The Antioxidant, Anti-Inflammatory and Moisturizing Effects of Camellia oleifera Oil and Its Potential Applications
Abstract
:1. Introduction
2. Results and Discussion
2.1. CO Oil Qualities
2.2. In Vitro Antioxidant Ability Analysis of CO Oil and Emulsion
2.3. Analysis of Moisturizing Ability of CO Oil and Emulsion
2.4. Analysis of Anti-Inflammatory Capacities of CO Oil and Emulsion
2.5. Optimization of Emulsion Formulation
2.6. Stability Tests
2.7. Microorganism Detection
3. Materials and Methods
3.1. Materials
3.2. Oil Extraction and Determination Assay
3.2.1. Oil Extraction Assay
3.2.2. Determination of Acid, Peroxide, Saponification, and Iodine Values
3.3. Determination of Tocopherol
3.4. Determination of Polyphenols
3.5. Determination of Squalene
3.6. Determination of Fatty Acid Composition
3.7. Determination of Antioxidant Activities
3.7.1. DPPH Radical-Scavenging Assay
3.7.2. ABTS Radical Scavenging Assay
3.8. Moisturizing Assay
3.9. Anti-Inflammatory Assay
3.9.1. Cell Culture
3.9.2. Cell Viability Assay
3.9.3. Determination of Nitric Oxide (NO)
3.10. Emulsion Optimization
3.10.1. Emulsion Preparation
3.10.2. Experimental Development of Emulsion Formulation
3.11. pH Measurement
3.12. Stability Testing
3.13. Detection of Microorganisms
3.14. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Number | Octyl Dodecanol Lau-Royl Glutamate/% | PEG-100 Glycerol Monostearate/% | CO Oil/% | Cetyl Eehylhexanoate/% | Glycerin/% | Xanthan Gum/% | Aggregate Score |
---|---|---|---|---|---|---|---|
1 | 0.5 | 0.5 | 3.0 | 0.5 | 4.0 | 0.1 | 78.2 |
2 | 0.5 | 1.0 | 4.0 | 1.0 | 5.0 | 0.2 | 86.6 |
3 | 0.5 | 1.5 | 5.0 | 1.5 | 6.0 | 0.3 | 78.7 |
4 | 1.0 | 0.5 | 4.0 | 0.5 | 5.0 | 0.3 | 88.3 |
5 | 1.0 | 1.0 | 5.0 | 1.0 | 6.0 | 0.1 | 91.7 |
6 | 1.0 | 1.5 | 3.0 | 1.5 | 4.0 | 0.2 | 83.7 |
7 | 1.5 | 0.5 | 3.0 | 1.0 | 6.0 | 0.2 | 79.9 |
8 | 1.5 | 1.0 | 4.0 | 1.5 | 6.0 | 0.3 | 80.4 |
9 | 1.5 | 1.5 | 5.0 | 0.5 | 5.0 | 0.1 | 77.4 |
10 | 0.5 | 0.5 | 5.0 | 1.0 | 4.0 | 0.3 | 76.9 |
11 | 0.5 | 1.0 | 3.0 | 0.5 | 6.0 | 0.3 | 85.3 |
12 | 0.5 | 1.5 | 4.0 | 1.0 | 4.0 | 0.1 | 69.5 |
13 | 1.0 | 0.5 | 5.0 | 1.0 | 4.0 | 0.3 | 79.4 |
14 | 1.0 | 1.0 | 3.0 | 1.5 | 5.0 | 0.1 | 81.9 |
15 | 1.0 | 1.5 | 4.0 | 0.5 | 4.0 | 0.1 | 82.2 |
16 | 1.5 | 0.5 | 4.0 | 1.5 | 6.0 | 0.1 | 80.6 |
17 | 1.5 | 1.0 | 5.0 | 0.5 | 4.0 | 0.2 | 77.3 |
18 | 1.5 | 1.5 | 3.0 | 1.0 | 5.0 | 0.3 | 82.9 |
K1 | 79.2 | 80.5 | 81.5 | 82.0 | 78.1 | 79.8 | |
K2 | 84.5 | 83.9 | 81.7 | 81.2 | 82.3 | 81.1 | |
K3 | 79.6 | 79.0 | 80.2 | 80.2 | 82.9 | 82.5 | |
R | 5.3 | 4.8 | 1.5 | 1.8 | 4.7 | 2.7 |
References
- Ma, J.L.; Ye, H.; Rui, Y.K.; Chen, G.C.; Zhang, N.Y. Fatty acid composition of Camellia oleifera oil. J. Verbrauch. Lebensm. 2010, 6, 9–12. [Google Scholar] [CrossRef]
- Wang, X.Q.; Zeng, Q.M.; Contreras, M.D.; Wang, L.J. Profiling and quantification of phenolic compounds in Camellia seed oils: Natural tea polyphenols in vegetable oil. Food Res. Int. 2017, 102, 184–194. [Google Scholar] [CrossRef]
- Xu, Z.G.; Cao, Z.R.; Yao, H.R.; Li, C.Y.; Zhao, Y.L.; Yuan, D.Y.; Yang, G.Y. The physicochemical properties and fatty acid composition of two new woody oil resources: Camellia hainanica seed oil and Camellia sinensis seed oil. CYTA-J. Food 2021, 19, 208–211. [Google Scholar]
- Liu, L.; Zhou, J.S.; Xu, Z.; Kong, Q.B.; Zhang, J.; Wang, H.; Xiang, Z.Y.; Chen, T.; Zhou, L.J.; Feng, S.L.; et al. The positive effects of Camellia oleifera oil on lifespan in Caenorhabditis elegans. J. Funct. Foods 2023, 110, 105869. [Google Scholar] [CrossRef]
- Ferreira, M.S.; Magalhes, M.C.; Oliveira, R.; Sousa-Lobo, J.M.; Almeida, I.F. Trends in the use of botanicals in anti-aging cos-metics. Molecules 2021, 26, 3584. [Google Scholar] [CrossRef]
- Ferreira, S.M.; Santos, L. A potential valorization strategy of wine industry by-products and their application in cosmet-ics-case study: Grape Pomace and Grapeseed. Molecules 2022, 27, 969. [Google Scholar] [CrossRef]
- Fritz, V.; Martirosian, P.; Machann, J.; Daniels, R.; Schick, F. A Comparison of Emulsifiers for the Formation of Oil-in-Water Emulsions: Stability of the Emulsions within 9 h after Production and MR Signal Properties; Springer International Publishing: Cham, Switzerland, 2021. [Google Scholar]
- GB/T 11765-2018; Oil-Tea Camellia Seed Oil. China National Standardization Committee: Beijing, China, 2018.
- Yang, X.; Yin, S.; Jian, B.I. Standard identification of Camellia oil and other cooking oils. J. Hefei Norm. Univ. 2017, 35, 31–35. [Google Scholar]
- Anderson-Foster, E.N.; Adebayo, A.S.; Justiz-Smith, N. Physico-chemical properties of Blighiasapida (ackee) oil extract and its potential application as emulsion base. Afr. J. Pharm. Pharmacol. 2012, 6, 200–210. [Google Scholar]
- Hoang, H.T.; Moon, J.Y.; Lee, Y.C. Natural antioxidants from plant extracts in skincare cosmetics: Recent applications, challenges and perspectives. Cosmetics 2021, 8, 106. [Google Scholar] [CrossRef]
- Huang, Z.R.; Lin, Y.K.; Fang, J.Y. Biological and pharmacological activities of squalene and related compounds: Potential uses in cosmetic dermatology. Molecules 2009, 14, 540–554. [Google Scholar] [CrossRef]
- Silva, S.; Ferreira, M.; Oliveira, A.S.; Magalhaes, C.; Sousa, M.E.; Pinto, M.; Sousa Lobo, J.M.; Almeida, I.F. Evolution of the use of antioxidants in anti-aging cosmetics. Int. J. Cosmet. Sci. 2019, 41, 378–386. [Google Scholar] [CrossRef]
- Badreshia-Bansal, S.; Draelos, Z. Insight into skin lightening cosmeceuticals for women of color. J. Drugs Dermatol. 2007, 6, 32–39. [Google Scholar]
- Thiele, J.J.; Hsieh, S.N.; Ekanayake-Mudiyanselage, S. Vitamin E: Critical review of its current use in cosmetic and clinical dermatology. Dermatol. Surg. 2010, 31, 805–813. [Google Scholar] [CrossRef]
- Michalak, M.; Kieltyka-Dadasiewicz, A. Nut oils and their dietetic and cosmetic significance: A review. J. Oleo Sci. 2019, 68, 111–120. [Google Scholar]
- Ye, Z.C.; Wu, Y.G.; Muhammad, Z.U.; Yan, W.P.; Yu, J.; Zhang, J.F.; Yao, G.L.; Hu, X.W. Complementary transcriptome and proteome profiling in the mature seeds of Camellia oleifera from Hainan Island. PLoS ONE 2020, 15, e0226888. [Google Scholar] [CrossRef]
- Xiao, X.M.; He, L.M.; Chen, Y.Y.; Wu, L.H.; Wang, L.; Liu, Z.P. Anti-inflammatory and antioxidative effects of Camellia oleifera Abel components. Future Med. Chem. 2017, 9, 2069–2079. [Google Scholar] [CrossRef]
- Zhou, Q.F.; Jia, X.J.; Li, Q.Q.; Yang, R.W.; Zhang, L.; Zhou, Y.H.; Ding, C.B. Antioxidant and antimicrobial activities of Camellia oleifera seed oils. J. Appl. Biol. Chem. 2014, 57, 123–129. [Google Scholar] [CrossRef]
- Lee, C.P.; Yen, G.C. Antioxidant activity and bioactive compounds of tea seed (Camellia oleifera Abel.) oil. J. Agric. Food Chem. 2006, 54, 779–784. [Google Scholar] [CrossRef]
- Liu, L. Study on polar antioxidative compounds in tea (Camellia sinensis) seed oil. Chin. Cereals Oils Assoc. 2002, 17, 4–9. [Google Scholar]
- Tang, T.; Jin, S.; Li, X.; Li, X.; Hu, X.; Yan, C.; Huang, F.; Yang, Z.; Yu, F.; Ding, G. Physicochemical properties and biocompatibility evaluation of collagen from the skin of giant croaker (Nibea japonica). Mar. Drugs 2018, 16, 222. [Google Scholar] [CrossRef]
- Kim, T.H.; Kim, W.J.; Park, S.Y.; Kim, H.; Chung, D.K. In vitro anti-wrinkle and skin-moisturizing effects of evening primrose (Oenothera biennis) sprout and identification of its active components. Processes 2021, 9, 145. [Google Scholar] [CrossRef]
- Vidal, N.P.; Adigun, O.A.; Pham, T.; Mumtaz, A.; Manful, C.; Callahan, G.; Stewart, P.; Keough, D.; Thomas, R. The effects of cold saponification on the unsaponified fatty acid composition and sensory perception of commercial natural herbal soaps. Molecules 2018, 23, 2356. [Google Scholar] [CrossRef]
- Laneri, S.; Lorenzo, R.D.; Sacchi, A.; Dini, I. Dosage of bioactive molecules in the nutricosmeceutical Helix aspersa muller mucus and formulation of new cosmetic cream with moisturizing effect. Nat. Prod. Commun. 2019, 14, 1–7. [Google Scholar] [CrossRef]
- Barata, P.H.S.; Sarquis, I.R.; Carvalho, H.O.; Barros, A.S.; Rodrigues, A.B.; Galue-Parra, A.J.; Silva, E.O.; Carvalho, J.C.T.; Ferreira, I.M. Chemoenzymatic synthesis and anti-Inflammatory activity of fatty acid amides prepared from Bertholletia excelsa (Brazil Nut) triglycerides. J. Braz. Chem. Soc. 2020, 31, 1557–1565. [Google Scholar] [CrossRef]
- Lechner, M.; Lirk, P.; Rieder, J. Inducible nitric oxide synthase (iNOS) in tumor biology: The two sides of the same coin. Semin. Cancer Biol. 2005, 15, 277–289. [Google Scholar] [CrossRef]
- ISO 660-2009; Animal and Vegetable Fats and Oils-Determination of Acid Value and Acidity. International Organization for Standardization: Geneva, Switzerland, 2009.
- ISO 3960-2007; Animal and Vegetable Fats and Oils-Determination of Peroxide Value. International Organization for Standardization: Geneva, Switzerland, 2007.
- ISO 3961-2018; Animal and Vegetable Fats and Oils-Determination of Iodine Value. International Organization for Standardization: Geneva, Switzerland, 2018.
- ISO 3657-2013; Animal and Vegetable Fats and Oils-Determination of Saponification Value. International Organization for Standardization: Geneva, Switzerland, 2013.
- Liu, L.; Feng, S.L.; Chen, T.; Zhou, L.J.; Yuan, M.; Liao, J.Q.; Huang, Y.; Yang, H.Y.; Yang, R.W.; Ding, C.B. Quality assessment of Camellia oleifera oil cultivated in southwest China. Separations 2021, 8, 144. [Google Scholar] [CrossRef]
- Liu, L.Y. Determination of squalene in Camellia oil by high performance liquid chromatography. Mod. Food 2017, 11, 84–85. [Google Scholar]
- Ren, C.Y.; Zhang, Y.P.; Tang, F.B.; Shen, D.Y.; Mo, R.H. Analysis of main chemical components in camellia oil, olive oil, walnut oil and torreya seeds oil. J. Food Saf. Qual. 2015, 6, 5011–5016. [Google Scholar]
- Su, M.H.; Ming, C.S.; Lin, K.H. Chemical composition of seed oils in native Taiwanese Camellia species. Food Chem. 2014, 156, 369–373. [Google Scholar] [CrossRef]
- Yan, Y.S.; Nyam, K.L. Application of Hibiscus cannabinus L. (kenaf) leaves extract as skin whitening and anti-aging agents in natural cosmetic prototype. Ind. Crops Prod. 2021, 167, 113491. [Google Scholar]
- Ncube, S.F.; Mcgaw, L.J.; Njoya, E.M. In vitro antioxidant activity of crude extracts of Harpagophytum zeyheri and their anti-inflammatory and cytotoxicity activity compared with diclofenac. BMC Complement. Med. Ther. 2021, 21, 238. [Google Scholar] [CrossRef]
- Huang, S.Y.; David-Wang, H.M.; Ke, J.H.; Li, J.; Chen, L.L.; Xu, Z.X.; Li, K.J.; Chen, H.B.; Huang, X.D.; Yang, H.Y.; et al. Two cosmetic properties of an ethanol extract of a cultured and edible red macroalga, bangia fuscopur-purea: Moisturizing and whitening effects. Nat. Prod. Commun. 2020, 15, 355–362. [Google Scholar] [CrossRef]
- Kim, H.-Y.; Kim, J.H.; So, Y.; Kang, S.-Y.; Jeong, H.G.; Jin, C.H. Anti-Inflammatory Effect of Lupinalbin A Isolated from Apios americana on Lipopolysaccharide-Treated RAW264.7 Cells. Molecules 2018, 23, 583. [Google Scholar] [CrossRef]
- Indrawati, T.; Hajard, I.; Pratami, D.K. Skincare cream prepation and evaluation of pare (Momordica charantia) leaves using three difference base. Int. J. Appl. Pharm. 2020, 12, 162–166. [Google Scholar] [CrossRef]
- Huma, S.; Khan, H.M.S.; Sohail, M.; Akhtar, N.; Rasool, F.; Majeed, F.; Daniyal, M. Development, in-vitro characterization and assessment of cosmetic potential of Beta vulgaris extract emulsion. J. Herb. Med. 2020, 23, 100372. [Google Scholar] [CrossRef]
- Wang, B.; Liu, J.; Jiang, Y.L.; Dong, H.; Chen, Y. Preparation of mask containing ultra-green active tea powder. Acad. Period. Farm Prod. Process. 2013, 337, 16–18+21. [Google Scholar]
Number | Compound | Retention Time/min | Relative Content/% |
---|---|---|---|
1 | palmitoleic acid | 11.038 | 0.053 |
2 | palmitic acid | 11.364 | 9.83 |
3 | linoleic acid | 14.763 | 9.75 |
4 | oleic acid | 15.015 | 77.64 |
5 | stearic acid | 15.439 | 2.14 |
6 | eicosenoic acid | 19.243 | 0.60 |
Phases | Material | Property | Amount (%) | |
---|---|---|---|---|
F1 | F0 | |||
A | Octyl dodecanol lauroyl glutamate | Emulsifier | 1.0 | 1.0 |
PEG-100 glycerol monostearate | Emulsifier | 1.0 | 1.0 | |
Cetyl eehylhexanoate | Softener | 1.0 | 1.0 | |
Isopropyl mylistate | Softener | 3.0 | 3.0 | |
Dimethicone | Softener | 2.0 | 2.0 | |
CO oil | Softener | 4.0 | ||
Vitis vinifera (Grape) seed oil | Antioxidant | 1.0 | 1.0 | |
Tocopherol | Antioxidant | 0.5 | 0.5 | |
B | xanthan gum | Thickening agent | 0.3 | 0.3 |
Sodium Hyaluronate | Humectant | 0.1 | 0.1 | |
Glycerin | Humectant | 6.0 | 6.0 | |
Butanediol | Solvent | 2.0 | 2.0 | |
deionized water | Solvent | 77.3 | 81.3 | |
C | Polyol preservatives | 0.8 | 0.8 |
Index | Scores | |||
---|---|---|---|---|
Excellent (20–25) | Good (15–20) | Qualified (10–15) | Poor (Less than 10) | |
dispersion | very good smear, strong liquidity | easy to smear, liquidity qualified | difficult to smear, a little sticky | not good smear, poor liquidity |
absorption | fast absorption | fast absorption but a little oil floating on the skin surface | the absorption rate is a bit slow | the absorption rate is slow and a large amount of oil floats on the skin surface |
feeling | the skin feels very refreshing but not greasy | the skin feels refreshing | a little greasy | the skin feels very greasy |
centrifugation | uniform and delicate appearance without change | non-stratified form | there is a slight stratification | stratification |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, L.; Peng, Y.; Xu, Z.; Chen, J.; Zhang, N.; Liang, T.; Chen, T.; Xiao, Y.; Feng, S.; Ding, C. The Antioxidant, Anti-Inflammatory and Moisturizing Effects of Camellia oleifera Oil and Its Potential Applications. Molecules 2024, 29, 1864. https://doi.org/10.3390/molecules29081864
Zhou L, Peng Y, Xu Z, Chen J, Zhang N, Liang T, Chen T, Xiao Y, Feng S, Ding C. The Antioxidant, Anti-Inflammatory and Moisturizing Effects of Camellia oleifera Oil and Its Potential Applications. Molecules. 2024; 29(8):1864. https://doi.org/10.3390/molecules29081864
Chicago/Turabian StyleZhou, Lijun, Yunlan Peng, Zhou Xu, Jingyi Chen, Ningbo Zhang, Tao Liang, Tao Chen, Yao Xiao, Shiling Feng, and Chunbang Ding. 2024. "The Antioxidant, Anti-Inflammatory and Moisturizing Effects of Camellia oleifera Oil and Its Potential Applications" Molecules 29, no. 8: 1864. https://doi.org/10.3390/molecules29081864
APA StyleZhou, L., Peng, Y., Xu, Z., Chen, J., Zhang, N., Liang, T., Chen, T., Xiao, Y., Feng, S., & Ding, C. (2024). The Antioxidant, Anti-Inflammatory and Moisturizing Effects of Camellia oleifera Oil and Its Potential Applications. Molecules, 29(8), 1864. https://doi.org/10.3390/molecules29081864