Design, Synthesis and Biological Activity of Novel Methoxy- and Hydroxy-Substituted N-Benzimidazole-Derived Carboxamides
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological Activity
2.2.1. Antiproliferative Activity against Various Cancer Cell Lines
2.2.2. Antioxidative Activity In Vitro
2.2.3. Antioxidant Ability in Cells
2.2.4. Antibacterial Activity In Vitro
3. Conclusions
4. Experimental Part
4.1. General Methods
4.2. General Method for Preparation of Compounds 7–12
- N-(1H-benzo[d]imidazol-2-yl)-2-hydroxy-4-methoxybenzamide 7
- N-(1H-benzo[d]imidazol-2-yl)-3,5-dihydroxy-4-methoxybenzamide 8
- 3,4,5-trihydroxy-N-(1-methyl-1H-benzo[d]imidazol-2-yl)benzamide 9
- N-(5-cyano-1-isobutyl-1H-benzo[d]imidazol-2-yl)-2-hydroxy-4-methoxybenzamide 10
- N-(5-cyano-1-methyl-1H-benzo[d]imidazol-2-yl)-2-hydroxybenzamide 11
- N-(5-cyano-1-methyl-1H-benzo[d]imidazol-2-yl)-2-hydroxy-4-methoxybenzamide 12
4.3. General Method for Preparation of Compounds 15–16
- Benzyl 2,4-bis(benzyloxy)benzoate 15
- Benzyl 3,4,5-tris(benzyloxy)benzoate 16
4.4. General Method for Preparation of Compounds 17–18
- 2,4-Bis(benzyloxy)benzoic acid 17
- 3,4,5-Tris(benzyloxy)benzoic acid 18
4.5. General Method for Preparation of Compounds 24–30
- N-(1H-benzo[d]imidazol-2-yl)-2,4-bis(benzyloxy)benzamide 24
- N-(1H-benzo[d]imidazol-2-yl)-3,4,5-tris(benzyloxy)benzamide 25
- 3,4,5-Tris(benzyloxy)-N-(1-isobutyl-1H-benzo[d]imidazol-2-yl)benzamide 26
- 3,4,5-Tris(benzyloxy)-N-(1-phenyl-1H-benzo[d]imidazol-2-yl)benzamide 27
- 2,4-Bis(benzyloxy)-N-(5-cyano-1-methyl-1H-benzo[d]imidazol-2-yl)benzamide 28
- 3,4,5-Tris(benzyloxy)-N-(5-cyano-1-methyl-1H-benzo[d]imidazol-2-yl)benzamide 29
- 3,4,5-Tris(benzyloxy)-N-(5-cyano-1-hexyl-1H-benzo[d]imidazol-2-yl)benzamide 30
4.6. General Method for Preparation of Compounds 31–37
- N-(1H-benzo[d]imidazol-2-yl)-2,4-dihydroxybenzamide 31
- N-(1H-benzo[d]imidazol-2-yl)-3,4,5-trihydroxybenzamide 32
- 3,4,5-Trihydroxy-N-(1-isobutyl-1H-benzo[d]imidazol-2-yl)benzamide 33
- 3,4,5-Trihydroxy-N-(1-phenyl-1H-benzo[d]imidazol-2-yl)benzamide 34
- N-(5-cyano-1-methyl-1H-benzo[d]imidazol-2-yl)-2,4-dihydroxybenzamide 35
- N-(5-cyano-1-methyl-1H-benzo[d]imidazol-2-yl)-3,4,5-trihydroxybenzamide 36
- N-(5-cyano-1-hexyl-1H-benzo[d]imidazol-2-yl)-3,4,5-trihydroxybenzamide 37
4.7. Antiproliferative Activity
4.8. Antioxidative Activity Assay in Cells
4.9. Antioxidative Activity
4.9.1. Determination of Ferric Reducing/Antioxidant Power (FRAP Assay)
4.9.2. ABTS Radical Scavenging Assay
4.10. Antibacterial Activity In Vitro
4.10.1. Materials
4.10.2. Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kisla, M.M.; Al-Kassim Hassan, M.; Osman, H.M.; Aydin, A.S.; Sen, H.T.; Khazei, S.; Kul, P.; Kuş, C. Combination of protecting groups in organic chemistry: A small review. Curr. Org. Synth. 2023, 20, 491–503. [Google Scholar] [CrossRef] [PubMed]
- Chithanna, S.; Vyasamudri, S.; Yang, D.-Y. Application of Dimedone Enamines as Protecting Groups for Amines and Peptides. Org. Lett. 2020, 22, 2391–2395. [Google Scholar] [CrossRef]
- Sartori, G.; Maggi, R. Update 1 of: Protection (and Deprotection) of Functional Groups in Organic Synthesis by Heterogeneous Catalysis. Chem. Rev. 2010, 110, PR1–PR54. [Google Scholar] [CrossRef]
- Greene, T.W.; Wutz, P.G.M. Protective Groups in Organic Synthesis, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1999; p. 779. [Google Scholar]
- Greene, T.W.; Wuts, P.G.M. Protective Groups in Organic Synthesis, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007. [Google Scholar]
- Guo, J.; Ye, X.-S. Protecting Groups in Carbohydrate Chemistry: Influence on Stereoselectivity of Glycosylations. Molecules 2010, 15, 7235–7265. [Google Scholar] [CrossRef] [PubMed]
- Saicic, R.N. Protecting group-free syntheses of natural products and biologically active compounds. Tetrahedron 2014, 70, 8183–8218. [Google Scholar] [CrossRef]
- Wang, T.; Demchenko, A.V. Synthesis of carbohydrate building blocks via regioselective uniform protection/deprotection strategies. Org. Biomol. Chem. 2019, 17, 4934–4950. [Google Scholar] [CrossRef] [PubMed]
- Volbeda, A.G.; van der Marel, G.A.; Codée, J.D.C. Protecting Group Strategies in Carbohydrate Chemistry in Protecting Groups—Strategies and Applications in Carbohydrate Chemistry, 1st ed.; Vidal, S., Ed.; Wiley-VCH: Weinheim, Germany, 2019; pp. 1–28. [Google Scholar]
- Donnier-Maréchal, M.; Vidal, S.; Fiore, M. Protecting Groups at the Primary Position of Carbohydrates in Protecting Groups—Strategies and Applications in Carbohydrate Chemistry; Vidal, S., Ed.; Wiley-VCH: Weinheim, Germany, 2019; pp. 29–68. [Google Scholar]
- Dimakos, V.; Taylor, M.S. Site-Selective Functionalization of Hydroxyl Groups in Carbohydrate Derivatives. Chem. Rev. 2018, 118, 11457–11517. [Google Scholar] [CrossRef] [PubMed]
- Plante, O.J.; Buchwald, S.L.; Seeberger, P.H. Halobenzyl Ethers as Protecting Groups for Organic Synthesis. J. Am. Chem. Soc. 2000, 122, 7148–7149. [Google Scholar] [CrossRef]
- Boto, A.; Hernández, D.; Hernández, R.; Suárez, E. Selective Cleavage of Methoxy Protecting Groups in Carbohydrates. J. Org. Chem. 2006, 71, 1938–1948. [Google Scholar] [CrossRef]
- Weissman, S.A.; Zewge, D. Recent advances in ether deaklylation. Tetrahedron 2005, 61, 7833–7863. [Google Scholar] [CrossRef]
- Volbeda, A.G.; Kistemaker, H.A.V.; Overkleeft, H.S.; van der Marel, G.A.; Filippov, D.V.; Codée, J.D.C. Chemoselective Cleavage of p-Methoxybenzyl and 2-Naphthylmethyl Ethers Using a Catalytic Amount of HCl in Hexafluoro-2-propanol. J. Org. Chem. 2015, 80, 8796–8806. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Shimizu, E.; Ban, K.; Wada, Y.; Mizusaki, T.; Yoshimura, M.; Takagi, Y.; Sawama, Y.; Sajiki, H. Facile Hydrogenative Deprotection of N-Benzyl Groups Using a Mixed Catalyst of Palladium and Niobic Acid-on-Carbon. ACS Omega 2020, 5, 2699–2709. [Google Scholar] [CrossRef]
- Crawford, C.; Oscarson, S. Optimized Conditions for the Palladium-Catalyzed Hydrogenolysis of Benzyl and Naphthylmethyl Ethers: Preventing Saturation of Aromatic Protecting Groups. Eur. J. Org. Chem. 2020, 2020, 3332–3337. [Google Scholar] [CrossRef]
- Chen, J.; Yang, J.; Ma, L.; Li, J.; Shahzad, N.; Kim, C.K. Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Sci. Rep. 2020, 10, 2611. [Google Scholar] [CrossRef] [PubMed]
- Hong, Z.; Tang, P.; Liu, B.; Ran, C.; Wu, H. Ferroptosis-related Genes for Overall Survival Prediction in Patients with Colorectal Cancer can be Inhibited by Gallic acid. Int. J. Biol. Sci. 2021, 17, 942–956. [Google Scholar] [CrossRef]
- Parcheta, M.; Świsłocka, R.; Orzechowska, S.; Akimowicz, M.; Choińska, R.; Lewandowski, W. Recent Developments in Effective Antioxidants: The Structure and Antioxidant Properties. Materials 2021, 14, 1984. [Google Scholar] [CrossRef]
- Lima, G.P.P.; Vianello, F.; Corrêa, C.R.; Campos, R.A.; Borguini, M.G. Polyphenols in Fruits and Vegetables and Its Effect on Human Health. Food Nutr. Sci. 2014, 5, 1065–1082. [Google Scholar] [CrossRef]
- Huyut, Z.; Beydemir, Ş.; Gülçin, İ. Antioxidant and Antiradical Properties of Selected Flavonoids and Phenolic Compounds. Biochem. Res. Int. 2017, 2017, 7616791. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B.; Gutteridge, C. Free Radicals in Biology and Medicine, 5th ed.; Oxford University Press: Oxford, UK, 2015; 707p. [Google Scholar]
- Zhang, L.; Li, J.; Zong, L.; Chen, X.; Chen, K.; Jiang, Z.; Nan, L.; Li, X.; Li, W.; Shan, T.; et al. Reactive Oxygen Species and Targeted Therapy for Pancreatic Cancer. Oxid. Med. Cell. Longev. 2016, 2016, 1616781. [Google Scholar] [CrossRef]
- Hybertson, B.M.; Gao, B.; Bose, S.K.; McCord, J.M. Oxidative stress in health and disease: The therapeutic potential of Nrf2 activation. Mol. Asp. Med. 2011, 32, 234–246. [Google Scholar] [CrossRef]
- Wang, X.J.; Chen, J.Y.; Fu, L.Q.; Yan, M.J. Recent advances in natural therapeutic approaches for the treatment of cancer. J. Chemother. 2020, 32, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Cindrić, M.; Sović, I.; Martin-Kleiner, I.; Kralj, M.; Mašek, T.; Hranjec, M.; Starčević, K. Synthesis, antioxidative and antiproliferative activity of methoxy amidino substituted benzamides and benzimidazoles. Med. Chem. Res. 2017, 26, 2024–2037. [Google Scholar] [CrossRef]
- Perin, N.; Roškarić, P.; Sović, I.; Boček, I.; Starčević, K.; Hranjec, M.; Vianello, R. Amino-Substituted Benzamide Derivatives as Promising Antioxidant Agents: A Combined Experimental and Computational Study. Chem. Res. Toxicol. 2018, 31, 974–984. [Google Scholar] [CrossRef]
- Cindrić, M.; Sović, I.; Mioč, M.; Hok, L.; Boček, I.; Roškarić, P.; Butković, K.; Martin-Kleiner, I.; Starčević, K.; Vianello, R.; et al. Experimental and Computational Study of the Antioxidative Potential of Novel Nitro and Amino Substituted Benzimidazole/Benzothiazole-2-Carboxamides with Antiproliferative Activity. Antioxidants 2019, 8, 477. [Google Scholar] [CrossRef]
- Sović, I.; Cindrić, M.; Perin, N.; Boček, I.; Novaković, I.; Damjanović, A.; Stanojković, T.; Zlatović, M.; Bertoša, B. Biological potential of novel methoxy and hydroxy substituted heteroaromatic amides designed as promising antioxidative agents: Synthesis, 3D-QSAR analysis and biological activity. Chem. Res. Toxicol. 2019, 32, 1880–1892. [Google Scholar] [CrossRef]
- Beč, A.; Mioč, M.; Bertoša, B.; Kos, M.; Debogović, P.; Kralj, M.; Starčević, K.; Hranjec, M. Design, synthesis, biological evaluation and QSAR analysis of novel N-substituted benzimidazole derived carboxamides. J. Enzyme Inhib. Med. Chem. 2022, 37, 1327–1339. [Google Scholar] [CrossRef] [PubMed]
- Cindrić, M.; Jambon, S.; Harej, A.; Depauw, S.; David-Cordonnier, M.H.; Kraljević Pavelić, S.; Karminski-Zamola, G.; Hranjec, M. Novel amidino substituted benzimidazole and benzothiazole benzo[b]thieno-2-carboxamides exert strong antiproliferative and DNA binding properties. Eur. J. Med. Chem. 2017, 136, 468–479. [Google Scholar] [CrossRef]
- Aleksić, M.; Bertoša, B.; Nhili, R.; Uzelac, L.; Jarak, I.; Depauw, S.; David-Cordonnier, M.H.; Kralj, M.; Tomić, S.; Karminski-Zamola, G. Novel Substituted Benzothiophene and Thienothiophene Carboxanilides and Quinolones: Synthesis, Photochemical Synthesis, DNA-Binding Properties, Antitumor Evaluation and 3D-Derived QSAR Analysis. J. Med. Chem. 2012, 55, 5044–5060. [Google Scholar] [CrossRef]
- Cindrić, M.; Perić, M.; Kralj, M.; Martin-Kleiner, I.; David-Cordonnier, M.H.; Čipčić Paljetak, H.; Matijašić, M.; Verbanac, D.; Karminski-Zamola, G.; Hranjec, M. Antibacterial and antiproliferative activity of novel 2-benzimidazolyl- and 2-benzothiazolyl-substituted benzo[b]thieno-2-carboxamides. Mol. Divers. 2018, 22, 637–646. [Google Scholar] [CrossRef]
- Ugras, H.I.; Basaran, I.; Kilic, T.; Cakir, U. Synthesis, Complexation and Antifungal, Antibacterial Activity Studies of a New Macrocyclic Schiff Base. J. Het. Chem. 2006, 43, 1679–1684. [Google Scholar] [CrossRef]
- Chat, O.A.; Najar, M.H.; Mir, M.A.; Rather, G.M.; Dar, A.A. Effects of surfactant micelles on solubilization and DPPH radical scavenging activity of Rutin. J. Colloid Interface Sci. 2011, 355, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Wojtunik-Kulesza, K.A.; Cieśla, Ł.; Waksmundzka-Hajnos, M. The influence of common free radicals and antioxidants on development of Alzheimer’s Disease. Nat. Prod. Commun. 2018, 13, 295–298. [Google Scholar]
- Sadeer, N.B.; Montesano, D.; Albrizio, S.; Zengin, G.; Mahomoodally, M.F. The Versatility of Antioxidant Assays in Food Science and Safety—Chemistry, Applications, Strengths, and Limitations. Antioxidants, 2020; 9, 709. [Google Scholar]
- Grgičević, I.; Mikulandra, I.; Bukvić, M.; Banjanac, M.; Radovanović, V.; Habinovec, I.; Bertoša, B.; Novak, P. Discovery of macrozones, new antimicrobial thiosemicarbazone-based azithromycin conjugates: Design, synthesis and in vitro biological evaluation. Int. J. Antimicrobl. Agents 2020, 56, 106147. [Google Scholar] [CrossRef] [PubMed]
IC50/μM | ||||
---|---|---|---|---|
Cpd. | Cell Line | |||
H460 | HCT 116 | MCF-7 | HEK293 | |
7 | >100 | 26.4 ± 4.8 | 36.3 ± 1.8 | - a |
8 | 91.8 ± 1.0 | >100 | 52.9 ± 16.0 | 49.4 ± 3.3 |
9 | >100 | >100 | 35.5 ± 5.2 | 32.3 ± 6.5 |
10 | 4.4 ± 0.4 | 3.9 ± 0.4 | 2.2 ± 0.9 | 4.4 ± 0.3 |
11 | >100 | 3.7 ± 0.04 | 1.2 ± 0.3 | 5.3 ± 0.6 |
12 | >100 | - a | 3.1 ± 2,6 | - a |
31 | >100 | 38.6 ± 15.6 | 35.1 ± 6.9 | 24.5 ± 6.4 |
32 | >100 | >100 | 39.8 ± 1.4 | 66.0 ± 1.7 |
33 | >100 | 43.2 ± 18.6 | 90.8 ± 1.6 | 77.1 ± 7.9 |
34 | >100 | >100 | 49.4 ± 27.3 | 85.1 ± 8.8 |
35 | >100 | 10.0 ± 1.6 | 8.7 ± 1.5 | 33.5 ± 6.5 |
36 | 48.3 ± 10.5 | 19.3 ± 6.4 | 4.8 ± 0.7 | 25.3 ± 0.7 |
37 | 47.0 ± 8.7 | 37.8 ± 6.0 | 38.2 ± 3.2 | 37.9 ± 0.4 |
Doxorubicin | 0.04 ± 0.01 | 0.04 ± 0.01 | 0.009 ± 0.004 | 0.02 ± 0.01 |
Etoposide | 2.2 ± 0.4 | 2.2 ± 0.4 | 0.6 ± 0.1 | 0.65 ± 0.02 |
Cpd. | FRAP mmolFe2+/mg cpd. | ABTS IC50 mM (* µM) | DPPH IC50 mM (* µM) |
---|---|---|---|
7 | 387.28 ± 7.56 | 86 ± 1.20 | 6.44 ± 0.74 |
8 | 2461.93 ± 21.42 | 120 ± 0.42 | 1.5 ± 0.07 |
9 | 4036.77 ± 8.82 | 37.80 ± 2.09 | 0.75 ± 0.03 |
10 | 123.61 ± 2.52 | 9.32 ± 1.73 | 0.7832 ± 0.00 |
11 | 422.55 ± 8.82 | 84 ± 2.34 | 3.79 ± 0.33 |
12 | 592.86 ± 13.86 | 12.49 ± 1.40 | 0.596 ± 0.02 |
31 | 89.29 ± 21.92 | 0.13 ± 0.006 | 0.14 ± 0.05 |
32 | 3245.79 ± 16.38 | 40.09 ± 2.80 | 1.05 ± 0.08 |
33 | 4154.35 ± 1.26 | 66.30 ± 1.90 | 0.9 ± 0.02 |
34 | 6.83 ± 1.26 | 40.20 ± 0.27 | 1.25 ± 0.07 |
35 | 278.61 ± 3.28 | 0.19 ± 0.04 | 0.716 ± 0.02 |
36 | 2396.01 ± 35.27 | 64 ± 0.13 | 1.41 ± 0.05 |
37 | 2780.81 ± 15.12 | 2 ± 0.10 | 1.02 ± 0.06 |
BHT | 2089.34 ± 55.98 | 23.12 ± 0.12 | 25 ± 0.42 |
Cpd. | S. aureus ATCC 29213 | E. faecalis ATCC 29212 | E. coli ATCC 25922 | E. coli efflux del. | P. aeruginosa ATCC 27853 | A. baumannii ATCC 17978 |
---|---|---|---|---|---|---|
7 | >64 | 16 | >64 | >64 | >64 | >64 |
8 | >64 | 8 | >64 | >64 | >64 | >64 |
9 | 64 | 64 | >64 | >64 | >64 | >64 |
10 | >64 | >64 | >64 | >64 | >64 | >64 |
11 | >64 | 32 | >64 | >64 | >64 | >64 |
12 | >64 | 32 | >64 | >64 | >64 | >64 |
31 | >64 | 32 | >64 | 64 | >64 | >64 |
32 | >64 | >64 | >64 | >64 | >64 | >64 |
33 | 32 | 64 | >64 | 64 | >64 | >64 |
34 | >64 | 32 | >64 | >64 | >64 | >64 |
35 | >64 | 16 | >64 | 64 | >64 | >64 |
36 | 32 | 64 | >64 | >64 | >64 | >64 |
37 | 16 | 16 | >64 | 16 | >64 | >64 |
Ampicillin | 0.5 | 1 | 2 | 2 | >64 | 32 |
Azithromycin | 1 | 8 | 4 | 0.5 | 32 | 8 |
Ceftazidime | 4 | >64 | <0.125 | <0.125 | 2 | 4 |
Ciprofloxacin | 0.25 | 4 | <0.125 | <0.125 | 0.25 | <0.125 |
Gentamicin | 0.25 | 16 | 0.5 | 1 | 2 | 4 |
Meropenem | <0.125 | 8 | <0.125 | <0.125 | 1 | 0.5 |
Tetracycline | 0.25 | 16 | 0.5 | 32 | 32 | 2 |
Tobramycin | 0.25 | 8 | 1 | 1 | 0.5 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beč, A.; Zlatić, K.; Banjanac, M.; Radovanović, V.; Starčević, K.; Kralj, M.; Hranjec, M. Design, Synthesis and Biological Activity of Novel Methoxy- and Hydroxy-Substituted N-Benzimidazole-Derived Carboxamides. Molecules 2024, 29, 2138. https://doi.org/10.3390/molecules29092138
Beč A, Zlatić K, Banjanac M, Radovanović V, Starčević K, Kralj M, Hranjec M. Design, Synthesis and Biological Activity of Novel Methoxy- and Hydroxy-Substituted N-Benzimidazole-Derived Carboxamides. Molecules. 2024; 29(9):2138. https://doi.org/10.3390/molecules29092138
Chicago/Turabian StyleBeč, Anja, Katarina Zlatić, Mihailo Banjanac, Vedrana Radovanović, Kristina Starčević, Marijeta Kralj, and Marijana Hranjec. 2024. "Design, Synthesis and Biological Activity of Novel Methoxy- and Hydroxy-Substituted N-Benzimidazole-Derived Carboxamides" Molecules 29, no. 9: 2138. https://doi.org/10.3390/molecules29092138
APA StyleBeč, A., Zlatić, K., Banjanac, M., Radovanović, V., Starčević, K., Kralj, M., & Hranjec, M. (2024). Design, Synthesis and Biological Activity of Novel Methoxy- and Hydroxy-Substituted N-Benzimidazole-Derived Carboxamides. Molecules, 29(9), 2138. https://doi.org/10.3390/molecules29092138