Influence of the Nitrogen Fertilization on the Yield, Biometric Characteristics and Chemical Composition of Stevia rebaudiana Bertoni Grown in Poland
Abstract
:1. Introduction
2. Results
2.1. Weights of the Stevia rebaudiana Plants and Their Constituents Grown Using Different Nitrogen Fertilisation Treatments
2.2. Biometrics of the Stevia rebaudiana Grown Using Different Fertilisation Treatments
2.3. Dry Mass and Concentration of Elements in Stevia rebaudiana Grown Using Different Fertilisation Treatments
2.4. Concentration of Ascorbic Acid, Phenolic Compounds, Reducing Sugars and Nitrate Ions in Stevia rebaudiana Grown Using Different Fertilisation Treatments
2.5. Concentration of Chlorophyll and Carotenoids in Stevia rebaudiana Grown Using Different Fertilization Treatments
2.6. Concentration of Steviosides in Stevia rebaudiana Grown Using Different Fertilisation Treatments
2.7. Principal Component Analysis of the Data Gathered throughout the Study
3. Discussion
3.1. Weight of the Stevia rebaudiana Plants and the Yield of the Cultivation of Stevia Plants
3.2. Biometrics of the Stevia rebaudiana Grown Using Different Fertilisation Treatments
3.3. Dry Mass and Concentration of Elements in Stevia rebaudiana Grown Using Different Fertilisation Treatments
3.4. Concentration of Ascorbic Acid, Phenolic Compounds, Reducing Sugars and Nitrate Ions in Stevia rebaudiana Grown Using Different Fertilisation Treatments
3.5. Concentration of Chlorophyll and Carotenoids in Stevia rebaudiana Grown Using Different Fertilization Treatments
3.6. Concentration of Steviosides in Stevia rebaudiana Grown Using Different Fertilisation Treatments
4. Materials and Methods
4.1. Experimental Design
4.1.1. Preparation of Seedlings
4.1.2. Preparation of the Field Used to Perform the Experiment
4.1.3. Field Experiment
- Control plots (C): no fertiliser was applied before planting the seedlings.
- Plots fertilized with ammonium nitrate (50 kg N·ha−1) before planting the seedlings (N50)
- Plots fertilized with ammonium nitrate (100 kg N·ha−1) before planting the seedlings (N100)
- Plots fertilized with ammonium nitrate (150 kg N·ha−1) before planting the seedlings (N150)
- Plots fertilized with ammonium sulfate (50 kg N·ha−1) before planting the seedlings (S50)
- Plots fertilized with ammonium sulfate (100 kg N·ha−1) before planting the seedlings (S100)
- Plots fertilized with ammonium sulfate (150 kg N·ha−1) before planting the seedlings (S150)
- Plots fertilized with urea (50 kg N·ha−1) before planting the seedlings (U50)
- Plots fertilized with urea (100 kg N·ha−1) before planting the seedlings (U100)
- Plots fertilized with urea (150 kg N·ha−1) before planting the seedlings (U150)
4.1.4. Harvesting
4.1.5. Biometrics Measurements
4.2. Chemical Analyses
4.2.1. Dry Mass Content
4.2.2. Extraction of Elements and Ions from the Plant Material
Concentration of Magnesium in Plant Material
Concentration of Phosphorus in Plant Material
Concentration of Calcium and Potassium in Plant Material
Concentration of Nitrate Ions in Plant Material
4.2.3. Concentration of Reducing Sugars in the Plant Material
4.2.4. Concentration of Carotenoids and Chlorophyll A and B
4.2.5. Concentration of Vitamin C (Ascorbic Acid)
4.2.6. Concentration of Phenolic Compounds
4.2.7. Concentration of Steviosides
4.3. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmad, J.; Khan, I.; Blundell, R.; Azzopardi, J.; Mahomoodally, M.F. Stevia rebaudiana Bertoni.: An updated review of its health benefits, industrial applications and safety. Trends Food Sci. Technol. 2020, 100, 177–189. [Google Scholar] [CrossRef]
- Xu, M.-L.; Cheng, Y.; Feng, M.; Lu, Q.; Lian, Y. Identifying Potential Sources of Phthalate Contamination in the Leaves of Stevia Rebaudiana (Bertoni) and the Development of Removal Technology. Molecules 2024, 29, 1627. [Google Scholar] [CrossRef]
- Samuel, P.; Ayoob, K.T.; Magnuson, B.A.; Wölwer-Rieck, U.; Jeppesen, P.B.; Rogers, P.J.; Rowland, I.; Mathews, R. Stevia Leaf to Stevia Sweetener: Exploring Its Science, Benefits, and Future Potential. J. Nutr. 2018, 148, 1186S–1205S. [Google Scholar] [CrossRef]
- Latarissa, I.R.; Barliana, M.I.; Lestari, K. A Comprehensive review of Stevia rebaudiana Bertoni effects on human health and its mechanism. J. Adv. Pharm. Educ. Res. 2020, 10, 91–96. [Google Scholar]
- Orellana-Paucar, A.M. Steviol Glycosides from Stevia rebaudiana: An Updated Overview of Their Sweetening Activity, Pharmacological Properties, and Safety Aspects. Molecules 2023, 28, 1258. [Google Scholar] [CrossRef]
- Bugaj, B.; Leszczynska, T.; Pysz, M.; Kopec, A.; Pacholarz, J.; Pysz-Izdebska, K. Charakterystyka i prozdrowotne właściwości Stevia rebaudiana Bertoni. Żywność Nauka Technol. Jakość 2013, 20, 27–35. [Google Scholar]
- Timotina, M.; Aghajanyan, A.; Schubert, R.; Trchounian, K.; Gabrielyan, L. Biosynthesis of silver nanoparticles using extracts of Stevia rebaudiana and evaluation of antibacterial activity. World J. Microbiol. Biotechnol. 2022, 38, 196. [Google Scholar] [CrossRef]
- Gaweł-Bęben, K.; Bujak, T.; Nizioł-Łukaszewska, Z.; Antosiewicz, B.; Jakubczyk, A.; Karaś, M.; Rybczyńska, K. Stevia Rebaudiana Bert. Leaf Extracts as a Multifunctional Source of Natural Antioxidants. Molecules 2015, 20, 5468–5486. [Google Scholar] [CrossRef]
- Gupta, E.; Purwar, S.; Sandaram, S.; Gai, G.K. Nutritional and therapeutic values of Stevia rebaudiana: A review. J. Med. Plants Res. 2013, 7, 3343–3353. [Google Scholar]
- Basharat, S.; Huang, Z.; Gong, M.; Lv, X.; Ahmed, A.; Hussain, I.; Li, J.; Du, G.; Liu, L. A review on current conventional and biotechnical approaches to enhance biosynthesis of steviol glycosides in Stevia rebaudiana. Chin. J. Chem. Eng. 2021, 30, 92–104. [Google Scholar] [CrossRef]
- Yücesan, B.; Altuğ, C. Chemical and enzymatic modifications of steviol glycosides. In Steviol Glycosides, 1st ed.; Charis, M.G., Ed.; Academic Press: London, UK, 2021; pp. 81–102. [Google Scholar]
- Serra, P.; Fancello, G. Towards the IMO’s GHG Goals: A Critical Overview of the Perspectives and Challenges of the Main Options for Decarbonizing International Shipping. Sustainability 2020, 12, 3220. [Google Scholar] [CrossRef]
- Cappelli, L.; D’Ascenzo, F.; Ruggieri, R.; Gorelova, I. Is Buying Local Food a Sustainable Practice? A Scoping Review of Consumers’ Preference for Local Food. Sustainability 2022, 14, 772. [Google Scholar] [CrossRef]
- Enthoven, L.; Van den Broeck, G. Local food systems: Reviewing two decades of research. Agric. Syst. 2021, 193, 103226. [Google Scholar] [CrossRef]
- Brown, C. Consumers’ preferences for locally produced food: A study in southeast Missouri. Am. J. Altern. Agric. 2003, 18, 213–224. [Google Scholar] [CrossRef]
- Barroso, M.R.; Martins, N.; Barros, L.; Antonio, A.L.; Rodrigues, M.Â.; Sousa, M.J.; Santos-Buelga, C.; Ferreira, I.C.F.R. Assessment of the nitrogen fertilization effect on bioactive compounds of frozen fresh and dried samples of Stevia rebaudiana Bertoni. Food Chem. 2018, 243, 208–213. [Google Scholar] [CrossRef]
- Tavarini, S.; Sgherri, C.; Ranieri, A.M.; Angelini, L.G. Effect of nitrogen fertilization and harvest time on steviol glycosides, flavonoid composition, and antioxidant properties in Stevia rebaudiana Bertoni. J. Agric. Food Chem. 2015, 63, 7041–7050. [Google Scholar] [CrossRef]
- Mahajan, M.; Pal, P.K. Yield response, accumulation of bioactive ingredient and ion uptake of Stevia rebaudiana to different soil-moisture and nitrogen levels. Agric. Water Manag. 2022, 264, 107511. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, Y.; Hou, M.; Huang, X.; Zhang, T.; Huang, S.; Xu, X.; Yuan, H. Optimized nitrogen topdressing strategies enhance steviol glycoside productivity in stevia (Stevia rebaudiana Bertoni) Plants. J. Soil Sci. Plant Nutr. 2020, 20, 1133–1143. [Google Scholar] [CrossRef]
- Inugraha, I.; Maghfoer, M.D.; Widaryanto, E. Response of stevia (Stevia rebaudiana Bertonim) to nitrogen and potassium fertilization. IOSR J. Agric. Veter. Sci. 2014, 7, 47–55. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, M.; Mur, L.A.J.; Shen, Q.; Guo, S. Unravelling the Roles of Nitrogen Nutrition in Plant Disease Defences. Int. J. Mol. Sci. 2020, 21, 572. [Google Scholar] [CrossRef]
- Tadesse, N.; Gebere, A.; Lulie, B.; Hordofa, M. Influence of plant population density on growth and yield of Stevia (Stevia rebaudiana Bertoni L.) at Wondo Genet South Ethiopia. Acad. Res. J. Agri. Sci. Res. 2016, 4, 321–329. [Google Scholar]
- Shivani, K.; Gautam, G.; Sukany, G.; Mesharm, M.R. Impact of spacing and levels of nitrogen on growth and yield of stevia (Stevia rebaudiana Bertoni). J. Pharmacogn. Phytochem. 2019, 8, 1878–1881. [Google Scholar]
- Gómez Gómez, R.E.; Kim, J.; Hong, K.; Jang, J.Y.; Kisiju, T.; Kim, S.; Chun, B.C. Association between Climate Factors and Dengue Fever in Asuncion, Paraguay: A Generalized Additive Model. Int. J. Environ. Res. Public Health 2022, 19, 12192. [Google Scholar] [CrossRef]
- Available online: https://www.climatestotravel.com/climate/paraguay (accessed on 15 April 2024).
- Warner, R.M. Influence of environmental parameters, pinching, and ethephon application on growth and branching of potted stevia. HortScience 2022, 57, 81–84. [Google Scholar] [CrossRef]
- Chen, H.; Chen, S.; Wang, X.; Liu, X.; Wang, X.; Zhu, R.; Mo, W.; Wang, R.; Zhang, S. Different Environmental and Phylogenetic Controls over the Altitudinal Variation in Leaf N and P Resorption Traits between Woody and Herbaceous Plants. Forests 2023, 14, 5. [Google Scholar] [CrossRef]
- Reinhardt, J.; Hilgert, P.; von Cossel, M. Biomass Yield of Selected Herbaceous and Woody Industrial Crops across Marginal Agricultural Sites with Shallow Soil. Agronomy 2021, 11, 1296. [Google Scholar] [CrossRef]
- Sharma, L.K.; Zaeen, A.A.; Bali, S.K.; Dwyer, J.D. Improving nitrogen and phosphorus efficiency for optimal plant growth and yield. In New Visions in Plant Science; IntechOpen: London, UK, 2017; pp. 13–40. [Google Scholar]
- Güsewell, S. N: P ratios in terrestrial plants: Variation and functional significance. New Phytol. 2004, 164, 243–266. [Google Scholar] [CrossRef]
- Müller, I.; Schmid, B.; Weiner, J. The effect of nutrient availability on biomass allocation patterns in 27 species of herbaceous plants. Perspect. Plant Ecol. Evol. Syst. 2000, 3, 115–127. [Google Scholar] [CrossRef]
- Falster, D.S.; Westoby, M. Leaf size and angle vary widely across species: What consequences for light interception? New Phytol. 2003, 158, 509–525. [Google Scholar] [CrossRef]
- Baghat, A.K.; Gupta, L.M.; Gupta, M.; Gupta, S.K.; Raina, N.S. Effect of Integrated Nutrient Management on Growth and Yield of Stevia (Bertoni) Stevia rebaudiana. Indian J. Ecol. 2022, 49, 1965–1967. [Google Scholar]
- Lemus-Mondaca, R.; Ah-Hen, K.; Vega-Gálvez, A.; Honores, K.; Moraga, N. Stevia rebaudiana leaves: Effect of drying process temperature on bioactive components, antioxidant capacity and natural sweeteners. Plant Foods Hum. Nutr. 2016, 71, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Tadhani, M.; Subhash, R. Preliminary studies on Stevia rebaudiana leaves: Proximal composition, mineral analysis and phytochemical screening. J. Med. Sci. 2006, 6, 321–326. [Google Scholar]
- Lemus-Mondaca, R.; Vega-Gálvez, A.; Zura-Bravo, L.; Ah-Hen, K. Stevia rebaudiana Bertoni, source of a high-potency natural sweetener: A comprehensive review on the biochemical, nutritional and functional aspects. Food Chem. 2012, 132, 1121–1132. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.A.; Deng, X.; Adeel, M.; Rizwan, M.; Shakoor, N.; Yang, Y.; Javed, R. Influence of calcium and magnesium elimination on plant biomass and secondary metabolites of Stevia rebaudiana Bertoni. Biotechnol. Appl. Biochem. 2022, 69, 2008–2016. [Google Scholar] [CrossRef]
- Desai Heta, B.; Desai Charmi, V.; Desai Charmi, P.; Singh, D.; Suthar, H. Effect of magnesium nanoparticles on physiology and stevioside in Stevia rebaudiana Bertoni. Eur. J. Biomed. Pharm. Sci. 2017, 4, 642–646. [Google Scholar]
- Ucar, E.; Ozyigit, Y.; Eruygur, N.; Güven, D.; Yur, S.; Turgut, K.; Özek, T.; Kütük, N. The effect of the plant age and growth period on the nutritional substance, chlorophyll and steviol glycoside rates in Stevia (Stevia rebaudiana Bertoni) leaves. Commun. Soil Sci. Plant Anal. 2018, 49, 291–302. [Google Scholar] [CrossRef]
- Sun, Y.M.; Huang, X.L.; Zhang, T.; Yang, Y.H.; Cheng, X.F.; Xu, X.Y.; Yuan, H.Y. Potassium deficiency inhibits steviol glycosides synthesis by limiting leaf sugar metabolism in stevia (Stevia rebaudiana Bertoni) plants. J. Integr. Agric. 2021, 20, 2932–2943. [Google Scholar] [CrossRef]
- Kim, J.S.; Yang, M.; Lee, O.H.; Kang, S.N. The antioxidant activity and the bioactive compound content of Stevia rebaudiana water extracts. LWT-Food Sci. Technol. 2011, 44, 1328–1332. [Google Scholar] [CrossRef]
- Emendack, Y.; Burke, J.; Laza, H.; Sanchez, J.; Hayes, C. Abiotic stress effects on sorghum leaf dhurrin and soluble sugar contents throughout plant development. Crop Sci. 2018, 58, 1706–1716. [Google Scholar] [CrossRef]
- Pereira, L.F.; Ferreira, V.M.; Oliveira, N.G.; Sarmento, P.L.; Endres, L.; Teodoro, I. Sugars levels of four sugarcane genotypes in different stem portions during the maturation phase. An. Acad. Bras. Ciências 2017, 89, 1231–1242. [Google Scholar] [CrossRef]
- Shi, H.; Wang, B.; Yang, P.; Li, Y.; Miao, F. Differences in sugar accumulation and mobilization between sequential and non-sequential senescence wheat cultivars under natural and drought conditions. PLoS ONE 2016, 11, e0166155. [Google Scholar] [CrossRef]
- McCormick, A.J.; Watt, D.A.; Cramer, M.D. Supply and demand: Sink regulation of sugar accumulation in sugarcane. J. Exp. Bot. 2009, 60, 357–364. [Google Scholar] [CrossRef]
- Raddatz, N.; Morales de los Ríos, L.; Lindahl, M.; Quintero, F.J.; Pardo, J.M. Coordinated transport of nitrate, potassium, and sodium. Front. Plant Sci. 2020, 11, 247. [Google Scholar] [CrossRef]
- Dechorgnat, J.; Nguyen, C.T.; Armengaud, P.; Jossier, M.J.; Diatloff, E.; Filleur, S.; Daniel-Vedele, F. From the soil to the seeds: The long journey of nitrate in plants. J. Exp. Bot. 2011, 62, 1349–1359. [Google Scholar] [CrossRef]
- Pal, P.K.; Prasad, R.; Singh, R.D. Evaluating the non-destructive method for determining the chlorophyll and nitrogen content in Stevia rebaudiana (Bertoni) leaf. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2015, 149, 131–135. [Google Scholar]
- Gitelson, A.A.; Vina, A.; Verma, S.B.; Rundquist, D.C.; Arkebauer, T.J.; Keydan, G.; Leavitt, B.; Ciganda, V.; Burba, G.G.; Suyker, A.E. Relationship between gross primary production and chlorophyll content in crops: Implications for the synoptic monitoring of vegetation productivity. J. Geophys. Res. Atmos. 2006, 111, 3–8. [Google Scholar] [CrossRef]
- Leong, T.Y.; Anderson, J.M. Adaptation of the thylakoid membranes of pea chloroplasts to light intensities. I. Study on the distribution of chlorophyll-protein complexes. Photosynth. Res. 1984, 5, 105–115. [Google Scholar] [CrossRef]
- Chen, W.M.; Jin, N.; Shi, Y.; Su, Y.Q.; Fei, B.J.; Li, W.; Qiao, D.R.; Cao, Y. Coordinate expression of light-harvesting chlorophyll a/b gene family of photosystem II and chlorophyll a oxygenase gene regulated by salt-induced phosphorylation in Dunaliella salina. Photosynthetica 2010, 48, 355–360. [Google Scholar] [CrossRef]
- Hobe, S.; Fey, H.; Rogl, H.; Paulsen, H. Determination of relative chlorophyll binding affinities in the major light-harvesting chlorophyll a/b complex. J. Biol. Chem. 2003, 278, 5912–5919. [Google Scholar] [CrossRef]
- Shahverdi, M.A.; Omidi, H.; Tabatabaei, S.J. Stevia (Stevia rebaudiana Bertoni) responses to NaCl stress: Growth, photosynthetic pigments, diterpene glycosides and ion content in root and shoot. J. Saudi Soc. Agric. Sci. 2019, 18, 355–360. [Google Scholar] [CrossRef]
- Simlat, M.; Ślęzak, P.; Moś, M.; Warchoł, M.; Skrzypek, E.; Ptak, A. The effect of light quality on seed germination, seedling growth and selected biochemical properties of Stevia rebaudiana Bertoni. Sci. Hortic. 2016, 211, 295–304. [Google Scholar] [CrossRef]
- Gerami, M.; Majidian, P.; Ghorbanpour, A.; Alipour, Z. Stevia rebaudiana Bertoni responses to salt stress and chitosan elicitor. Physiol. Mol. Biol. Plants 2020, 26, 965–974. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.F.; Islam, M.T.; Islam, M.A.; Akhtar, S. Cultivation and uses of stevia (Stevia rebaudiana Bertoni): A review. Afr. J. Food Agric. Nutr. Dev. 2017, 17, 12745–12757. [Google Scholar] [CrossRef]
- Libik-Konieczny, M.; Capecka, E.; Tuleja, M.; Konieczny, R. Synthesis and production of steviol glycosides: Recent research trends and perspectives. Appl. Microbiol. Biotechnol. 2021, 105, 3883–3900. [Google Scholar] [CrossRef] [PubMed]
- Peteliuk, V.; Rybchuk, L.; Bayliak, M.; Storey, K.B.; Lushchak, O. Natural sweetener Stevia rebaudiana: Functionalities, health benefits and potential risks. EXCLI J. 2021, 20, 1412–1430. [Google Scholar] [PubMed]
- Geuns, J.M. Stevioside. Phytochemistry 2003, 64, 913–921. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.K.; Singh, S.; Dhyani, D.; Ahuja, P.S. A review on the improvement of stevia [Stevia rebaudiana (Bertoni)]. Can. J. Plant Sci. 2011, 91, 1–6. [Google Scholar] [CrossRef]
- Miladinova-Georgieva, K.; Geneva, M.; Stancheva, I.; Petrova, M.; Sichanova, M.; Kirova, E. Effects of Different Elicitors on Micropropagation, Biomass and Secondary Metabolite Production of Stevia rebaudiana Bertoni—A Review. Plants 2023, 12, 153. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Huang, S.; Han, Y.; Yuan, H.; Gu, C.; Wang, Z. Environmental cues induce changes of steviol glycosides contents and transcription of corresponding biosynthetic genes in Stevia rebaudiana. Plant Physiol. Biochem. 2015, 86, 174–180. [Google Scholar] [CrossRef]
- PN-90/A-75101/03; Przetwory Owocowe i Warzywne Przygotowanie Próbek i Metody Badań Fizykochemicznych Oznaczanie Zawartości Suchej Masy Metodą Wagową. Polish Committee for Standardisation: Warszawa, Poland, 1990.
- Nowosielski, O. Principles of Preparation of Fertilizing Recommendations in Horticulture; PWRiL: Warszawa, Poland, 1988; ISBN 8309013485. [Google Scholar]
- PN-90/A-75101/07; Fruit and Vegetable Products—Preparation of Samples and Testing Methods. Determination of Sugars and Sugar-Free Extract in Polish—Przetwory Owocowe i Warzywne. Przygotowanie Próbek i Metody Badań. Oznaczanie Zawartości Cukrów i Ekstraktu Bezcukrowego. Polish Committee for Standardisation: Warszawa, Poland, 1990.
- Godlewska, K.; Pacyga, P.; Michalak, I.; Biesiada, A.; Szumny, A.; Pachura, N.; Piszcz, U. Effect of Botanical Extracts on the Growth and Nutritional Quality of Field-Grown White Head Cabbage (Brassica oleracea var. capitata). Molecules 2021, 26, 1992. [Google Scholar] [CrossRef]
- Bieniek, A. Yield, Morphology and Biological Value of Fruits of Actinidia arguta and Actinidia purpurea and Some of their Hybrid Cultivars Grown in North-Eastern Poland. Acta Sci. Pol. Hortorum Cultus 2012, 11, 117–130. [Google Scholar]
- Krężel, J.; Kołota, E. Source of Nitrogen Affects the Yield and Quality of Spinach Cultivars Grown for Autumn Harvest. Acta Agric. Scand. Sect. B Plant Soil Sci. 2014, 64, 583–589. [Google Scholar] [CrossRef]
- Fruit and Vegetable Products—Preparation of Samples and Testing Methods—Determination of Ascorbic Acid Content; Polish Committee for Standardization: Warszawa, Poland, 1990.
- Jałoszyński, K.; Figiel, A.; Wojdyło, A. Drying kinetics and antioxidant activity of oregano. Acta Agrophysica 2008, 11, 81–90. [Google Scholar]
- Vanĕk, T.; Nepovím, A.; Valíček, P. Determination of stevioside in plant material and fruit teas. J. Food Compos. Anal. 2001, 14, 383–388. [Google Scholar] [CrossRef]
Sample 1 | Single Plant Weight [kg] | Plant Leaf Weight [kg] | Plant Shoot Weight [kg] | Plant Waste Weight [kg] |
---|---|---|---|---|
C | 0.137 ± 0.059 d | 0.077 ± 0.029 e | 0.056 ± 0.031 c | 0.005 ± 0.008 d |
N50 | 0.180 ± 0.083 c | 0.102 ± 0.045 d | 0.064 ± 0.032 bc | 0.014 ± 0.015 ab |
N100 | 0.211 ± 0.065 abc | 0.132 ± 0.045 abc | 0.070 ± 0.024 abc | 0.009 ± 0.010 bcd |
N150 | 0.243 ± 0.073 a | 0.148 ± 0.046 a | 0.086 ± 0.031 a | 0.009 ± 0.012 bcd |
S50 | 0.183 ± 0.068 c | 0.110 ± 0.040 cd | 0.065 ± 0.030 bc | 0.008 ± 0.010 bcd |
S100 | 0.196 ± 0.080 bc | 0.120 ± 0.050 bcd | 0.070 ± 0.031 abc | 0.006 ± 0.007 cd |
S150 | 0.206 ± 0.081 abc | 0.117 ± 0.048 cd | 0.072 ± 0.037 abc | 0.018 ± 0.016 a |
U50 | 0.221 ± 0.088 abc | 0.132 ± 0.059 abc | 0.077 ± 0.033 ab | 0.012 ± 0.015 abc |
U100 | 0.244 ± 0.075 a | 0.149 ± 0.046 a | 0.088 ± 0.031 a | 0.007 ± 0.007 cd |
U150 | 0.238 ± 0.085 ab | 0.146 ± 0.049 ab | 0.084 ± 0.037 a | 0.009 ± 0.009 bcd |
Total average | 0.206 ± 0.082 | 0.123 ± 0.051 | 0.073 ± 0.033 | 0.010 ± 0.012 |
Sample 1 | Leaf Mass Fraction [%] | Shoot Mass Fraction [%] | Plant Waste Fraction [%] |
---|---|---|---|
C | 55.68 ± 9.85 abc | 40.50 ± 9.73 a | 3.81 ± 1.75 c |
N50 | 56.94 ± 6.23 bc | 35.46 ± 6.31 ab | 7.59 ± 4.87 ab |
N100 | 62.62 ± 7.76 a | 33.27 ± 6.99 b | 4.11 ± 2.35 bc |
N150 | 60.98 ± 5.59 ab | 35.39 ± 5.05 ab | 3.63 ± 2.53 c |
S50 | 60.11 ± 6.09 ab | 35.50 ± 5.61 ab | 4.39 ± 2.21 bc |
S100 | 61.12 ± 4.95 ab | 35.56 ± 5.00 ab | 3.23 ± 1.60 c |
S150 | 56.55 ± 9.92 c | 34.90 ± 5.70 b | 8.55 ± 4.10 a |
U50 | 59.68 ± 6.57 abc | 34.77 ± 6.36 ab | 5.55 ± 3.18 bc |
U100 | 61.13 ± 5.90 ab | 36.02 ± 5.19 ab | 2.84 ± 1.80 c |
U150 | 60.99 ± 6.58 ab | 35.26 ± 5.75 ab | 3.74 ± 1.46 c |
Total average | 59.58 ± 7.28 | 35.66 ± 6.36 | 4.74 ± 3.20 |
Sample 1 | Yield of Stevia Plant [kg·ha−1] | Yield of Stevia Leaves [kg·ha−1] | Yield of Stevia Shoots [kg·ha−1] | Yield of Stevia Plant Waste [kg·ha−1] |
---|---|---|---|---|
C | 13,770 ± 2010 b | 7630 ± 400 c | 5570 ± 1210 c | 530 ± 230 c |
N50 | 18,570 ± 2490 ab | 10,630 ± 1200 b | 6530 ± 1140 b | 1400 ± 410 a |
N100 | 21,100 ± 980 a | 13,230 ± 310 a | 7000 ± 960 a | 870 ± 400 ab |
N150 | 24,330 ± 2510 a | 14,830 ± 1630 a | 8600 ± 1310 a | 900 ± 460 ab |
S50 | 18,300 ± 1770 ab | 11,030 ± 1010 b | 6500 ± 610 b | 800 ± 200 b |
S100 | 19,630 ± 3660 ab | 12,030 ± 1780 ab | 6970 ± 1360 ab | 630 ± 120 bc |
S150 | 20,630 ± 3550 a | 11,700 ± 2690 ab | 7200 ± 1410 ab | 1730 ± 620 a |
U50 | 22,130 ± 4950 a | 13,200 ± 2270 a | 7700 ± 1270 ab | 1230 ± 400 a |
U100 | 24,370 ± 4900 a | 14,900 ± 2860 a | 8770 ± 1060 a | 700 ± 170 b |
U150 | 23,870 ± 3610 a | 14,530 ± 1530 a | 8400 ± 1220 a | 870 ± 340 ab |
Total average | 20,670 ± 4390 | 12,370 ± 2940 | 7320 ± 1700 | 970 ± 690 |
Sample 1 | Plant Height [cm] | Lateral Width [cm] | Number of Shoots | Number of Leaves on the Lowest Lateral Shoot |
---|---|---|---|---|
C | 46.42 ± 6.03 b | 26.61 ± 4.12 d | 8.44 ± 2.09 c | 22.67 ± 4.95 c |
N50 | 56.06 ± 7.81 a | 29.44 ± 4.71 bc | 10.17 ± 3.30 abc | 31.00 ± 8.13 ab |
N100 | 58.44 ± 10.88 a | 29.39 ± 3.97 bc | 8.72 ± 2.82 c | 30.89 ± 7.58 ab |
N150 | 59.42 ± 10.31 a | 28.83 ± 3.90 cd | 10.50 ± 4.01 abc | 34.89 ± 17.66 a |
S50 | 57.58 ± 9.57 a | 30.22 ± 3.84 abc | 13.61 ± 3.82 a | 28.33 ± 6.11 bc |
S100 | 58.00 ± 6.78 a | 29.50 ± 3.73 bc | 9.11 ± 2.90 bc | 28.44 ± 6.16 abc |
S150 | 58.61 ± 8.73 a | 31.11 ± 3.27 abc | 11.28 ± 4.01 abc | 29.67 ± 8.93 ab |
U50 | 59.50 ± 8.16 a | 31.06 ± 3.32 abc | 13.11 ± 3.51 ab | 28.22 ± 4.05 bc |
U100 | 56.50 ± 6.72 a | 32.39 ± 3.33 a | 13.06 ± 4.53 ab | 28.78 ± 6.44 abc |
U150 | 56.63 ± 9.20 a | 32.00 ± 3.80 ab | 11.67 ± 3.92 abc | 29.17 ± 7.39 ab |
Total average | 56.63 ± 9.20 | 30.06 ± 4.06 | 10.97 ± 3.76 | 29.21 ± 8.80 |
Sample 1 | Dry Mass Content in Stevia Leaves [%] | |
---|---|---|
July | September | |
C | 24.47 ± 4.06 a | 28.36 ± 3.47 a |
N50 | 23.59 ± 2.42 a | 29.74 ± 3.90 a |
N100 | 26.10 ± 5.21 a | 28.98 ± 1.84 a |
N150 | 23.52 ± 1.42 a | 27.44 ± 3.26 a |
S50 | 23.80 ± 3.78 a | 29.76 ± 2.21 a |
S100 | 23.37 ± 2.93 a | 28.64 ± 2.35 a |
S150 | 23.62 ± 3.00 a | 28.24 ± 2.18 a |
U50 | 24.41 ± 2.25 a | 30.04 ± 5.06 a |
U100 | 22.97 ± 3.50 a | 28.59 ± 5.46 a |
U150 | 23.99 ± 1.99 a | 28.05 ± 2.79 a |
Total average | 23.98 ± 3.18 | 28.78 ± 3.72 |
Sample 1 | Calcium | Magnesium | Phosphorus | Potassium | ||||
---|---|---|---|---|---|---|---|---|
[mg·100 g−1 of d.m.] | ||||||||
July | September | July | September | July | September | July | September | |
C | 770.89 ± 49.90 d | 993.67 ± 96.77 c | 168.89 ± 13.42 ab | 229.44 ± 14.26 b | 119.60 ± 14.30 b | 177.10 ± 18.18 bc | 2490.33 ± 205.89 b | 2938.89 ± 248.01 |
N50 | 794.44 ± 96.65 d | 969.44 ± 89.39 bc | 159.44 ± 17.66 b | 218.89 ± 26.49 b | 143.50 ± 11.54 a | 173.49 ± 21.45 c | 2802.78 ± 112.11 a | 3018.11 ± 258.45 ab |
N100 | 816.67 ± 108.97 d | 1069.44 ± 108.89 ab | 153.33 ± 10.52 b | 248.33 ± 26.93 a | 146.28 ± 11.25 a | 153.08 ± 17.45 d | 2468.11 ± 224.53 b | 3034.78 ± 257.80 ab |
N150 | 890.33 ± 43.12 bcd | 1188.44 ± 125.18 a | 156.11 ± 15.60 b | 218.89 ± 27.81 b | 108.21 ± 6.45 bc | 140.58 ± 14.25 de | 2616.67 ± 307.97 ab | 2797.22 ± 138.66 ab |
S50 | 836.11 ± 45.26 d | 994.44 ± 116.91 b | 173.33 ± 20.87 a | 259.44 ± 27.91 a | 140.44 ± 13.60 a | 180.86 ± 10.56 b | 2521.00 ± 225.03 b | 3216.78 ± 173.46 a |
S100 | 861.11 ± 33.33 cd | 1098.11 ± 141.23 ab | 168.89 ± 27.36 ab | 246.67 ± 18.24 ab | 131.53 ± 11.92 ab | 201.01 ± 9.92 b | 2457.00 ± 270.82 b | 3050.00 ± 260.49 ab |
S150 | 991.67 ± 46.77 b | 1162.00 ± 149.53 a | 175.56 ± 14.46 a | 240.00 ± 16.34 ab | 100.72 ± 9.49 c | 148.79 ± 12.05 d | 2275.00 ± 222.42 c | 2841.78 ± 100.66 ab |
U50 | 887.56 ± 79.45 bcd | 863.89 ± 58.03 c | 183.33 ± 27.36 a | 214.44 ± 25.65 a | 128.09 ± 9.05 ab | 218.77 ± 8.28 a | 2497.33 ± 262.11 b | 3048.67 ± 182.52 ab |
U100 | 976.44 ± 111.97 bc | 1076.44 ± 132.36 ab | 160.56 ± 18.45 ab | 222.22 ± 18.15 b | 116.69 ± 7.05 b | 158.63 ± 9.66 d | 2534.78 ± 288.41 ab | 3183.33 ± 178.66 a |
U150 | 1144.44 ± 298.64 a | 1119.44 ± 110.64 a | 152.78 ± 24.18 b | 227.22 ± 20.73 b | 104.62 ± 8.48 bc | 131.13 ± 9.42 e | 2298.67 ± 320.36 bc | 2534.78 ± 180.53 b |
Total average | 896.97 ± 105.14 | 1053.53 ± 146.57 | 165.22 ± 20.94 | 232.56 ± 28.10 | 123.97 ± 11.24 | 168.34 ± 14.04 | 2496.17 ± 273.53 | 2966.43 ± 206.73 |
Sample 1 | Ascorbic Acid | Phenolic Compounds | Reducing Sugars | Nitrate Ions (NO3−) | ||||
---|---|---|---|---|---|---|---|---|
[mg·100 g−1 of f.m.] | [mg·kg−1 of d.m.] | |||||||
July | September | July | September | July | September | July | September | |
C | 110.12 ± 5.24 c | 135.42 ± 16.22 b | 262.21 ± 23.35 b | 170.52 ± 18.04 d | 1.07 ± 0.14 a | 2.30 ± 0.29 a | 1501.11 ± 393.81 b | 890.33 ± 263.28 a |
N50 | 128.24 ± 26.77 ab | 148.13 ± 10.65 ab | 249.66 ± 28.44 b | 251.72 ± 25.54 c | 0.89 ± 0.11 ab | 2.41 ± 0.28 a | 1657.44 ± 331.26 b | 952.44 ± 381.94 a |
N100 | 114.14 ± 6.05 bc | 142.81 ± 11.30 ab | 286.57 ± 28.94 ab | 295.56 ± 26.15 b | 0.94 ± 0.25 ab | 2.31 ± 0.24 a | 2116.78 ± 431.57 ab | 1246.56 ± 374.77 a |
N150 | 109.27 ± 6.90 c | 135.89 ± 10.53 b | 326.30 ± 30.70 a | 348.58 ± 28.02 a | 0.91 ± 0.11 ab | 1.99 ± 0.27 a | 2004.67 ± 423.43 ab | 1225.67 ± 357.26 a |
S50 | 124.5 ± 8.50 abc | 137.94 ± 10.11 ab | 203.07 ± 37.02 c | 251.57 ± 22.63 c | 1.04 ± 0.15 a | 2.09 ± 0.21 a | 1552.11 ± 341.55 b | 962.11 ± 463.64 a |
S100 | 118.48 ± 13.28 bc | 142.67 ± 8.36 ab | 231.93 ± 31.97 bc | 272.43 ± 23.44 bc | 0.94 ± 0.09 ab | 2.08 ± 0.25 a | 1911.44 ± 207.36 ab | 1027.33 ± 389.75 a |
S150 | 111.12 ± 6.45 c | 149.28 ± 7.95 a | 309.37 ± 35.52 a | 293.96 ± 18.92 b | 0.84 ± 0.21 b | 2.03 ± 0.37 a | 1764.67 ± 511.72 ab | 1372.44 ± 406.16 a |
U50 | 135.54 ± 27.56 a | 138.57 ± 23.64 ab | 236.21 ± 43.63 bc | 304.51 ± 37.92 ab | 0.98 ± 0.24 ab | 1.86 ± 0.49 a | 1621.67 ± 449.14 b | 881.44 ± 348.14 a |
U100 | 120.50 ± 12.44 bc | 140.54 ± 6.45 ab | 346.07 ± 37.43 a | 328.77 ± 38.36 a | 0.92 ± 0.19 ab | 2.02 ± 0.37 a | 2329.44 ± 300.93 a | 1045.22 ± 436.89 a |
U150 | 112.94 ± 5.46 bc | 137.04 ± 6.82 ab | 302.31 ± 40.81 a | 172.43 ± 21.44 d | 0.99 ± 0.06 ab | 2.07 ± 0.39 a | 1765.67 ± 433.04 ab | 1295.78 ± 427.80 a |
Total average | 118.49 ± 16.20 | 140.83 ± 12.36 | 275.37 ± 38.16 | 269.00 ± 46.08 | 0.95 ± 0.17 | 2.12 ± 0.69 | 1822.50 ± 343.74 | 1089.93 ± 348.06 |
Sample 1 | Chlorophyll A | Chlorophyll B | Chlorophyll A + B | Carotenoid | ||||
---|---|---|---|---|---|---|---|---|
[mg·g−1 of f.m.] | ||||||||
July | September | July | September | July | September | July | September | |
C | 0.87 ± 0.25 ab | 0.77 ± 0.14 ab | 0.37 ± 0.13 a | 0.36 ± 0.02 bc | 1.23 ± 0.35 ab | 1.13 ± 0.12 ab | 2.52 ± 0.59 a | 2.26 ± 0.33 a |
N50 | 0.66 ± 0.13 b | 0.66 ± 0.11 b | 0.31 ± 0.15 a | 0.37 ± 0.11 bc | 0.98 ± 0.27 b | 1.03 ± 0.21 ab | 2.16 ± 0.39 a | 2.07 ± 0.54 a |
N100 | 0.82 ± 0.18 ab | 0.80 ± 0.25 a | 0.35 ± 0.18 a | 0.51 ± 0.19 a | 1.17 ± 0.34 ab | 1.31 ± 0.39 a | 2.55 ± 0.32 a | 2.58 ± 0.70 a |
N150 | 0.76 ± 0.15 ab | 0.84 ± 0.22 a | 0.35 ± 0.13 a | 0.43 ± 0.14 ab | 1.11 ± 0.27 ab | 1.27 ± 0.34 ab | 2.34 ± 0.50 a | 2.64 ± 0.74 a |
S50 | 0.75 ± 0.17 ab | 0.78 ± 0.13 a | 0.33 ± 0.15 a | 0.45 ± 0.12 ab | 1.08 ± 0.32 ab | 1.22 ± 0.20 ab | 2.36 ± 0.56 a | 2.50 ± 0.44 a |
S100 | 0.84 ± 0.21 ab | 0.71 ± 0.27 ab | 0.39 ± 0.15 a | 0.28 ± 0.15 c | 1.23 ± 0.34 ab | 0.99 ± 0.40 b | 2.44 ± 0.58 a | 2.25 ± 0.77 a |
S150 | 0.91 ± 0.31 ab | 0.74 ± 0.20 ab | 0.41 ± 0.10 a | 0.45 ± 0.16 ab | 1.32 ± 0.38 ab | 1.19 ± 0.31 ab | 2.68 ± 0.74 a | 2.46 ± 0.58 a |
U50 | 0.98 ± 0.19 a | 0.75 ± 0.15 ab | 0.43 ± 0.15 a | 0.40 ± 0.11 abc | 1.41 ± 0.31 a | 1.15 ± 0.25 ab | 2.60 ± 0.45 a | 2.24 ± 0.49 a |
U100 | 0.90 ± 0.26 ab | 0.86 ± 0.11 a | 0.38 ± 0.17 a | 0.46 ± 0.07 ab | 1.28 ± 0.40 ab | 1.32 ± 0.10 a | 2.53 ± 0.69 a | 2.65 ± 0.30 a |
U150 | 0.89 ± 0.30 ab | 0.83 ± 0.21 a | 0.42 ± 0.14 a | 0.44 ± 0.12 ab | 1.31 ± 0.38 ab | 1.27 ± 0.30 ab | 2.51 ± 0.75 a | 2.53 ± 0.48 a |
Total average | 0.84 ± 0.23 | 0.77 ± 0.19 | 0.38 ± 0.14 | 0.41 ± 0.14 | 1.21 ± 0.34 | 1.19 ± 0.29 | 2.47 ± 0.56 | 2.42 ± 0.56 |
Sample 1 | Stevioside | Rebaudoside A |
---|---|---|
[mg·100 g−1 of d.m.] | ||
C | 135.14 ± 6.33 fg | 352.85 ± 6.33 g |
N50 | 140.50 ± 5.32 e | 785.20 ± 8.96 ef |
N100 | 156.6 ± 1.12 d | 1093.08 ± 106.85 cd |
N150 | 134.11 ± 1.65 fg | 1229.89 ± 18.42 c |
S50 | 111.69 ± 1.53 h | 602.18 ± 82.60 fg |
S100 | 214.26 ± 11.45 b | 1493.53 ± 133.78 b |
S150 | 262.36 ± 17.13 a | 2186.62 ± 390.54 a |
U50 | 108.91 ± 0.70 h | 817.05 ± 54.46 ef |
U100 | 122.53 ± 6.54 gh | 935.04 ± 79.86 de |
U150 | 182.46 ± 8.59 c | 490.24 ± 27.96 g |
Total average | 156.86 ± 17.99 | 998.57 ± 234.99 |
Month | Decade of the Month | Year 2014 | Year 2015 | Year 2016 | Average Temperature in the Month during the Years 1981–2010 |
---|---|---|---|---|---|
[°C] | |||||
May | 1st 10-day period | 11.4 | 13.3 | 15.4 | 14.2 |
2nd 10-day period | 12.2 | 13.0 | 15.5 | ||
3rd 10-day period | 17.3 | 14.0 | 20.9 | ||
Monthly average | 13.8 | 13.4 | 17.3 | ||
June | 1st 10-day period | 18.4 | 18.1 | 21.1 | 17.0 |
2nd 10-day period | 16.6 | 16.4 | 18.5 | ||
3rd 10-day period | 15.7 | 15.8 | 23.8 | ||
Monthly average | 16.9 | 16.8 | 21.1 | ||
July | 1st 10-day period | 20.5 | 20.5 | 20.5 | 19.2 |
2nd 10-day period | 22.5 | 20.3 | 20.1 | ||
3rd 10-day period | 22.6 | 19.9 | 23.8 | ||
Monthly average | 21.9 | 20.2 | 21.5 | ||
August | 1st 10-day period | 21.7 | 27.2 | 20.4 | 18.5 |
2nd 10-day period | 17.4 | 25.2 | 19.7 | ||
3rd 10-day period | 15.9 | 23.1 | 21.3 | ||
Monthly average | 18.3 | 25.2 | 20.5 | ||
September | 1st 10-day period | 17.2 | 17.1 | 21.2 | 13.9 |
2nd 10-day period | 18.6 | 18.8 | 19.3 | ||
3rd 10-day period | 14.0 | 14.1 | 15.0 | ||
Monthly average | 16.6 | 16.7 | 18.5 |
Month | 10-Day Period of the Month | Year 2014 | Year 2015 | Year 2016 | Average Rainfall in the Month during the Years 1981–2010 |
---|---|---|---|---|---|
[mm of Rainfall] | |||||
May | 1st 10-day period | 30.3 | 12.3 | 14.0 | 57.0 |
2nd 10-day period | 33.6 | 14.0 | 12.0 | ||
3rd 10-day period | 42.8 | 0.5 | 0.0 | ||
Monthly average | 106.7 | 26.8 | 26.0 | ||
June | 1st 10-day period | 8.2 | 11.0 | 9.4 | 69.9 |
2nd 10-day period | 0.3 | 23.1 | 59.0 | ||
3rd 10-day period | 15.4 | 32.2 | 0.8 | ||
Monthly average | 23.9 | 66.3 | 69.2 | ||
July | 1st 10-day period | 20.0 | 11.0 | 39.5 | 83.4 |
2nd 10-day period | 0.0 | 38.9 | 70.5 | ||
3rd 10-day period | 26.1 | 3.3 | 24.5 | ||
Monthly average | 46.1 | 53.2 | 134.5 | ||
August | 1st 10-day period | 17.5 | 0.0 | 5.8 | 71.0 |
2nd 10-day period | 13.1 | 0.0 | 5.0 | ||
3rd 10-day period | 35.0 | 2.1 | 13.3 | ||
Monthly average | 65.6 | 2.1 | 24.1 | ||
September | 1st 10-day period | 24.1 | 16.4 | 11.5 | 45.2 |
2nd 10-day period | 21.6 | 0.0 | 45.8 | ||
3rd 10-day period | 14.3 | 0.0 | 0.0 | ||
Monthly average | 60.0 | 16.4 | 57.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Śniegowska, J.; Biesiada, A.; Gasiński, A. Influence of the Nitrogen Fertilization on the Yield, Biometric Characteristics and Chemical Composition of Stevia rebaudiana Bertoni Grown in Poland. Molecules 2024, 29, 1865. https://doi.org/10.3390/molecules29081865
Śniegowska J, Biesiada A, Gasiński A. Influence of the Nitrogen Fertilization on the Yield, Biometric Characteristics and Chemical Composition of Stevia rebaudiana Bertoni Grown in Poland. Molecules. 2024; 29(8):1865. https://doi.org/10.3390/molecules29081865
Chicago/Turabian StyleŚniegowska, Joanna, Anita Biesiada, and Alan Gasiński. 2024. "Influence of the Nitrogen Fertilization on the Yield, Biometric Characteristics and Chemical Composition of Stevia rebaudiana Bertoni Grown in Poland" Molecules 29, no. 8: 1865. https://doi.org/10.3390/molecules29081865
APA StyleŚniegowska, J., Biesiada, A., & Gasiński, A. (2024). Influence of the Nitrogen Fertilization on the Yield, Biometric Characteristics and Chemical Composition of Stevia rebaudiana Bertoni Grown in Poland. Molecules, 29(8), 1865. https://doi.org/10.3390/molecules29081865