0.60 | 5.47 | N.d. |
sandaracopimaric acid, TMS | 2319 | 2318 | 0.42 | 1.45 | N.d. |
trans-communic acid, TMS | 2325 | 2324 | 0.17 | trace ** | 0.11 |
isopimaric acid, TMS | 2332 | 2333 | 1.39 | 7.68 | 0.39 |
totarol, TMS? *** | 2338 | 3332 | 0.35 | N.d. | N.d. |
palustric acid, TMS | 2360 | 3357 | N.d. | 4.78 | N.d. |
diterpene aldehyde C20H30O (MW 286) | 2367 | - | N.d. | 0.40 | N.d. |
communic acid, TMS | 2377 | 3375 | N.d. | 3.58 | N.d. |
dehydroabietic acid, TMS | 2388 | 2386 | 1.76 | 6.93 | 0.20 |
abietic acid, TMS | 2414 | 2414 | 0.89 | 8.44 | 0.14 |
13-epi-cupressic acid, di-TMS | 2438 | 2435 | 0.63 | N.d. | 0.16 |
podocarpic acid, di-TMS? | 2482 | N.d. | 0.17 | N.d. | N.d. |
neoabietic acid, TMS | 2508 | 2508 | N.d. | 3.55 | N.d. |
unidentified diterpenoid, TMS | 2515 | N.d. | N.d. | 1.31 | N.d. |
15-hydroxydehydroabietic acid, di-TMS | 2540 | 2536 | 0.61 | 1.74 | N.d. |
imbricatoloic acid, di-TMS | 2550 | 2548 | 0.29 | 1.19 | N.d. |
unidentified diterpenoid, TMS | 2665 | - | N.d. | 1.51 | N.d. |
isocupressic acid, di-TMS | 2592 | 2592 | N.d. | 0.86 | 1.48 |
unidentified diterpenoid, TMS | 2596 | - | 1.65 | 3.60 | N.d. |
pinifolic acid, di-TMS | 2640 | 2644 | 0.82 | N.d. | N.d. |
7a,15-dihydroxydehydroabietic acid, tri-TMS | 2748 | 2744 | 0.09 | 0.61 | N.d. |
15-hydroxy-7-oxodehydroabietic acid, di-TMS | 2787 | 2789 | 0.08 | N.d. | N.d. |
Triterpenoids, including: | 21.4 | 7.48 | 5.31 | ||
unidentified triterpenoid, TMS (393,73,149,69) | 3265 | - | 0.61 | N.d. | N.d. |
dihydrolanostreol, TMS? | 3292 | - | 0.17 | N.d. | N.d. |
β-amyrone? | 3307 | - | 0.53 | 0.12 | N.d. |
lanosterol, TMS | 3332 | 3335 | 0.25 | trace | 0.30 |
β-amyrin, TMS | 3350 | 3347 | 0.72 | 1.40 | N.d. |
olean-18-en-3-ol ? TMS | 3360 | - | 1.23 | 0.62 | 0.3 |
α-amyrin, TMS | 3380 | 3378 | 0.05 | 2.48 | N.d. |
lupeol, TMS | 3395 | 3401 | N.d. | 0.88 | 0.20 |
cycloartenol? TMS | 3407 | - | 1.16 | 0.75 | N.d. |
9,19-cyclolanostan-3-ol, 24-methylene-? TMS | 3468 | - | 0.68 | 0.16 | N.d. |
-masticadienoic acid? TMS | 3702 | - | 2.29 | N.d. | 1.04 |
unidentified triterpenoid, TMS (95,511,189,526) | 3776 | - | 1.79 | N.d. | N.d. |
unidentified triterpenoid, TMS | 3807 | - | 1.79 | N.d. | 0.52 |
Resorcinol derivatives, including: | 1.17 | 0.54 | N.d. | ||
(Z,Z)-5-heptadec-9,12-dienylresorcinol, di-TMS | 2877 | 2881 | 0.54 | 0.41 | N.d. |
(5Z)-5-heptadecenylresorcinol, di-TMS | 2903 | 2905 | 0.23 | trace | N.d. |
5-heptadecylresorcynol, di-TMS | 2908 | 2911 | 0.05 | trace | N.d. |
5-nonadecenylresorcynol, di-TMS | 3101 | 3102 | 0.35 | 0.13 | N.d. |
Salicylic acid derivatives, including: | 1.22 | N.d. | N.d. | ||
ginkgolic acid, C15:1, di-TMS | 2861 | 2862 | 0.13 | N.d. | N.d. |
salicylic acid, 6-heptadecadienyl-, di-TMS | 3031 | 3026 | 0.10 | N.d. | N.d. |
ginkgolic acid, C17:1, di-TMS | 3059 | 3056 | 0.27 | N.d. | N.d. |
salicylic acid, 6-heptadecyl-, di-TMS | 3063 | 3061 | 0.11 | N.d. | N.d. |
salicylic acid, 6-(12-hydroxyheptadecyl)-, tri-TMS | 3260 | 3261 | 0.61 | N.d. | N.d. |
Lignans, including: | 21.29 | 3.30 | 6.65 | ||
(+)-epi-sesamin | 3140 | 3140 | 2.27 | 0.35 | 0.73 |
fargesin | 3201 | 3202 | 3.03 | 0.64 | 1.02 |
eudesmin? (pinoresinol, dimethyl ether) | 3250 | - | 0.76 | 0.22 | 0.35 |
aschantin | 3333 | 3332 | 4.84 | 1.51 | 1.82 |
magnolin | 3369 | 3371 | 0.95 | 0.12 | 0.28 |
(+)-magnolin | 3388 | 3388 | 2.28 | N.d. | 0.76 |
yangambin, isomer 1 | 3510 | 3510 | 1.44 | 0.27 | 0.29 |
yangambin, isomer 2 | 3515 | 3519 | 2.18 | 0.69 | 1.41 |
unidentified lignan (430,179,165,181,207) | 3568 | - | 2.58 | 0.50 | N.d. |
Aliphatic acids, including: | 15.85 | 10.99 | 21.18 | ||
azelaic acid, di-TMS | 1807 | 1806 | 0.13 | 0.14 | 0.05 |
hexadecanoic acid, TMS | 2052 | 2051 | 1.92 | 1.53 | 1.90 |
linoleic acid, TMS | 2215 | 2215 | 0.22 | 0.60 | 0.26 |
oleic acid, TMS | 2222 | 2222 | 2.18 | 4.14 | 2.66 |
(E)-vaccenic acid, TMS | 2229 | 2233 | 0.09 | N.d. | N.d. |
octadecanoic acid, TMS | 2249 | 2250 | 0.58 | 0.16 | 0.40 |
(Z)-11-eicosenoic acid | 2420 | 2419 | 0.07 | N.d. | N.d. |
3-hydroxyoctadecanoic acid, di-TMS | 2429 | 2429 | 0.07 | N.d. | N.d. |
eicosanoic acid, TMS | 2448 | 2447 | 0.12 | N.d. | 0.15 |
heneicosanoic acid, TMS | 2548 | 2546 | 0.18 | N.d. | N.d. |
docosanoic acid, TMS | 2644 | 2645 | 0.72 | N.d. | 1.50 |
tricosanoic acid, TMS | 2743 | 2747 | 0.23 | N.d. | 0.18 |
tetracosanoic acid, TMS | 2847 | 2845 | 3.08 | 2.84 | 5.96 |
hexacosanoic acid, TMS | 3044 | 3043 | 1.43 | 0.24 | 2.12 |
23-hydroxytetradecanoic acid, di-TMS | 3115 | 3118 | 0.22 | 0.11 | 0.24 |
octacosanoic acid, TMS | 3242 | 3241 | 1.24 | trace | 1.90 |
triacontenoic acid, TMS | 3422 | - | N.d. | N.d. | 0.22 |
triacontanoic acid, TMS | 3442 | 3440 | 1.68 | N.d. | 1.31 |
dotriacontenoic acid, TMS | 3623 | - | N.d. | N.d. | 0.20 |
dotriacontanoic acid, TMS | 3642 | 3641 | 0.60 | N.d. | 0.58 |
tetratriacontanoic acid, TMS | 3838 | 3838 | 0.86 | N.d. | 0.61 |
Aliphatic alcohols, including: | 1.01 | N.d. | 2.99 | ||
1-octadecanol, TMS | 2164 | 2165 | 0.09 | N.d. | N.d. |
1-tetracosanol, TMS | 2753 | 2754 | 0.43 | N.d. | 0.26 |
1-hexacosanol, TMS | 2949 | 2951 | 0.22 | N.d. | 0.20 |
1-octacosanol, TMS | 3148 | 3148 | 0.24 | N.d. | 0.36 |
1-triacontanol, TMS | 3346 | 3346 | N.d. | N.d. | 1.13 |
1-dotriacontanol, TMS | 3546 | 3542 | N.d. | N.d. | 0.66 |
1-tetratriacontanol, TMS | 3742 | 3741 | N.d. | N.d. | 0.26 |
Aliphatic carbonyls, including: | 0.43 | N.d. | N.d. | ||
tricosanal | 2533 | 2534 | 0.36 | N.d. | N.d. |
hexacosanal | 2835 | 2833 | 0.07 | N.d. | N.d. |
Alkane & alkenes, including: | 14.94 | 28.20 | 47.59 | ||
n-heptadecane | 1700 | 1700 | N.d. | N.d. | 0.09 |
n-nonadecane | 1900 | 1900 | 0.14 | trace | 0.37 |
n-eicosane | 2000 | 2000 | N.d. | N.d. | 0.07 |
n-heneicosane | 2100 | 2100 | 0.26 | 1.37 | 0.80 |
9-(Z)-tricosene | 2270 | 2271 | N.d. | N.d. | 0.29 |
n-tricosane | 2300 | 2300 | 1.01 | 6.87 | 2.34 |
n-tetracosane | 2400 | 2400 | 0.17 | N.d. | 0.35 |
9-pentacosene | 2473 | 2475 | 0.09 | 0.51 | 0.35 |
7-pentacosene | 2478 | 2482 | N.d. | N.d. | 0.09 |
n-pentacosane | 2500 | 2500 | 1.63 | 2.87 | 4.01 |
n-hexacosane | 2600 | 2600 | 0.36 | N.d. | 1.48 |
n-heptacosane | 2700 | 2700 | 3.94 | 0.70 | 8.37 |
13-methylheptacosane | 2731 | 2731 | 0.23 | N.d. | 0.40 |
n-octacosane | 2800 | 2800 | 0.27 | N.d. | 0.58 |
2-methyloctacosane | 2860 | 2858 | N.d. | N.d. | 0.15 |
9-nonacosene | 2876 | 2875 | N.d. | N.d. | 1.87 |
7-nonacosene | 2885 | 2882 | N.d. | 2.63 | N.d. |
n-nonacosane | 2900 | 2900 | 2.67 | 0.70 | 6.72 |
9-triacontene | 2983 | 2984 | N.d. | N.d. | 0.33 |
n-triacontane | 3000 | 3000 | 0.19 | N.d. | 0.36 |
9-hentriacontene | 3073 | 3075 | 0.48 | 3.44 | 2.75 |
7-hentriacontene | 3081 | 3082 | 0.89 | 4.21 | 3.39 |
n-hentriacontane | 3100 | 3100 | 1.42 | N.d. | 4.09 |
9-tritriacontane | 3276 | 3277 | 0.82 | 4.24 | 5.49 |
7-tritriacontane | 3282 | 3282 | 0.26 | N.d. | N.d. |
n-tritriacontane | 3300 | 3300 | 0.31 | N.d. | 0.56 |
Other, including: | 4.10 | 5.48 | 0.14 | ||
glycerol, tri-TMS | 1293 | 1294 | trace | 2.11 | 0.14 |
3,4,5-trimethoxybenzoic acid, TMS | 1832 | 1833 | 0.18 | N.d. | N.d. |
quinic acid, penta-TMS | 1900 | 1900 | N.d. | 0.61 | N.d. |
1-O-octadecyl glycerol, di-TMS | 2699 | 2695 | N.d. | 2.09 | N.d. |
1-O-eicosyl glycerol, di-TMS | 2892 | 2893 | 1.01 | 0.67 | N.d. |
tetracosyl hexadecanoate | >4000 | - | 2.91 | N.d. | N.d. |
NN | 6.84 | 10.50 | 3.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isidorov, V.A.; Dallagnol, A.M.; Zalewski, A. Chemical Composition of Volatile and Extractive Components of Canary (Tenerife) Propolis. Molecules 2024, 29, 1863. https://doi.org/10.3390/molecules29081863
Isidorov VA, Dallagnol AM, Zalewski A. Chemical Composition of Volatile and Extractive Components of Canary (Tenerife) Propolis. Molecules. 2024; 29(8):1863. https://doi.org/10.3390/molecules29081863
Chicago/Turabian StyleIsidorov, Valery A., Andrea M. Dallagnol, and Adam Zalewski. 2024. "Chemical Composition of Volatile and Extractive Components of Canary (Tenerife) Propolis" Molecules 29, no. 8: 1863. https://doi.org/10.3390/molecules29081863
APA StyleIsidorov, V. A., Dallagnol, A. M., & Zalewski, A. (2024). Chemical Composition of Volatile and Extractive Components of Canary (Tenerife) Propolis. Molecules, 29(8), 1863. https://doi.org/10.3390/molecules29081863