Enhancing the Conductivity and Dielectric Characteristics of Bismuth Oxyiodide via Activated Carbon Doping
Abstract
:1. Introduction
2. Results and Discussion
2.1. XRD
2.2. TEM
2.3. EDX Analysis
2.4. XPS
2.5. DC Conductivity
2.6. AC Conductivity
2.6.1. Effect of Temperature on AC Conductivity
2.6.2. Effect of Frequency on AC Conductivity
2.7. Dielectric Constant (ε′)
2.8. Dielectric Loss Factor (ε″)
2.9. Impedance Spectroscopy
3. Experimental
3.1. Materials
3.2. Synthesis of BiOI and Activated Carbon/BiOI Composites
3.3. Characterization
3.4. Electrical Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barroso-Bogeat, A.; Alexandre-Franco, M.; Fernández-González, C.; Macías-García, A.; Gómez-Serrano, V. Temperature dependence of the electrical conductivity of activated carbons prepared from vine shoots by physical and chemical activation methods. Microporous Mesoporous Mater. 2015, 209, 90–98. [Google Scholar] [CrossRef]
- Goyal, M. Nonenvironmental industrial applications of activated carbon adsorption. In Novel Carbon Adsorbents; Elsevier: Amsterdam, The Netherlands, 2012; pp. 605–638. [Google Scholar]
- Zhi, M.; Xiang, C.; Li, J.; Li, M.; Wu, N. Nanostructured carbon–metal oxide composite electrodes for supercapacitors: A review. Nanoscale 2013, 5, 72–88. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.L.; Gu, Y.; Zhao, X. Advanced porous carbon electrodes for electrochemical capacitors. J. Mater. Chem. A 2013, 1, 9395–9408. [Google Scholar] [CrossRef]
- Choi, Y.J.; Choi, J.B.; Im, J.S.; Kim, J.H. Effect of Porosity in Activated Carbon Supports for Silicon-Based Lithium-Ion Batteries (LIBs). ACS Omega 2023, 8, 19772–19780. [Google Scholar] [CrossRef] [PubMed]
- Bora, M.; Bhattacharjya, D.; Saikia, B.K. Coal-Derived activated carbon for electrochemical energy storage: Status on supercapacitor, Li-ion battery, and Li–S battery applications. Energy Fuels 2021, 35, 18285–18307. [Google Scholar] [CrossRef]
- Viswanathan, B.; Neel, P.I.; Varadarajan, T. Methods of Activation and Specific Applications of Carbon Materials; NCCR IIT Madras: Chennai, India, 2009; Volume 600, pp. 1–160. [Google Scholar]
- Huang, Q.; Wang, X.; Li, J.; Dai, C.; Gamboa, S.; Sebastian, P. Nickel hydroxide/activated carbon composite electrodes for electrochemical capacitors. J. Power Sources 2007, 164, 425–429. [Google Scholar] [CrossRef]
- Roosta, M.; Ghaedi, M.; Mohammadi, M. Removal of Alizarin Red S by gold nanoparticles loaded on activated carbon combined with ultrasound device: Optimization by experimental design methodology. Powder Technol. 2014, 267, 134–144. [Google Scholar] [CrossRef]
- Barroso-Bogeat, A.; Fernández-González, C.; Alexandre-Franco, M.; Gómez-Serrano, V. Activated carbon as a metal oxide support: A review. In Activated Carbon: Classifications, Properties and Applications; Nova Science Publishers: New York, NY, USA, 2011; pp. 297–318. [Google Scholar]
- Algethami, F.K.; Elamin, M.R.; Abdulkhair, B.Y.; Al-Zharani, M.; Qarah, N.A.; Alghamdi, M.A. Fast fabrication of bismuth oxyiodide/carbon-nanofibers composites for efficient anti-proliferation of liver and breast cancer cells. Z. Anorg. Allg. Chem. 2021, 647, 1921–1929. [Google Scholar] [CrossRef]
- Sanjinés, R.; Abad, M.D.; Vâju, C.; Smajda, R.; Mionić, M.; Magrez, A. Electrical properties and applications of carbon based nanocomposite materials: An overview. Surf. Coat. Technol. 2011, 206, 727–733. [Google Scholar] [CrossRef]
- Chen, T.-W.; Kalimuthu, P.; Veerakumar, P.; Lin, K.-C.; Chen, S.-M.; Ramachandran, R.; Mariyappan, V.; Chitra, S. Recent developments in carbon-based nanocomposites for fuel cell applications: A review. Molecules 2022, 27, 761. [Google Scholar] [CrossRef]
- Yuan, S.; Lai, Q.; Duan, X.; Wang, Q. Carbon-based materials as anode materials for lithium-ion batteries and lithium-ion capacitors: A review. J. Energy Storage 2023, 61, 106716. [Google Scholar] [CrossRef]
- Samdhyan, K.; Chand, P.; Anand, H.; Saini, S. Development of carbon-based copper sulfide nanocomposites for high energy supercapacitor applications: A comprehensive review. J. Energy Storage 2022, 46, 103886. [Google Scholar] [CrossRef]
- Barroso-Bogeat, A.; Alexandre-Franco, M.; Fernández-González, C.; Macías-García, A.; Gómez-Serrano, V. Electrical conductivity of activated carbon–metal oxide nanocomposites under compression: A comparison study. Phys. Chem. Chem. Phys. 2014, 16, 25161–25175. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Li, H.; Balogun, M.-S.; Liu, W.; Tong, Y.; Lu, X.; Ji, H. Oxygen vacancy induced bismuth oxyiodide with remarkably increased visible-light absorption and superior photocatalytic performance. ACS Appl. Mater. Interfaces 2014, 6, 22920–22927. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, Z.; Tian, H.; Cheng, R.; Lin, M.; Sun, X.; Ran, S.; Lv, Y. Two dimensional oxygen-deficient bismuth oxy-iodide nanosheets with enhanced supercapacitor performances. Int. J. Electrochem. Sci. 2020, 15, 7982–7993. [Google Scholar] [CrossRef]
- Chiu, C.-W.; Li, J.-W.; Huang, C.-Y.; Yang, S.-S.; Soong, Y.-C.; Lin, C.-L.; Lee, J.C.-M.; Lee Sanchez, W.A.; Cheng, C.-C.; Suen, M.-C. Controlling the structures, flexibility, conductivity stability of three-dimensional conductive networks of silver nanoparticles/carbon-based nanomaterials with nanodispersion and their application in wearable electronic sensors. Nanomaterials 2020, 10, 1009. [Google Scholar] [CrossRef] [PubMed]
- Chung, D.D.L. Electrical applications of carbon materials. J. Mater. Sci. 2004, 39, 2645–2661. [Google Scholar] [CrossRef]
- Elamin, M.R.; Abdulkhair, B.Y.; Modwi, A.; Elamin, N.Y. Surfactants enhanced short durations synthesis of bismuth oxyiodide quantum dots. Inorg. Chem. Commun. 2023, 157, 111450. [Google Scholar] [CrossRef]
- Elamin, M.R.; Abdulkhair, B.Y.; Elzupir, A.O. Removal of ciprofloxacin and indigo carmine from water by carbon nanotubes fabricated from a low-cost precursor: Solution parameters and recyclability. Ain Shams Eng. J. 2023, 14, 101844. [Google Scholar] [CrossRef]
- Ibrahim, T.G.; Almufarij, R.S.; Abdulkhair, B.Y.; Ramadan, R.S.; Eltoum, M.S.; Abd Elaziz, M.E. A Thorough Examination of the Solution Conditions and the Use of Carbon Nanoparticles Made from Commercial Mesquite Charcoal as a Successful Sorbent for Water Remediation. Nanomaterials 2023, 13, 1485. [Google Scholar] [CrossRef]
- Almufarij, R.S.; Abdulkhair, B.Y.; Salih, M. Fast-simplistic fabrication of MoO3@ Al2O3-MgO triple nanocomposites for efficient elimination of pharmaceutical contaminants. Results Chem. 2024, 7, 101281. [Google Scholar] [CrossRef]
- Di, J.; Xia, J.; Ge, Y.; Xu, L.; Xu, H.; Chen, J.; He, M.; Li, H. Facile fabrication and enhanced visible light photocatalytic activity of few-layer MoS2 coupled BiOBr microspheres. Dalton Trans. 2014, 43, 15429–15438. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yu, Y.; Zhang, L. Highly efficient photocatalytic removal of sodium pentachlorophenate with Bi3O4Br under visible light. Appl. Catal. B Environ. 2013, 136, 112–121. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, J.; Xu, Q.; Li, Y.; Fu, T.; Jiang, G.; Li, Y.; Zhao, Z.; Wei, Y. Novel visible-light-driven S-doped carbon dots/BiOI nanocomposites: Improved photocatalytic activity and mechanism insight. J. Mater. Sci. 2017, 52, 7282–7293. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, D.; Zhang, Y.; Zhou, X.; Guo, S.; Yang, L. Graphene-wrapped Bi2O2CO3 core–shell structures with enhanced quantum efficiency profit from an ultrafast electron transfer process. J. Mater. Chem. A 2014, 2, 8273–8280. [Google Scholar] [CrossRef]
- Xia, J.; Di, J.; Li, H.; Xu, H.; Li, H.; Guo, S. Ionic liquid-induced strategy for carbon quantum dots/BiOX (X= Br, Cl) hybrid nanosheets with superior visible light-driven photocatalysis. Appl. Catal. B Environ. 2016, 181, 260–269. [Google Scholar] [CrossRef]
- Di, J.; Xia, J.; Ge, Y.; Li, H.; Ji, H.; Xu, H.; Zhang, Q.; Li, H.; Li, M. Novel visible-light-driven CQDs/Bi2WO6 hybrid materials with enhanced photocatalytic activity toward organic pollutants degradation and mechanism insight. Appl. Catal. B Environ. 2015, 168, 51–61. [Google Scholar] [CrossRef]
- Wang, W.; Chen, X.; Liu, G.; Shen, Z.; Xia, D.; Wong, P.K.; Jimmy, C.Y. Monoclinic dibismuth tetraoxide: A new visible-light-driven photocatalyst for environmental remediation. Appl. Catal. B Environ. 2015, 176, 444–453. [Google Scholar] [CrossRef]
- Liu, C.; Wang, X.-j. Room temperature synthesis of Bi4O5I2 and Bi5O7 I ultrathin nanosheets with a high visible light photocatalytic performance. Dalton Trans. 2016, 45, 7720–7727. [Google Scholar] [CrossRef]
- Cui, B.; Cui, H.; Li, Z.; Dong, H.; Li, X.; Zhao, L.; Wang, J. Novel Bi3O5I2 hollow microsphere and its enhanced photocatalytic activity. Catalysts 2019, 9, 709. [Google Scholar] [CrossRef]
- Yu, W.; Ji, N.; Tian, N.; Bai, L.; Ou, H.; Huang, H. BiOI/Bi2O2 [BO2(OH)] heterojunction with boosted photocatalytic degradation performance for diverse pollutants under visible light irradiation. Colloids Surf. A Physicochem. Eng. Asp. 2020, 603, 125184. [Google Scholar] [CrossRef]
- Han, J.; Zhu, G.; Hojamberdiev, M.; Peng, J.; Zhang, X.; Liu, Y.; Ge, B.; Liu, P. Rapid adsorption and photocatalytic activity for Rhodamine B and Cr (VI) by ultrathin BiOI nanosheets with highly exposed {001} facets. New J. Chem. 2015, 39, 1874–1882. [Google Scholar] [CrossRef]
- Abdul-Manaf, N.; Azmi, A.; Fauzi, F.; Mohamed, N. The effects of micro and macro structure on electronic properties of bismuth oxyiodide thin films. Mater. Res. Express 2021, 8, 096401. [Google Scholar] [CrossRef]
- Kennedy, L.J.; Vijaya, J.J.; Sekaran, G. Electrical conductivity study of porous carbon composite derived from rice husk. Mater. Chem. Phys. 2005, 91, 471–476. [Google Scholar] [CrossRef]
- Bi, Z.; Paranthaman, M.P.; Guo, B.; Unocic, R.R.; Meyer, H.M., III; Bridges, C.A.; Sun, X.-G.; Dai, S. High performance Cr, N-codoped mesoporous TiO 2 microspheres for lithium-ion batteries. J. Mater. Chem. A 2014, 2, 1818–1824. [Google Scholar] [CrossRef]
- Astuti, Y.; Mei, R.; Darmawan, A.; Arnelli, A.; Widiyandari, H. Enhancement of electrical conductivity of bismuth oxide/activated carbon composite. Sci. Iran. 2022, 29, 3119–3131. [Google Scholar] [CrossRef]
- Astuti, Y.; Aprialdi, F.; Haryanto, I. Synthesis of activated carbon/bismuth oxide composite and its characterization for battery electrode. IOP Conf. Ser. Mater. Sci. Eng. 2019, 509, 012153. [Google Scholar] [CrossRef]
- Astuti, Y.; Widiyandari, H.; Zaqia, F.A.; Annisa, L.; Fajarwati, R.M.; Hartinah, S. Physicochemical characteristics and electrical conductivity of bismuth oxide/activated carbon composite. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1053, 012014. [Google Scholar] [CrossRef]
- Hou, J.; Jiang, K.; Shen, M.; Wei, R.; Wu, X.; Idrees, F.; Cao, C. Micro and nano hierachical structures of BiOI/activated carbon for efficient visible-light-photocatalytic reactions. Sci. Rep. 2017, 7, 11665. [Google Scholar] [CrossRef] [PubMed]
- Marouani, Y.; Massoudi, J.; Noumi, M.; Benali, A.; Dhahri, E.; Sanguino, P.; Graça, M.P.F.; Valente, M.A.; Costa, B. Electrical conductivity and dielectric properties of Sr doped M-type barium hexaferrite BaFe12O19. RSC Adv. 2021, 11, 1531–1542. [Google Scholar] [CrossRef] [PubMed]
- Sameeh, M.; Khairy, M.; Esawy, T.; Bayoumy, W. Cation distribution, composition effect on magnetic and electrical properties of nano ZnMn2−xCrxO4 (x = 0, 1, 2). J. Mater. Res. Technol. 2022, 19, 877–898. [Google Scholar] [CrossRef]
- Modwi, A.; Taha, K.K.; Khezami, L.; Al-Ayed, A.S.; Al-Duaij, O.; Khairy, M.; Bououdina, M. Structural and electrical characterization of Ba/ZnO nanoparticles fabricated by co-precipitation. J. Inorg. Organomet. Polym. Mater. 2020, 30, 2633–2644. [Google Scholar] [CrossRef]
- Farea, A.; Kumar, S.; Batoo, K.M.; Yousef, A.; Lee, C.G. Structure and electrical properties of Co0.5CdxFe2.5−xO4 ferrites. J. Alloys Compd. 2008, 464, 361–369. [Google Scholar] [CrossRef]
- Ahmed, M.; Ateia, E.; El-Dek, S. Rare earth doping effect on the structural and electrical properties of Mg–Ti ferrite. Mater. Lett. 2003, 57, 4256–4266. [Google Scholar] [CrossRef]
- Parvez Ahmad, M.; Venkateswara Rao, A.; Suresh Babu, K.; Narsinga Rao, G. Effect of carbon-doping on structural and dielectric properties of zinc oxide. J. Adv. Dielectr. 2020, 10, 2050017. [Google Scholar] [CrossRef]
- Hassan, M.M.; Ahmed, A.S.; Chaman, M.; Khan, W.; Naqvi, A.; Azam, A. Structural and frequency dependent dielectric properties of Fe3+ doped ZnO nanoparticles. Mater. Res. Bull. 2012, 47, 3952–3958. [Google Scholar] [CrossRef]
- Arredondo, E.; Maldonado, A.; Asomoza, R.; Acosta, D.; Lira, M.; Olvera, M.d.l.L. Indium-doped ZnO thin films deposited by the sol-gel technique. Thin Solid Film. 2005, 490, 132–136. [Google Scholar] [CrossRef]
- Sen, S.; Choudhary, R. Impedance studies of Sr modified BaZr0.05Ti0.95O3 ceramics. Mater. Chem. Phys. 2004, 87, 256–263. [Google Scholar] [CrossRef]
- Mohammed, M.; Abd-Allah, K.; Hassaan, M. The conduction mechanism and dielectric behavior of sodium borate glasses containing Fe and Bi ions. Egypt. J. Solids 2004, 27, 299–308. [Google Scholar]
- Mollah, S.; Som, K.; Bose, K.; Chaudhuri, B. ac conductivity in Bi4Sr3Ca3CuyOx (y = 0–5) and Bi4Sr3Ca3−zLizCu4Ox (z = 0.1–1.0) semiconducting oxide glasses. J. Appl. Phys. 1993, 74, 931–937. [Google Scholar] [CrossRef]
- Ghosh, A. Frequency-dependent conductivity in bismuth-vanadate glassy semiconductors. Phys. Rev. B 1990, 41, 1479. [Google Scholar] [CrossRef]
- Lany, S.; Zunger, A. Dopability, intrinsic conductivity, and nonstoichiometry of transparent conducting oxides. Phys. Rev. Lett. 2007, 98, 045501. [Google Scholar] [CrossRef] [PubMed]
- Toghan, A.; Modwi, A.; Mostafa, A.M.; Alakhras, A.I.; Khairy, M.; Taha, K.K. Insight of yttrium doping on the structural and dielectric characteristics of ZnO nanoparticles. J. Mater. Sci. Mater. Electron. 2022, 33, 18167–18179. [Google Scholar] [CrossRef]
- Bhat, I.; Husain, S.; Khan, W.; Patil, S. Structural, transport, magnetic, and dielectric properties of La1−xTexMnO3 (x = 0.10 and 0.15). J. Mater. Sci. 2013, 48, 3272–3282. [Google Scholar] [CrossRef]
- Koops, C. On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 1951, 83, 121. [Google Scholar] [CrossRef]
- Alam, F.; Ansari, S.A.; Khan, W.; Ehtisham Khan, M.; Naqvi, A. Synthesis, structural, optical and electrical properties of in-situ synthesized polyaniline/silver nanocomposites. Funct. Mater. Lett. 2012, 5, 1250026. [Google Scholar] [CrossRef]
- Divya, N.; Aparna, P.; Pradyumnan, P. Dielectric properties of Er3+ doped ZnO nanocrystals. Adv. Mater. Phys. Chem. 2015, 5, 287–294. [Google Scholar] [CrossRef]
- Upadhyay, C.; Verma, H.; Anand, S. Cation distribution in nanosized Ni–Zn ferrites. J. Appl. Phys. 2004, 95, 5746–5751. [Google Scholar] [CrossRef]
- Almessiere, M.A.; Slimani, Y.; El Sayed, H.; Baykal, A. Morphology and magnetic traits of strontium nanohexaferrites: Effects of manganese/yttrium co-substitution. J. Rare Earths 2019, 37, 732–740. [Google Scholar] [CrossRef]
- Gul, I.; Pervaiz, E. Comparative study of NiFe2−xAlxO4 ferrite nanoparticles synthesized by chemical co-precipitation and sol–gel combustion techniques. Mater. Res. Bull. 2012, 47, 1353–1361. [Google Scholar] [CrossRef]
- Ramesh, B.; Ramesh, S.; Kumar, R.V.; Rao, M.L. AC impedance studies on LiFe5−xMnxO8 ferrites. J. Alloys Compd. 2012, 513, 289–293. [Google Scholar] [CrossRef]
- Misra, D.K. Evaluation of the complex permittivity of layered dielectric materials with the use of an open-ended coaxial line. Microw. Opt. Technol. Lett. 1996, 11, 183–187. [Google Scholar] [CrossRef]
Sample | 2θ (Degree) | D (nm) | a (Å) | c (Å) |
---|---|---|---|---|
BiOI | 29.61 | 15.08 | 0.02273 | 0.60286 |
1C/BiOI | 29.61 | 15.07 | 0.02272 | 0.60284 |
5C/BiOI | 29.55 | 20.93 | 0.02268 | 0.60412 |
10C/BiOI | 29.44 | 34.80 | 0.02260 | 0.60633 |
Sample | s | A | σdc (ohm−1.cm−1) | σac (ohm−1.cm−1) | Dielectric Constant | Z (Ohm) | Ea,dc (eV) | Ea,AC (eV) | ||
---|---|---|---|---|---|---|---|---|---|---|
177 KHz | 1.29 MHz | |||||||||
BiOI | 0.89 | 1.31 × 10−11 | 2.23 × 10−9 | 1.1 × 10−5 | 7.56 | 156 × 103 | 0.037 | 0.005 | 0.057 | |
1C/BiOI | 0.81 | 7.24 × 10−11 | 1.09 × 10−9 | 2.3 × 10−5 | 8.50 | 130 × 103 | 0.025 | 0.050 | 0.106 | |
5C/BiOI | 0.84 | 1.58 × 10−10 | 3.47 × 10−8 | 7.1 × 10−5 | 14.47 | 85 × 103 | 0.026 | 0.011 | 0.008 | |
10C/BiOI | 0.37 | 2.15 × 10−6 | 5.56 × 10−4 | 2.86 × 10−4 | 34.55 | 52 × 103 | 0.011 | 0.059 | 0.050 |
Sample | σac (ohm−1.cm−1) | Ref |
---|---|---|
BiOI thin films | 0.125 × 10−4 | [1] |
BiOI thin films at 350 °C | 1.524 × 10−4 | [1] |
C900 | 3.28 × 10−4 | [2] |
Cr, N-codoped TiO2 | 3.05 × 107 | [3] |
Bismuth oxide/activated (1:1) | 1.24 × 10−5 | [4] |
Pure Bi2O3 | 1.55 × 10−7 | [8] |
Rice husk activated carb | 8.17 × 10−5 | [4] |
8 mmol Bi/CA | 4.91 × 10−3 | [4] |
Bi/Commercial CA | 0.905 × 10−7 | [5] |
Bi/Rice husk CA | 2.59 × 10−7 | [5] |
Commercial activated carb | 0.741 × 10−7 | [5] |
10C/BiOI | 2.86 × 10−4 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khairy, M.; Algethami, F.K.; Alotaibi, A.N.; Almufarij, R.S.; Abdulkhair, B.Y. Enhancing the Conductivity and Dielectric Characteristics of Bismuth Oxyiodide via Activated Carbon Doping. Molecules 2024, 29, 2082. https://doi.org/10.3390/molecules29092082
Khairy M, Algethami FK, Alotaibi AN, Almufarij RS, Abdulkhair BY. Enhancing the Conductivity and Dielectric Characteristics of Bismuth Oxyiodide via Activated Carbon Doping. Molecules. 2024; 29(9):2082. https://doi.org/10.3390/molecules29092082
Chicago/Turabian StyleKhairy, Mohamed, Faisal K. Algethami, Abdullah N. Alotaibi, Rasmiah S. Almufarij, and Babiker Y. Abdulkhair. 2024. "Enhancing the Conductivity and Dielectric Characteristics of Bismuth Oxyiodide via Activated Carbon Doping" Molecules 29, no. 9: 2082. https://doi.org/10.3390/molecules29092082
APA StyleKhairy, M., Algethami, F. K., Alotaibi, A. N., Almufarij, R. S., & Abdulkhair, B. Y. (2024). Enhancing the Conductivity and Dielectric Characteristics of Bismuth Oxyiodide via Activated Carbon Doping. Molecules, 29(9), 2082. https://doi.org/10.3390/molecules29092082