Gold(III) Ions Sorption on Amberlite XAD-16 Impregnated with TBP After Leaching Smart Card Chips
Abstract
:1. Introduction
2. Results
2.1. Characterization of the Impregnated Sorbent
2.1.1. Scanning Electron Microscopy Analysis (SEM)
2.1.2. Nitrogen Adsorption/Desorption Measurements
2.1.3. Fourier Transform Infrared Spectroscopy—Attenuated Total Reflectance (FTIR-ATR)
2.2. Influence of Sorbent Mass, HCl Concentration, and Contact Time
2.3. Kinetic and Isotherm Studies
2.4. Thermodynamic Studies
2.5. Desorption Studies
2.6. Sorption–Desorption Studies in the Real Leaching Solution
3. Materials and Methods
3.1. Matrix
3.2. Extractant
3.3. Precious Metals Solutions
3.4. Method of Impregnation
3.5. Analysis of the Impregnated Sorbent
3.6. Influence of Sorbent Mass, HCl Concentration, and Contact Time
3.7. Isotherms
3.8. Thermodynamics
3.9. Desorption Studies
3.10. Sorption–Desorption Studies in the Real Leaching Solution
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roser, M. Technology over the Long Run: Zoom out to See How Dramatically the World Can Change Within a Lifetime—Our World in Data. Available online: https://ourworldindata.org/technology-long-run#article-licence (accessed on 27 November 2024).
- Adrian, S.; Drisse, M.B.; Cheng, Y.; Devia, L.; Deubzer, O.; Goldizen, F.; Gorman, J.; Herat, S.; Honda, S.; Iattoni, G.; et al. The Global E-Waste Monitor: Quantities, Flows, and the Circular Economy Potential; United Nations University (UNU)/United Nations Institute for Training and Research (UNITAR)–co-hosted SCYCLE Programme: Bonn, Germany; International Telecommunication Union (ITU): Geneva, Switzerland; International Solid Waste Association (ISWA): Rotterdam, The Netherlands, 2020; ISBN 9789280891140. [Google Scholar]
- Baldé, C.P.; Kuehr, R.; Yamamoto, T.; McDonald, R.; Althaf, S.; Bel, G.; Deubzer, O.; Fernandez-Cubillo, E.; Forti, V.; Gray, V.; et al. The Global E-Waste Monitor 2024; United Nations Institute for Training and Research (UNITAR)–co-hosted SCYCLE Programme: Bonn, Germany; International Telecommunication Union (ITU): Geneva, Switzerland, 2024; ISBN 9789261387815. [Google Scholar]
- Schmidbaur, H.; Cihonski, J.L. Noble Metals (Chemistry). In Encyclopedia of Physical Science and Technology, 3rd ed.; Meyers, R.A., Ed.; Academic Press: Cambridge, MA, USA, 2001; Volume 18, pp. 463–492. [Google Scholar]
- Leng, X. Smart Card Applications and Security. Inf. Secur. Tech. Rep. 2009, 14, 36–45. [Google Scholar] [CrossRef]
- Manikandan, S.; Inbakandan, D.; Valli Nachiyar, C.; Karthick Raja Namasivayam, S. Towards Sustainable Metal Recovery from E-Waste: A Mini Review. Sustain. Chem. Environ. 2023, 2, 100001. [Google Scholar] [CrossRef]
- Narzari, R.; Gogoi, B.; Geed, S.R. Pyrometallurgy: Urban Mining and Its Future Implications. In Global E-Waste Management Strategies and Future Implications; Elsevier: Amsterdam, The Netherlands, 2023; pp. 125–142. [Google Scholar]
- Chen, Y.; Qiao, Q.; Cao, J.; Li, H.; Bian, Z. Precious Metal Recovery. Joule 2021, 5, 3097–3115. [Google Scholar] [CrossRef]
- Jaiswal, M.; Srivastava, S. A Review on Sustainable Approach of Bioleaching of Precious Metals from Electronic Wastes. J. Hazard. Mater. Adv. 2024, 14, 100435. [Google Scholar] [CrossRef]
- Pradhan, J.K.; Kumar, S. Metals Bioleaching from Electronic Waste by Chromobacterium Violaceum and Pseudomonads sp. Waste Manag. Res. J. Sustain. Circ. Econ. 2012, 30, 1151–1159. [Google Scholar] [CrossRef]
- Kumar, A.; Saini, H.S.; Kumar, S. Bioleaching of Gold and Silver from Waste Printed Circuit Boards by Pseudomonas Balearica SAE1 Isolated from an E-Waste Recycling Facility. Curr. Microbiol. 2018, 75, 194–201. [Google Scholar] [CrossRef]
- Cui, J.; Zhang, L. Metallurgical Recovery of Metals from Electronic Waste: A Review. J. Hazard. Mater. 2008, 158, 228–256. [Google Scholar] [CrossRef]
- Kasper, A.C.; Veit, H.M. Gold Recovery from Printed Circuit Boards of Mobile Phones Scraps Using a Leaching Solution Alternative to Cyanide. Braz. J. Chem. Eng. 2018, 35, 931–942. [Google Scholar] [CrossRef]
- Dehchenari, M.A.; Hosseinpoor, S.; Aali, R.; Salighehdar Iran, N.; Mehdipour, M. Simple Method for Extracting Gold from Electrical and Electronic Wastes Using Hydrometallurgical Process. Environ. Health Eng. Manag. 2016, 4, 55–58. [Google Scholar] [CrossRef]
- Cieszynska, A.; Wisniewski, M. Extraction of Palladium(II) from Chloride Solutions with Cyphos®IL 101/Toluene Mixtures as Novel Extractant. Sep. Purif. Technol. 2010, 73, 202–207. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Riaño, S.; Aktan, E.; Deferm, C.; Fransaer, J.; Binnemans, K. Solvometallurgical Recovery of Platinum Group Metals from Spent Automotive Catalysts. ACS Sustain. Chem. Eng. 2021, 9, 337–350. [Google Scholar] [CrossRef]
- Ilyas, S.; Srivastava, R.R.; Kim, H.; Cheema, H.A. Hydrometallurgical Recycling of Palladium and Platinum from Exhausted Diesel Oxidation Catalysts. Sep. Purif. Technol. 2020, 248, 117029. [Google Scholar] [CrossRef]
- Kabay, N.; Cortina, J.L.; Trochimczuk, A.; Streat, M. Solvent-Impregnated Resins (SIRs)—Methods of Preparation and Their Applications. React. Funct. Polym. 2010, 70, 484–496. [Google Scholar] [CrossRef]
- Tamang, A.M.; Singh, N.; Chandraker, S.K.; Ghosh, M.K. Solvent Impregnated Resin a Potential Alternative Material for Separation Dyes, Metal and Phenolic Compounds: A Review. Curr. Res. Green Sustain. Chem. 2022, 5, 100232. [Google Scholar] [CrossRef]
- Yamada, M.; Gandhi, M.R.; Kondo, Y.; Haga, K.; Shibayama, A.; Hamada, F. Selective Sorption of Palladium by Thiocarbamoyl-Substituted Thiacalix[n]Arene Derivatives Immobilized on Amberlite Resin: Application to Leach Liquors of Automotive Catalysts. RSC Adv. 2015, 5, 60506–60517. [Google Scholar] [CrossRef]
- Navarro, R.; Saucedo, I.; Gonzalez, C.; Guibal, E. Amberlite XAD-7 Impregnated with Cyphos IL-101 (Tetraalkylphosphonium Ionic Liquid) for Pd(II) Recovery from HCl Solutions. Chem. Eng. J. 2012, 185–186, 226–235. [Google Scholar] [CrossRef]
- Chen, B.; Bao, S.; Zhang, Y.; Zheng, R. A High-Efficiency Approach for the Synthesis of N235-Impregnated Resins and the Application in Enhanced Adsorption and Separation of Vanadium(V). Minerals 2018, 8, 358. [Google Scholar] [CrossRef]
- Sadeghi, N.; Alamdari, E.K. Selective Extraction of Gold (III) from Hydrochloric Acid–Chlorine Gas Leach Solutions of Copper Anode Slime by Tri-Butyl Phosphate (TBP). Trans. Nonferrous Met. Soc. China (Engl. Ed.) 2016, 26, 3258–3265. [Google Scholar] [CrossRef]
- Hubicki, Z.; Zinkowska, K.; Wójcik, G. A New Impregnated Adsorbent for Noble Metal Ion Sorption. Molecules 2023, 28, 6040. [Google Scholar] [CrossRef] [PubMed]
- Zinkowska, K.; Hubicki, Z.; Wójcik, G. Kinetic and Thermodynamic Studies of Precious Metals Sorption on Impregnated Lewatit VP OC 1026 from Chloride Solutions. ChemPhysChem 2024, 25, e202300817. [Google Scholar] [CrossRef]
- Zinkowska, K.; Hubicki, Z.; Wójcik, G. Impregnated Polymeric Sorbent for the Removal of Noble Metal Ions from Model Chloride Solutions and the RAM Module. Materials 2024, 17, 1234. [Google Scholar] [CrossRef] [PubMed]
- Gagliardi, F.M.; Cashion, J.D. Solvation of Gold and Rare Earths by Tributyl Phosphate. Hyperfine Interact. 2012, 207, 13–17. [Google Scholar] [CrossRef]
- Torrinha, M.B.Q.L.F.; Bacelo, H.A.M.; Santos, S.C.R.; Boaventura, R.A.R.; Botelho, C.M.S. Uptake and Recovery of Gold from Simulated Hydrometallurgical Liquors by Adsorption on Pine Bark Tannin Resin. Water 2020, 12, 3456. [Google Scholar] [CrossRef]
- Ramesh, A.; Hasegawa, H.; Sugimoto, W.; Maki, T.; Ueda, K. Adsorption of Gold(III), Platinum(IV) and Palladium(II) onto Glycine Modified Crosslinked Chitosan Resin. Bioresour. Technol. 2008, 99, 3801–3809. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhao, J.; Wang, S.; Zhang, L.; Zhang, B. Efficient and Selective Adsorption of Gold Ions from Wastewater with Polyaniline Modified by Trimethyl Phosphate: Adsorption Mechanism and Application. Polymers 2019, 11, 652. [Google Scholar] [CrossRef]
- Martínez-Peñuñuri, R.; Parga-Torres, J.R.; Valenzuela-García, J.L.; Díaz-Galaviz, H.J.; González-Zamarripa, G.; García-Alegría, A.M. Thermodynamic and Kinetic Aspects of Gold Adsorption in Micrometric Activated Carbon and the Impact of Their Loss in Adsorption, Desorption, and Reactivation Plants. Materials 2023, 16, 4961. [Google Scholar] [CrossRef] [PubMed]
- Jafari, S.; Wilson, B.P.; Hakalahti, M.; Tammelin, T.; Kontturi, E.; Lundström, M.; Sillanpää, M. Recovery of Gold from Chloride Solution by TEMPO-Oxidized Cellulose Nanofiber Adsorbent. Sustainability 2019, 11, 1406. [Google Scholar] [CrossRef]
- Morcali, M.H.; Zeytuncu, B.; Ozlem, E.; Aktas, S. Studies of Gold Adsorption from Chloride Media. Mater. Res. 2015, 18, 660–667. [Google Scholar] [CrossRef]
- Sadeghi, N.; Alamdari, E.K.; Fatmehsari, D.; Darvishi, D.H.; Alamdari, A.K.; Kafash Rafsanjani, A.B. Solvent Extraction of Gold from Chloride Solution by Tri-Butyl Phosphate (TBP). In Proceedings of the 23rd International Mining Congress and Exhibition of Turkey, Antalya, Turkey, 16–19 April 2013; Volume 23, pp. 1353–1359. [Google Scholar]
- Lin, T.-L.; Lien, H.-L. Effective and Selective Recovery of Precious Metals by Thiourea Modified Magnetic Nanoparticles. Int. J. Mol. Sci. 2013, 14, 9834–9847. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Adhikari, C.R.; Kawakita, H.; Ohto, K.; Inoue, K.; Harada, H. Selective Recovery of Precious Metals by Persimmon Waste Chemically Modified with Dimethylamine. Bioresour. Technol. 2009, 100, 4083–4089. [Google Scholar] [CrossRef] [PubMed]
Kinetic Model | Equation | Eq. Number |
---|---|---|
Pseudo-first-order | , where qe—the equilibrium adsorption capacity (mg/g); qt—the adsorption capacity at a specific time (mg/g); k1—the pseudo-first order speed constant (min−1); t—the contact time (min) | (3) |
Pseudo-second-order | , where qe—the equilibrium absorption capacity (mg/g); qt—the adsorption capacity at a specific time (mg/g); k2—the pseudo-second order speed constant (g/mg‧min); t—the contact time (min) | (4) |
Intra-particle diffusion | , where qt—the adsorption capacity at a specific time (mg/g); kip—the intra-particle diffusion rate constant (mg/g·min0.5); t—the contact time; C—the intercept (mg/g) | (5) |
Dunwald–Wagner | , where qe—the equilibrium absorption capacity (mg/g); qt—the adsorption capacity at a specific time (mg/g); k—the diffusion rate constant (min−1); t—the contact time (min); | (6) |
Amberlite XAD-16—TBP (1:2) | |||||||
PFO | PSO | Experimental | |||||
HCl (M) | k1 (1/min) | qe (mg/g) | R2 | k2 (g/mg‧min) | qe (mg/g) | R2 | qt (mg/g) |
0.1 | 0.0073 | 0.98 | 0.6232 | 0.0221 | 2.23 | 0.9995 | 2.25 |
1 | 0.0140 | 0.95 | 0.8394 | 0.0233 | 2.38 | 0.9991 | 2.34 |
3 | 0.0089 | 0.79 | 0.6262 | 0.0322 | 2.39 | 0.9994 | 2.37 |
6 | 0.0079 | 0.90 | 0.6746 | 0.0333 | 2.47 | 0.9998 | 2.46 |
Dunwald–Wagner | Intra-Particle Diffusion | ||||||
HCl (M) | K (min−1) | R2 | k (mg/g‧min0.5) | C (mg/g) | R2 | ||
0.1 | 0.0060 | 0.6626 | 0.0500 | 0.9352 | 0.4628 | ||
1 | 0.0127 | 0.8793 | 0.0503 | 1.0839 | 0.4038 | ||
3 | 0.0077 | 0.6666 | 0.0476 | 1.1653 | 0.3914 | ||
6 | 0.0068 | 0.7313 | 0.0475 | 1.2269 | 0.4062 | ||
Amberlite XAD-16—TBP (1:3) | |||||||
PFO | PSO | Experimental | |||||
HCl (M) | k1 (1/min) | qt (mg/g) | R2 | k2 (g/mg‧min) | qe (mg/g) | R2 | qt (mg/g) |
0.1 | 0.0113 | 1.12 | 0.8135 | 0.0271 | 2.30 | 0.9995 | 2.28 |
1 | 0.0104 | 1.34 | 0.9346 | 0.0275 | 2.38 | 0.9999 | 2.36 |
3 | 0.0073 | 0.95 | 0.8492 | 0.0384 | 2.41 | 0.9999 | 2.40 |
6 | 0.0135 | 1.23 | 0.9463 | 0.0481 | 2.49 | 0.9999 | 2.47 |
Dunwald–Wagner | Intra-Particle Diffusion | ||||||
HCl (M) | K (min−1) | R2 | k (mg/g‧min0.5) | C (mg/g) | R2 | ||
0.1 | 0.0099 | 0.8468 | 0.0513 | 0.9529 | 0.4810 | ||
1 | 0.0092 | 0.9665 | 0.0500 | 1.0263 | 0.5311 | ||
3 | 0.0065 | 0.8903 | 0.0379 | 1.3665 | 0.5321 | ||
6 | 0.0126 | 0.9550 | 0.0424 | 1.3627 | 0.5131 |
Isotherm Model | Equation | Parameter | Amberlite XAD-16—TBP (1:2) | Amberlite XAD-16—TBP (1:3) | |
---|---|---|---|---|---|
Langmuir | (7) | qm | 147.91 | 149.66 | |
KL | 0.1380 | 0.1434 | |||
(8) | RL | 0.0962 | 0.0936 | ||
R2 | 0.9995 | 0.9996 | |||
Freundlich | (9) | KF | 15.52 | 15.97 | |
n | 2.14 | 2.14 | |||
R2 | 0.7942 | 0.7941 | |||
Temkin | (10) | KT | 5.06 | 5.53 | |
bT | 17.86 | 18.05 | |||
R2 | 0.9292 | 0.9201 |
Equation | Thermodynamic Parameter | Temperature | Amberlite XAD-16—TBP (1:2) | Amberlite XAD-16—TBP (1:3) | |
---|---|---|---|---|---|
(11) | ΔG° [kJ/mol] | 293 K | −6.10 | −6.29 | |
303 K | −5.84 | −6.05 | |||
313 K | −5.72 | −5.96 | |||
(12) | ΔS° [J/mol] | −19.30 | −17.10 | ||
ΔH° [kJ/mol] | −11.74 | −11.29 |
Element | Au(III) | Cu(II) | Ni(II) | Ag(I) |
---|---|---|---|---|
Concentration (mg/L) | 4.93 | 3991.70 | 833.33 | 0.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zinkowska, K.; Hubicki, Z.; Wójcik, G. Gold(III) Ions Sorption on Amberlite XAD-16 Impregnated with TBP After Leaching Smart Card Chips. Molecules 2025, 30, 151. https://doi.org/10.3390/molecules30010151
Zinkowska K, Hubicki Z, Wójcik G. Gold(III) Ions Sorption on Amberlite XAD-16 Impregnated with TBP After Leaching Smart Card Chips. Molecules. 2025; 30(1):151. https://doi.org/10.3390/molecules30010151
Chicago/Turabian StyleZinkowska, Karolina, Zbigniew Hubicki, and Grzegorz Wójcik. 2025. "Gold(III) Ions Sorption on Amberlite XAD-16 Impregnated with TBP After Leaching Smart Card Chips" Molecules 30, no. 1: 151. https://doi.org/10.3390/molecules30010151
APA StyleZinkowska, K., Hubicki, Z., & Wójcik, G. (2025). Gold(III) Ions Sorption on Amberlite XAD-16 Impregnated with TBP After Leaching Smart Card Chips. Molecules, 30(1), 151. https://doi.org/10.3390/molecules30010151