Human Plasma Butyrylcholinesterase Hydrolyzes Atropine: Kinetic and Molecular Modeling Studies
Abstract
:1. Introduction
2. Results
2.1. Steady-State Hydrolysis of Racemic Atropine Sulfate
2.2. Irreversible Inhibition of BChE-Catalyzed Hydrolysis of Atropine and Butyrylthiocholine by Echothiophate
2.3. Molecular Docking Simulations
2.4. Molecular Dynamics Simulations and Free Energy Perturbations
3. Discussion
4. Materials and Methods
4.1. Chemicals and Enzyme
4.2. Enzyme Titration
4.3. Steady-State Hydrolysis of Racemic Atropine Sulfate
4.4. Irreversible Inhibition of BChE-Catalyzed Hydrolysis of Atropine and Butyrylthiocholine by Echothiophate
4.5. Molecular Modeling
4.5.1. BChE Modeling and Molecular Docking Simulation
4.5.2. Molecular Dynamics Simulations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
A | atropine |
BAR | Bennett Acceptance Ratio |
BChE | butyrylcholinesterase |
BTC | butyrylthiocholine |
CAC | catalytic active center |
CES | carboxylesterase |
ChE | cholinesterase |
FEP | free energy perturbation |
MD | molecular dynamics |
OP | organophosphate |
PAS | peripheral anionic site |
References
- Shim, K.H.; Kang, M.J.; Sharma, N.; An, S.S.A. Beauty of the Beast: Anticholinergic Tropane Alkaloids in Therapeutics. Nat. Prod. Bioprospect. 2022, 12, 33. [Google Scholar] [CrossRef] [PubMed]
- Kalser, S.C.; McLain, P.L. Atropine Metabolism in Man. Clin. Pharmacol. Ther. 1970, 11, 214–227. [Google Scholar] [CrossRef] [PubMed]
- Van der Meer, M.J.; Hundt, H.K.; Müller, F.O. The Metabolism of Atropine in Man. J. Pharm. Pharmacol. 1986, 38, 781–784. [Google Scholar] [CrossRef] [PubMed]
- Hatfield, M.J.; Umans, R.A.; Hyatt, J.L.; Edwards, C.C.; Wierdl, M.; Tsurkan, L.; Taylor, M.R.; Potter, P.M. Carboxylesterases: General Detoxifying Enzymes. Chem. Biol. Interact. 2016, 259, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zou, L.; Jin, Q.; Hou, J.; Ge, G.; Yang, L. Human Carboxylesterases: A Comprehensive Review. Acta Pharm. Sin. B 2018, 8, 699–712. [Google Scholar] [CrossRef] [PubMed]
- Masson, P.; Shaihutdinova, Z.; Lockridge, O. Drug and Pro-Drug Substrates and Pseudo-Substrates of Human Butyrylcholinesterase. Biochem. Pharmacol. 2023, 218, 115910. [Google Scholar] [CrossRef] [PubMed]
- Belinskaia, D.A.; Voronina, P.A.; Popova, P.I.; Voitenko, N.G.; Shmurak, V.I.; Vovk, M.A.; Baranova, T.I.; Batalova, A.A.; Korf, E.A.; Avdonin, P.V.; et al. Albumin Is a Component of the Esterase Status of Human Blood Plasma. Int. J. Mol. Sci. 2023, 24, 10383. [Google Scholar] [CrossRef] [PubMed]
- Zhan, C.-G.; Zheng, F.; Landry, D.W. Fundamental Reaction Mechanism for Cocaine Hydrolysis in Human Butyrylcholinesterase. J. Am. Chem. Soc. 2003, 125, 2462–2474. [Google Scholar] [CrossRef] [PubMed]
- Harrison, P.K.; Tattersall, J.E.H.; Gosden, E. The Presence of Atropinesterase Activity in Animal Plasma. Naunyn Schmiedeberg’s Arch. Pharmacol. 2006, 373, 230–236. [Google Scholar] [CrossRef]
- Van der Meer, M.J.; Hundt, H.K.; Müller, F.O. Inhibition of Atropine Metabolism by Organophosphate Pesticides. Hum. Toxicol. 1983, 2, 637–640. [Google Scholar] [CrossRef]
- Grădinaru, A.C. Different Drug-Processing Enzymes with Atropine- and Cocainesterase Activities Reported in Rabbits and Humans. Rabbit Genet. 2021, 11, 10–15. [Google Scholar]
- Fraser, P.J. Acceleration of the Enzymic Hydrolysis of Benzoylcholine. Br. J. Pharmacol. Chemother. 1956, 11, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Kamaric, L. Allosteric Reactions of Horse Serum Cholinesterase. Croat. Chem. Acta 1975, 47, 287–297. [Google Scholar]
- Nicolet, Y.; Lockridge, O.; Masson, P.; Fontecilla-Camps, J.C.; Nachon, F. Crystal Structure of Human Butyrylcholinesterase and of Its Complexes with Substrate and Products. J. Biol. Chem. 2003, 278, 41141–41147. [Google Scholar] [CrossRef] [PubMed]
- Froede, H.C.; Wilson, I.B. Direct Determination of Acetyl-Enzyme Intermediate in the Acetylcholinesterase-Catalyzed Hydrolysis of Acetylcholine and Acetylthiocholine. J. Biol. Chem. 1984, 259, 11010–11013. [Google Scholar] [CrossRef]
- Hamza, A.; Cho, H.; Tai, H.-H.; Zhan, C.-G. Molecular Dynamics Simulation of Cocaine Binding with Human Butyrylcholinesterase and Its Mutants. J. Phys. Chem. B 2005, 109, 4776–4782. [Google Scholar] [CrossRef] [PubMed]
- Breton, D.; Buret, D.; Clair, P.; Lafosse, M. Chiral Separation of Atropine by High-Performance Liquid Chromatography. J. Chromatogr. A 2005, 1088, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Masson, P.; Goldstein, B.N.; Debouzy, J.-C.; Froment, M.-T.; Lockridge, O.; Schopfer, L.M. Damped Oscillatory Hysteretic Behaviour of Butyrylcholinesterase with Benzoylcholine as Substrate. Eur. J. Biochem. 2004, 271, 220–234. [Google Scholar] [CrossRef] [PubMed]
- Masson, P.; Legrand, P.; Bartels, C.F.; Froment, M.T.; Schopfer, L.M.; Lockridge, O. Role of Aspartate 70 and Tryptophan 82 in Binding of Succinyldithiocholine to Human Butyrylcholinesterase. Biochemistry 1997, 36, 2266–2277. [Google Scholar] [CrossRef]
- Friboulet, A.; Rieger, F.; Goudou, D.; Amitai, G.; Taylor, P. Interaction of an Organophosphate with a Peripheral Site on Acetylcholinesterase. Biochemistry 1990, 29, 914–920. [Google Scholar] [CrossRef]
- Carletti, E.; Schopfer, L.M.; Colletier, J.-P.; Froment, M.-T.; Nachon, F.; Weik, M.; Lockridge, O.; Masson, P. Reaction of Cresyl Saligenin Phosphate, the Organophosphorus Agent Implicated in Aerotoxic Syndrome, with Human Cholinesterases: Mechanistic Studies Employing Kinetics, Mass Spectrometry, and X-Ray Structure Analysis. Chem. Res. Toxicol. 2011, 24, 797–808. [Google Scholar] [CrossRef] [PubMed]
- Masson, P.; Lushchekina, S.; Schopfer, L.M.; Lockridge, O. Effects of Viscosity and Osmotic Stress on the Reaction of Human Butyrylcholinesterase with Cresyl Saligenin Phosphate, a Toxicant Related to Aerotoxic Syndrome: Kinetic and Molecular Dynamics Studies. Biochem. J. 2013, 454, 387–399. [Google Scholar] [CrossRef] [PubMed]
- Garvey, E. Structural Mechanisms of Slow-Onset, Two-Step Enzyme Inhibition. CCB 2010, 4, 64–73. [Google Scholar] [CrossRef]
- Vogt, A.D.; Di Cera, E. Conformational Selection or Induced Fit? A Critical Appraisal of the Kinetic Mechanism. Biochemistry 2012, 51, 5894–5902. [Google Scholar] [CrossRef] [PubMed]
- Vauquelin, G.; Maes, D. Induced Fit versus Conformational Selection: From Rate Constants to Fluxes… and Back to Rate Constants. Pharmacol. Res. Perspect. 2021, 9, e00847. [Google Scholar] [CrossRef]
- Frieden, C. Slow Transitions and Hysteretic Behavior in Enzymes. Annu. Rev. Biochem. 1979, 48, 471–489. [Google Scholar] [CrossRef] [PubMed]
- Masson, P.; Lushchekina, S.V. Slow-Binding Inhibition of Cholinesterases, Pharmacological and Toxicological Relevance. Arch. Biochem. Biophys. 2016, 593, 60–68. [Google Scholar] [CrossRef]
- Masson, P. Time-Dependent Kinetic Complexities in Cholinesterase-Catalyzed Reactions. Biochemistry 2012, 77, 1147–1161. [Google Scholar] [CrossRef]
- Legler, P.M.; Boisvert, S.M.; Compton, J.R.; Millard, C.B. Development of Organophosphate Hydrolase Activity in a Bacterial Homolog of Human Cholinesterase. Front. Chem. 2014, 2, 46. [Google Scholar] [CrossRef]
- Rosenfeld, C.A.; Sultatos, L.G. Concentration-Dependent Kinetics of Acetylcholinesterase Inhibition by the Organophosphate Paraoxon. Toxicol. Sci. 2006, 90, 460–469. [Google Scholar] [CrossRef]
- Kaushik, R.; Rosenfeld, C.A.; Sultatos, L.G. Concentration-Dependent Interactions of the Organophosphates Chlorpyrifos Oxon and Methyl Paraoxon with Human Recombinant Acetylcholinesterase. Toxicol. Appl. Pharmacol. 2007, 221, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Sultatos, L.G.; Kaushik, R. Altered Binding of Thioflavin t to the Peripheral Anionic Site of Acetylcholinesterase after Phosphorylation of the Active Site by Chlorpyrifos Oxon or Dichlorvos. Toxicol. Appl. Pharmacol. 2008, 230, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 27–28, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; El Yazal, J.; Lockridge, O.; Schopfer, L.M.; Brimijoin, S.; Pang, Y.-P. Predicted Michaelis-Menten Complexes of Cocaine-Butyrylcholinesterase. J. Biol. Chem. 2001, 276, 9330–9336. [Google Scholar] [CrossRef]
- Huang, X.; Zheng, F.; Zhan, C.-G. Human Butyrylcholinesterase–Cocaine Binding Pathway and Free Energy Profiles by Molecular Dynamics and Potential of Mean Force Simulations. J. Phys. Chem. B 2011, 115, 11254–11260. [Google Scholar] [CrossRef] [PubMed]
- Hinderling, P.H.; Gundert-Remy, U.; Schmidlin, O. Integrated Pharmacokinetics and Pharmacodynamics of Atropine in Healthy Humans. I: Pharmacokinetics. J. Pharm. Sci. 1985, 74, 703–710. [Google Scholar] [CrossRef]
- Newmark, J. The Birth of Nerve Agent Warfare: Lessons from Syed Abbas Foroutan. Neurology 2004, 62, 1590–1596. [Google Scholar] [CrossRef]
- Schopfer, L.M.; David, E.; Hinrichs, S.H.; Lockridge, O. Human Butyrylcholinesterase in Cohn Fraction IV-4 Purified in a Single Chromatography Step on Hupresin. PLoS ONE 2023, 18, e0280380. [Google Scholar] [CrossRef]
- Leuzinger, W. The Number of Catalytic Sites in Acetylcholinesterase. Biochem. J. 1971, 123, 139–141. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Feather-Stone, R.M. A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Kalow, W.; Lindsay, H.A. A Comparison of Optical and Manometric Methods for the Assay of Human Serum Cholinesterase. Can. J. Biochem. Physiol. 1955, 33, 568–574. [Google Scholar] [CrossRef] [PubMed]
- Aldridge, W.N.; Reiner, E. Acetylcholinesterase. Two Types of Inhibition by an Organophosphorus Compound: One the Formation of Phosphorylated Enzyme and the Other Analogous to Inhibition by Substrate. Biochem. J. 1969, 115, 147–162. [Google Scholar] [CrossRef] [PubMed]
- Schwede, T. SWISS-MODEL: An Automated Protein Homology-Modeling Server. Nucleic Acids Res. 2003, 31, 3381–3385. [Google Scholar] [CrossRef] [PubMed]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J. Cheminform. 2012, 4, 17. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Jendele, L.; Krivak, R.; Skoda, P.; Novotny, M.; Hoksza, D. PrankWeb: A Web Server for Ligand Binding Site Prediction and Visualization. Nucleic Acids Res. 2019, 47, W345–W349. [Google Scholar] [CrossRef]
- Mir, S.A.; Dash, G.C.; Meher, R.K.; Mohanta, P.P.; Chopdar, K.S.; Mohapatra, P.K.; Baitharu, I.; Behera, A.K.; Raval, M.K.; Nayak, B. In Silico and In Vitro Evaluations of Fluorophoric Thiazolo-[2,3-b]Quinazolinones as Anti-Cancer Agents Targeting EGFR-TKD. Appl. Biochem. Biotechnol. 2022, 194, 4292–4318. [Google Scholar] [CrossRef]
- Ahmad Mir, S.; Paramita Mohanta, P.; Kumar Meher, R.; Baitharu, I.; Kumar Raval, M.; Kumar Behera, A.; Nayak, B. Structural Insights into Conformational Stability and Binding of Thiazolo-[2,3-b] Quinazolinone Derivatives with EGFR-TKD and in-Vitro Study. Saudi J. Biol. Sci. 2022, 29, 103478. [Google Scholar] [CrossRef] [PubMed]
- BIOVIA Discovery Studio Visualizer Software; Version 21.1.0.20298; Dassault Systèmes: Singapore, 2021.
- Berendsen, H.J.C.; van der Spoel, D.; van Drunen, R. GROMACS: A Message-Passing Parallel Molecular Dynamics Implementation. Comput. Phys. Commun. 1995, 91, 43–56. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef]
- Wang, J.; Wang, W.; Kollman, P.A.; Case, D.A. Automatic Atom Type and Bond Type Perception in Molecular Mechanical Calculations. J. Mol. Graph. Model. 2006, 25, 247–260. [Google Scholar] [CrossRef] [PubMed]
- Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J.L.; Dror, R.O.; Shaw, D.E. Improved Side-Chain Torsion Potentials for the Amber ff99SB Protein Force Field. Proteins 2010, 78, 1950–1958. [Google Scholar] [CrossRef] [PubMed]
- Sousa da Silva, A.W.; Vranken, W.F. ACPYPE—AnteChamber PYthon Parser interfacE. BMC Res. Notes 2012, 5, 367. [Google Scholar] [CrossRef] [PubMed]
- Kashefolgheta, S.; Verde, A.V. Developing Force Fields When Experimental Data Is Sparse: AMBER/GAFF-Compatible Parameters for Inorganic and Alkyl Oxoanions. Phys. Chem. Chem. Phys. 2017, 19, 20593–20607. [Google Scholar] [CrossRef] [PubMed]
- Ahmad Mir, S.; Meher, R.K.; Baitharu, I.; Nayak, B. Molecular Dynamic Simulation, Free Binding Energy Calculation of Thiazolo-[2,3-b]Quinazolinone Derivatives against EGFR-TKD and Their Anticancer Activity. Results Chem. 2022, 4, 100418. [Google Scholar] [CrossRef]
- Mir, S.A.; Mohanta, P.P.; Meher, R.K.; Baitharu, I.; Behera, A.K.; Raut, S.; Nayak, B. Bioinspired Thiazolo-[2,3-b] Quinazolin-6-One Derivatives as Potent Anti-Cancer Agents Targeting EGFR: Their Biological Evaluations and in Silico Assessment. Mol. Divers. 2023, 1–16. [Google Scholar] [CrossRef]
- Gutiérrez, M.; Vallejos, G.A.; Cortés, M.P.; Bustos, C. Bennett Acceptance Ratio Method to Calculate the Binding Free Energy of BACE1 Inhibitors: Theoretical Model and Design of New Ligands of the Enzyme. Chem. Biol. Drug Des. 2019, 93, 1117–1128. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukhametgalieva, A.; Mir, S.A.; Shaihutdinova, Z.; Masson, P. Human Plasma Butyrylcholinesterase Hydrolyzes Atropine: Kinetic and Molecular Modeling Studies. Molecules 2024, 29, 2140. https://doi.org/10.3390/molecules29092140
Mukhametgalieva A, Mir SA, Shaihutdinova Z, Masson P. Human Plasma Butyrylcholinesterase Hydrolyzes Atropine: Kinetic and Molecular Modeling Studies. Molecules. 2024; 29(9):2140. https://doi.org/10.3390/molecules29092140
Chicago/Turabian StyleMukhametgalieva, Aliya, Showkat Ahmad Mir, Zukhra Shaihutdinova, and Patrick Masson. 2024. "Human Plasma Butyrylcholinesterase Hydrolyzes Atropine: Kinetic and Molecular Modeling Studies" Molecules 29, no. 9: 2140. https://doi.org/10.3390/molecules29092140
APA StyleMukhametgalieva, A., Mir, S. A., Shaihutdinova, Z., & Masson, P. (2024). Human Plasma Butyrylcholinesterase Hydrolyzes Atropine: Kinetic and Molecular Modeling Studies. Molecules, 29(9), 2140. https://doi.org/10.3390/molecules29092140