Exploring the Influence of Cation and Halide Substitution in the Structure and Optical Properties of CH3NH3NiCl3 Perovskite
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Characterization
2.2. Thermal Behavior
2.3. Raman Spectroscopy
2.4. Optical Absorption
3. Materials and Methods
3.1. Synthesis
3.2. Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mariotti, S.; Köhnen, E.; Scheler, F.; Sveinbjörnsson, K.; Zimmermann, L.; Piot, M.; Yang, F.; Li, B.; Warby, J.; Musiienko, A.; et al. Interface Engineering for High-Performance, Triple-Halide Perovskite–Silicon Tandem Solar Cells. Science 2023, 381, 63–69. [Google Scholar] [CrossRef]
- Zhang, X.; Yin, J.; Nie, Z.; Zhang, Q.; Sui, N.; Chen, B.; Zhang, Y.; Qu, K.; Zhao, J.; Zhou, H. Lead-Free and Amorphous Organic-Inorganic Hybrid Materials for Photovoltaic Applications: Mesoscopic CH3NH3MnI3/TiO2 Heterojunction. RSC Adv. 2017, 7, 37419–37425. [Google Scholar] [CrossRef]
- Yin, J.; Shi, S.; Wei, J.; He, G.; Fan, L.; Guo, J.; Zhang, K.; Xu, W.; Yuan, C.; Wang, Y.; et al. Earth-Abundant and Environment Friendly Organic-Inorganic Hybrid Tetrachloroferrate Salt CH3NH3FeCl4: Structure, Adsorption Properties and Photoelectric Behavior. RSC Adv. 2018, 8, 19958–19963. [Google Scholar] [CrossRef]
- Zhou, H.; Liu, X.; He, G.; Fan, L.; Shi, S.; Wei, J.; Xu, W.; Yuan, C.; Chai, N.; Chen, B.; et al. Synthesis, Crystal Structure, UV-Vis Adsorption Properties, Photoelectric Behavior, and DFT Computational Study of All-Inorganic and Lead-Free Copper Halide Salt K2Cu2Cl6. ACS Omega 2018, 3, 14021–14026. [Google Scholar] [CrossRef]
- Yin, J.; Liu, X.; Fan, L.; Wei, J.; He, G.; Shi, S.; Guo, J.; Yuan, C.; Chai, N.; Wang, C.; et al. Synthesis, Crystal Structure, Absorption Properties, Photoelectric Behavior of Organic–Inorganic Hybrid (CH3NH3)2CoCl4. Appl. Organomet. Chem. 2019, 33, e4795. [Google Scholar] [CrossRef]
- Cortecchia, D.; Dewi, H.A.; Yin, J.; Bruno, A.; Chen, S.; Baikie, T.; Boix, P.P.; Grätzel, M.; Mhaisalkar, S.; Soci, C.; et al. Lead-Free MA2CuClxBr4−x Hybrid Perovskites. Inorg. Chem. 2016, 55, 1044–1052. [Google Scholar] [CrossRef]
- Castillo, R.; Cisterna, J.; Brito, I.; Conejeros, S.; Llanos, J. Structure and Properties of (CH3NH3)3Tl2Cl9: A Thallium-Based Hybrid Perovskite-Like Compound. Inorg. Chem. 2020, 59, 9471–9475. [Google Scholar] [CrossRef] [PubMed]
- Navarro, N.; Núñez, C.; Espinoza, D.; Gallardo, K.; Brito, I.; Castillo, R. Synthesis, Characterization, and Photoelectric and Electrochemical Behavior of (CH3NH3)2Zn1−xCoxBr4 Perovskites. Inorg. Chem. 2023, 62, 17046–17051. [Google Scholar] [CrossRef] [PubMed]
- Krishna, A.; Gottis, S.; Nazeeruddin, M.K.; Sauvage, F. Mixed Dimensional 2D/3D Hybrid Perovskite Absorbers: The Future of Perovskite Solar Cells? Adv. Funct. Mater. 2019, 29. [Google Scholar] [CrossRef]
- Wang, H.; Wang, X.; Chen, R.; Zhang, H.; Wang, X.; Wang, J.; Zhang, J.; Mu, L.; Wu, K.; Fan, F.; et al. Promoting Photocatalytic H2 Evolution on Organic-Inorganic Hybrid Perovskite Nanocrystals by Simultaneous Dual-Charge Transportation Modulation. ACS Energy Lett. 2019, 4, 40–47. [Google Scholar] [CrossRef]
- Zou, C.; Zhang, C.; Kim, Y.H.; Lin, L.Y.; Luther, J.M. The Path to Enlightenment: Progress and Opportunities in High Efficiency Halide Perovskite Light-Emitting Devices. ACS Photonics 2021, 8, 386–404. [Google Scholar] [CrossRef]
- Liang, J.; Du, Y.; Wang, K.; Ren, A.; Dong, X.; Zhang, C.; Tang, J.; Yan, Y.; Zhao, Y.S. Ultrahigh Color Rendering in RGB Perovskite Micro-Light-Emitting Diode Arrays with Resonance-Enhanced Photon Recycling for Next Generation Displays. Adv. Opt. Mater. 2022, 10, 2101642. [Google Scholar] [CrossRef]
- Shin, Y.S.; Yoon, Y.J.; Heo, J.; Song, S.; Kim, J.W.; Park, S.Y.; Cho, H.W.; Kim, G.-H.; Kim, J.Y. Functionalized PFN-X (X = Cl, Br, or I) for Balanced Charge Carriers of Highly Efficient Blue Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2020, 12, 35740–35747. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.; Sandanayaka, A.S.D.; Zhao, C.; Matsushima, T.; Zhang, D.; Fujihara, T.; Adachi, C. Stable Room-Temperature Continuous-Wave Lasing in Quasi-2D Perovskite Films. Nature 2020, 585, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Xiao, G.; Liu, Z.; Sui, L.; Yuan, K.; Ma, Z.; Zou, B. Harvesting Cool Daylight in Hybrid Organic–Inorganic Halides Microtubules through the Reservation of Pressure-Induced Emission. Adv. Mater. 2021, 33, 2100323. [Google Scholar] [CrossRef] [PubMed]
- John, R.A.; Yantara, N.; Ng, Y.F.; Narasimman, G.; Mosconi, E.; Meggiolaro, D.; Kulkarni, M.R.; Gopalakrishnan, P.K.; Nguyen, C.A.; De Angelis, F.; et al. Ionotronic Halide Perovskite Drift-Diffusive Synapses for Low-Power Neuromorphic Computation. Adv. Mater. 2018, 30, 1805454. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Kim, S.H.; Lee, D.; Lee, J.-S. Designing Zero-Dimensional Dimer-Type All-Inorganic Perovskites for Ultra-Fast Switching Memory. Nat. Commun. 2021, 12, 3527. [Google Scholar] [CrossRef] [PubMed]
- Lv, F.; Gao, C.; Zhou, H.-A.; Zhang, P.; Mi, K.; Liu, X. Nonvolatile Bipolar Resistive Switching Behavior in the Perovskite-like (CH3NH3)2FeCl4. ACS Appl. Mater. Interfaces 2016, 8, 18985–18990. [Google Scholar] [CrossRef]
- Babu, R.; Vardhaman, A.K.; Dhavale, V.M.; Giribabu, L.; Singh, S.P. MA2CoBr4: Lead-Free Cobalt-Based Perovskite for Electrochemical Conversion of Water to Oxygen. Chem. Commun. 2019, 55, 6779–6782. [Google Scholar] [CrossRef]
- Cheng, X.; Jing, L.; Yuan, Y.; Du, S.; Yao, Q.; Zhang, J.; Ding, J.; Zhou, T. Centimeter-Size Square 2D Layered Pb-Free Hybrid Perovskite Single Crystal (CH3NH3)2MnCl4 for Red Photoluminescence. CrystEngComm 2019, 21, 4085–4091. [Google Scholar] [CrossRef]
- Tao, S.; Chen, Y.; Cui, J.; Zhou, H.; Yu, N.; Gao, X.; Cui, S.; Yuan, C.; Liu, M.; Wang, M.; et al. Organic–Inorganic Hybrid (CH3NH3)2FeCuI4Cl2 and (CH3NH3)2InCuI6 for Ultraviolet Light Photodetectors. Chem. Commun. 2020, 56, 1875–1878. [Google Scholar] [CrossRef]
- Yu, N.; Tao, S.; Cui, J.; Zhou, H.; Chen, Y.; Cui, S.; Gao, X.; Yin, J.; Liu, X.; Zhang, X. Wide Band Gap Organic–Inorganic Hybrid (CH3NH3)2HgCl4 as Self-Driven Ultraviolet Photodetector and Photoconductor. Appl. Organomet. Chem. 2020, 34, e5982. [Google Scholar] [CrossRef]
- Lin, R.; Guo, Q.; Zhu, Q.; Zhu, Y.; Zheng, W.; Huang, F. All-Inorganic CsCu2I3 Single Crystal with High-PLQY (≈15.7%) Intrinsic White-Light Emission via Strongly Localized 1D Excitonic Recombination. Adv. Mater. 2019, 31, 1905079. [Google Scholar] [CrossRef]
- López, L.T.; Ramírez, D.; Jaramillo, F.; Calderón, J.A. Novel Hybrid Organic-Inorganic CH3NH3NiCl3 Active Material for High-Capacity and Sustainable Lithium-Ion Batteries. Electrochim. Acta 2020, 357, 136882. [Google Scholar] [CrossRef]
- Raw, A.D.; Ibers, J.A.; Poeppelmeier, K.R. Syntheses and Structure of Hydrothermally Prepared CsNiX3 (X=Cl, Br, I). J. Solid State Chem. 2012, 192, 34–37. [Google Scholar] [CrossRef]
- Ramirez, D.; Jaramillo, F.; Pérez-Walton, S.; Osorio-Guillén, J.M. New Nickel-Based Hybrid Organic/Inorganic Metal Halide for Photovoltaic Applications. J. Chem. Phys. 2018, 148, 244703. [Google Scholar] [CrossRef]
- Willett, R.D. Crystal Structure of CH3NH3NiCl3. J. Chem. Phys. 1966, 45, 3737–3740. [Google Scholar] [CrossRef]
- Minkiewicz, V.J.; Cox, D.E.; Shirane, G. The Magnetic Structures of RbNiCl3 and CsNiCl3. Solid State Commun. 1970, 8, 1001–1005. [Google Scholar] [CrossRef]
- Boston, C.R.; Brynestad, J.; Smith, G.P. Effect of Melting on the Electronic Spectra of Cs3NiCl5 and CsNiCl3. J. Chem. Phys. 1967, 47, 3193–3197. [Google Scholar] [CrossRef]
- Abdelmageed, G.; Mackeen, C.; Hellier, K.; Jewell, L.; Seymour, L.; Tingwald, M.; Bridges, F.; Zhang, J.Z.; Carter, S. Effect of Temperature on Light Induced Degradation in Methylammonium Lead Iodide Perovskite Thin Films and Solar Cells. Sol. Energy Mater. Sol. Cells 2018, 174, 566–571. [Google Scholar] [CrossRef]
- Zhang, D.; Li, D.; Hu, Y.; Mei, A.; Han, H. Degradation Pathways in Perovskite Solar Cells and How to Meet International Standards. Commun. Mater. 2022, 3, 58. [Google Scholar] [CrossRef]
- Ibaceta-Jaña, J.; Muydinov, R.; Rosado, P.; Mirhosseini, H.; Chugh, M.; Nazarenko, O.; Dirin, D.N.; Heinrich, D.; Wagner, M.R.; Kühne, T.D.; et al. Vibrational Dynamics in Lead Halide Hybrid Perovskites Investigated by Raman Spectroscopy. Phys. Chem. Chem. Phys. 2020, 22, 5604–5614. [Google Scholar] [CrossRef]
- Musfeldt, J.L.; Poirier, M.; Jandl, S.; Renard, J.-P. Raman Scattering and Microwave Dielectric Studies of the Structural Phase Transition in the Quasi-One-Dimensional Ferromagnet (CH3)4NNiBr3. J. Chem. Phys. 1994, 100, 7677–7686. [Google Scholar] [CrossRef]
- Premkumar, S.; Kundu, K.; Umapathy, S. Impact of Cesium in Methylammonium Lead Bromide Perovskites: Insights into the Microstructures, Stability and Photophysical Properties. Nanoscale 2019, 11, 10292–10305. [Google Scholar] [CrossRef]
- Leguy, A.M.A.; Goñi, A.R.; Frost, J.M.; Skelton, J.; Brivio, F.; Rodríguez-Martínez, X.; Weber, O.J.; Pallipurath, A.; Alonso, M.I.; Campoy-Quiles, M.; et al. Dynamic Disorder, Phonon Lifetimes, and the Assignment of Modes to the Vibrational Spectra of Methylammonium Lead Halide Perovskites. Phys. Chem. Chem. Phys. 2016, 18, 27051–27066. [Google Scholar] [CrossRef]
- Jandl, S.; Banville, M.; Xu, Q.F.; Ait-Ouali, A. Raman and Infrared Studies of the One-Dimensional Antiferromagnet CsNiCl3. Phys. Rev. B 1992, 46, 11585–11590. [Google Scholar] [CrossRef]
- Akiyama, K.; Morioka, Y.; Nakagawa, I. Far Infrared Reflection Spectra and Lattice Vibrations of CsNiCl3 Crystal. Bull. Chem. Soc. Jpn. 1978, 51, 103–107. [Google Scholar] [CrossRef]
- Breitling, W.; Lehmann, W.; Srinivasan, T.P.; Weber, R. One Phonon Raman Scattering of Hexagonal ABX3-Compounds. Solid State Commun. 1976, 20, 525–526. [Google Scholar] [CrossRef]
- Lockwood, D.J.; Bertrand, D.; Carrara, P.; Mischler, G.; Billerey, D.; Terrier, C. Raman Spectrum of NiCl2. J. Phys. C Solid State Phys. 1979, 12, 3615–3620. [Google Scholar] [CrossRef]
- Abdel-Aal, S.K.; Bortel, G.; Pekker; Kamarás, K.; Faigel, G.; Abdel-Rahman, A.S. Structure Investigation and Vibrational Spectroscopy of Two Prospective Hybrid Perovskites Based on Mn and Co. J. Phys. Chem. Solids 2022, 161, 110400. [Google Scholar] [CrossRef]
- Srinivasan, T.K.K.; Mylrajan, M.; Rao, J.B.S. Vibrational Study of (CH3NH3)2ZnCl4 and (CH3NH3)2ZnBr4. J. Raman Spectrosc. 1992, 23, 21–27. [Google Scholar] [CrossRef]
- Lee, A.Y.; Park, D.Y.; Jeong, M.S. Correlational Study of Halogen Tuning Effect in Hybrid Perovskite Single Crystals with Raman Scattering, X-Ray Diffraction, and Absorption Spectroscopy. J. Alloys Compd. 2018, 738, 239–245. [Google Scholar] [CrossRef]
- Naqvi, F.H.; Junaid, S.B.; Ko, J.H. Influence of Halides on Elastic and Vibrational Properties of Mixed-Halide Perovskite Systems Studied by Brillouin and Raman Scattering. Materials 2023, 16, 3986. [Google Scholar] [CrossRef]
- González, E.; Rodrigue-Witchel, A.; Reber, C. Absorption Spectroscopy of Octahedral Nickel(II) Complexes: A Case Study of Interactions between Multiple Electronic Excited States. Coord. Chem. Rev. 2007, 251, 351–363. [Google Scholar] [CrossRef]
- Ackerman, J.; Holt, E.M.; Holt, S.L. The Physical Properties of Linear Chain Systems. I. The Optical Spectra of [(CH3)4N]NiCl3, Cs(Mg,Ni)Cl3, CsNiCl3, RbNiCl3 and CsNiBr3. J. Solid State Chem. 1974, 9, 279–296. [Google Scholar] [CrossRef]
- Brik, M.G.; Avram, N.M.; Avram, C.N. Comparative Crystal Field Study of Ni2+ Energy Levels in NiCl2, NiBr2, and NiI2 Crystals. Phys. B Condens. Matter 2006, 371, 43–49. [Google Scholar] [CrossRef]
- Brik, M.G. Comparative First-Principles Study of the Ni2+ Absorption Spectra and Covalence Effects in Isostructural Crystals NiCl2, NiBr2 and NiI2. Phys. B Condens. Matter 2007, 387, 69–76. [Google Scholar] [CrossRef]
- Jain, A.; Ong, S.P.; Hautier, G.; Chen, W.; Richards, W.D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; et al. Commentary: The Materials Project: A Materials Genome Approach to Accelerating Materials Innovation. APL Mater. 2013, 1, 011002. [Google Scholar] [CrossRef]
- Munro, J.M.; Latimer, K.; Horton, M.K.; Dwaraknath, S.; Persson, K.A. An Improved Symmetry-Based Approach to Reciprocal Space Path Selection in Band Structure Calculations. NPJ Comput. Mater. 2020, 6, 112. [Google Scholar] [CrossRef]
- Xiao, H.; Tahir-Kheli, J.; Goddard, W.A. Accurate Band Gaps for Semiconductors from Density Functional Theory. J. Phys. Chem. Lett. 2011, 2, 212–217. [Google Scholar] [CrossRef]
- Petříček, V.; Palatinus, L.; Plášil, J.; Dušek, M. Jana2020—A New Version of the Crystallographic Computing System Jana. Z. Krist. Cryst. Mater. 2023, 238, 271–282. [Google Scholar] [CrossRef]
Sample | (MA)NiCl3, Orthorombic Cmcm | CsNiCl3, Hexagonal P63/mmc | |||||
---|---|---|---|---|---|---|---|
a/Å | b/Å | c/Å | V/Å3 | a/Å | c/Å | V/Å3 | |
(MA)NiCl3 | 6.980 (2) | 14.796 (6) | 5.953 (2) | 614.8 (4) | - | - | - |
(MA)0.8Cs0.2NiCl3 | 6.978 (3) | 14.774 (7) | 5.950 (3) | 613.5 (5) | 7.183 (2) | 5.938 (3) | 265.3 (1) |
(MA)0.6Cs0.4NiCl3 | 6.982 (6) | 14.772 (9) | 5.917 (7) | 610.2 (9) | 7.177 (2) | 5.942 (3) | 265.1 (2) |
(MA)0.4Cs0.6NiCl3 | 6.983 (2) | 14.760 (4) | 5.925 (2) | 610.7 (3) | 7.178 (2) | 5.940 (1) | 265.0 (1) |
(MA)0.2Cs0.8NiCl3 | 6.963 (2) | 14.742 (5) | 5.931 (2) | 608.8 (3) | 7.173 (2) | 5.924 (2) | 264.0 (1) |
CsNiCl3 | - | - | - | - | 7.176 (1) | 5.917 (2) | 263.9 (1) |
(MA)NiCl3 | (MA)0.8Cs0.2 | (MA)0.6Cs0.4 | (MA)0.4Cs0.6 | (MA)0.2Cs0.8 | CsNiCl3 | |
---|---|---|---|---|---|---|
ν1 | 102.08 | 100.08 | 90.54 | - | - | - |
ν2 | 138.08 | 135.08 | 136.54 | 134.54 | 133.54 | 132.08 |
ν3 | 194.08 | 191.08 | 190.54 | 188.54 | 187.54 | 186.08 |
ν4 | 264.08 | 262.08 | 262.54 | 261.54 | 260.54 | 258.08 |
ν5 | 981.08 | 980.08 | 987.54 | 986.54 | 979.54 | - |
ν6 | 1252.08 | 1248.08 | 1256.54 | - | - | - |
ν7 | 1421.08 | 1423.08 | 1418.54 | 1425.54 | 1422.54 | - |
ν8 | 1468.08 | 1470.08 | 1468.54 | 1464.54 | - | - |
ν9 | 1582.08 | ν1582.08 | 1583.54 | 1579.54 | - | - |
ν10 | 2819.08 | 2818.08 | 2817.54 | 2823.54 | 2812.54 | - |
ν11 | 2896.08 | 2894.08 | 2901.54 | 2898.54 | 2891.54 | - |
ν12 | 2974.08 | 2973.08 | 2973.54 | 2973.54 | 2973.54 | - |
ν13 | 3035.08 | 3036.08 | 3034.54 | 3036.54 | 3042.54 | - |
ν14 | 3132.08 | 3132.08 | 3129.54 | 3130.54 | 3130.54 | - |
ν15 | 3191.08 | 3191.08 | 3191.54 | 3189.54 | 3190.54 | - |
CH3NH3NiCl3 | CH3NH3NiBrCl2 | CsNiCl3 | |
---|---|---|---|
3T2g | 1493 | 1482 | 1453 |
3T1g | 885 | 905 | 884 |
1Eg | 793 | 822 | 793 |
1A1g | 541 | 555 | 537 |
3T2g | 464 | 476 | 465 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navarro, N.; Nelson, R.; Gallardo, K.; Castillo, R. Exploring the Influence of Cation and Halide Substitution in the Structure and Optical Properties of CH3NH3NiCl3 Perovskite. Molecules 2024, 29, 2141. https://doi.org/10.3390/molecules29092141
Navarro N, Nelson R, Gallardo K, Castillo R. Exploring the Influence of Cation and Halide Substitution in the Structure and Optical Properties of CH3NH3NiCl3 Perovskite. Molecules. 2024; 29(9):2141. https://doi.org/10.3390/molecules29092141
Chicago/Turabian StyleNavarro, Natalí, Ronald Nelson, Karem Gallardo, and Rodrigo Castillo. 2024. "Exploring the Influence of Cation and Halide Substitution in the Structure and Optical Properties of CH3NH3NiCl3 Perovskite" Molecules 29, no. 9: 2141. https://doi.org/10.3390/molecules29092141
APA StyleNavarro, N., Nelson, R., Gallardo, K., & Castillo, R. (2024). Exploring the Influence of Cation and Halide Substitution in the Structure and Optical Properties of CH3NH3NiCl3 Perovskite. Molecules, 29(9), 2141. https://doi.org/10.3390/molecules29092141