A Novel Molecularly Imprinted Electrochemiluminescence Sensor Based on Mxene Quantum Dots for Selective Detection of Oseltamivir in Biological Samples
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characteristics of MQDs
2.2. Characterizations of Different Modified Electrodes
2.3. Electropolymerization Procedure
2.4. Optimization of Experimental Conditions
2.5. Possible ECL Mechanism
2.6. ECL Analytical Performance of the Constructed Sensor for Oseltamivir Detection
2.7. Stability and Selectivity of Oseltamivir Detection
2.8. Application for Oseltamivir Detection in Actual Samples
3. Materials and Methods
3.1. Materials
3.2. Apparatus
3.3. Preparation of MQDs
3.4. Preparation of the MIP-ECL/GCE
3.5. ECL Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bardsley-Elliot, A.; Noble, S. Oseltamivir. Drugs 1999, 58, 851–860. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Lin, J.; Zhang, X.; Yuan, S.; Zhang, C.; Yin, Y. Evaluation of the Clinical Effectiveness of Oseltamivir for Influenza Treatment in Children. Front Pharmacol. 2022, 13, 849545. [Google Scholar] [CrossRef] [PubMed]
- Dawood, F.S.; Kittikraisak, W.; Patel, A.B.; Hunt, D.R.; Tinoco, Y. Incidence of influenza during pregnancy and association with pregnancy and perinatal outcomes in three middle-income countries: A multisite prospective longitudinal cohort study. Lancet Infect. Dis. 2021, 21, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Waghorn, S.L.; Goa, K.L. Zanamivir. Drugs 1998, 55, 721–725. [Google Scholar] [CrossRef]
- Chen, Y.; Ke, M.; Xu, J.; Lin, C. Simulation of the Pharmacokinetics of Oseltamivir and Its Active Metabolite in Normal Populations and Patients with Hepatic Cirrhosis Using Physiologically Based Pharmacokinetic Modeling. AAPS PharmSciTech 2020, 21, 98. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Ok, Y.S.; Kim, K.H.; Kwon, E.E.; Tsang, Y.F. Occurrences and Removal of Pharmaceuticals and Personal Care Products (PPCPs) in Drinking Water and Water/Sewage Treatment Plants: A Review. Sci. Total Environ. 2017, 596–597, 303–320. [Google Scholar] [CrossRef]
- Kiguchi, O.; Sato, G.; Kobayashi, T. Source-Specific Sewage Pollution Detection in Urban River Waters Using Pharmaceuticals and Personal Care Products as Molecular Indicators. Environ. Sci. Pollut. R. 2016, 23, 22513–22529. [Google Scholar] [CrossRef]
- Fent, K.; Weston, A.A.; Caminada, D. Ecotoxicology of Human Pharmaceuticals. Aquat. Toxicol. 2006, 76, 122–159. [Google Scholar] [CrossRef]
- Hamza, S.M.; Rizk, N.M.H.; Matter, H.A.B. A New Ion Selective Electrode Method for Determination of Oseltamivir Phosphate (Tamiflu) and Its Pharmaceutical Applica-tions. Arab. J. Chem. 2017, 10, S236–S243. [Google Scholar] [CrossRef]
- Yanjane, S.A.; Ghurghure, S.M.; Matole, V.K. UV Spectrophotometric Analysis and Validation of Oseltamivir Phosphate in Pure and Pharmaceutical Formulation. Int. J. Curr. Pharm. Res. 2020, 12, 111–114. [Google Scholar] [CrossRef]
- Huang, M.F.; Lin, Y.R.; Chang, Y.T.; Shiue, Y.-L.; Liang, S.S. Reductive Amination Assistance for Quantification of Oseltamivir Phosphate and Oseltamivir Carboxylate by HPLC-MS/MS. J. Chromatogr. B 2018, 1087–1088, 23–28. [Google Scholar] [CrossRef]
- Sridharan, G.; Atchudan, R.; Magesh, V.; Arya, S.; Ganapathy, D.; Nallaswamy, D.; Sundramoorthy, A.K. Advanced electrocatalytic materials based biosensors for cancer cell detection—A review. Electroanalysis 2023, 35, e202300093. [Google Scholar] [CrossRef]
- Richter, M.M. Electrochemiluminescence (ECL). Chem. Rev. 2004, 104, 3003–3036. [Google Scholar] [CrossRef] [PubMed]
- Forster, R.J.; Bertoncello, P.; Keyes, T.E. Electrogenerated chemiluminescence. Annu. Rev. Anal. Chem. 2009, 2, 359–385. [Google Scholar] [CrossRef]
- Algar, W.R.; Massey, M.; Rees, K.; Higgins, R.; Krause, K.D.; Darwish, G.H.; Peveler, W.J.; Xiao, Z.; Tsai, H.Y.; Gupta, R.; et al. Photoluminescent Nanoparticles for Chemical and Biological Analysis and Imaging. Chem. Rev. 2021, 121, 9243–9358. [Google Scholar] [CrossRef]
- BelBruno, J.J. Molecularly imprinted polymers. Chem. Rev. 2019, 119, 94–119. [Google Scholar] [CrossRef]
- Uzun, L.; Turner, A.P.F. Molecularly imprinted polymer sensors: Realising their potential. Biosens. Bioelectron. 2016, 76, 131–144. [Google Scholar] [CrossRef]
- Ermiş, N.; Uzun, L.; Denizli, A. Preparation of molecularly imprinted electrochemical sensor for l-phenylalanine detection and its application. J. Electroanal. Chem. 2017, 807, 244–252. [Google Scholar] [CrossRef]
- Wang, D.; Jiang, S.; Liang, Y.; Wang, X.; Zhuang, X.; Tian, C.; Luan, F.; Chen, L. Selective detection of enrofloxacin in biological and environmental samples using a molecularly imprinted electrochemiluminescence sensor based on functionalized copper nanoclusters. Talanta 2022, 236, 122835. [Google Scholar] [CrossRef]
- Ho, D.H.; Choi, Y.Y.; Jo, S.B.; Myoung, J.M.; Cho, J.H. Sensing with MXenes: Progress and Prospects. Adv. Mater. 2021, 33, 2005846. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, Z.; Nie, Y.; Wang, P.; Ma, Q. A novel GSH-capping MXene QD-based ECL biosensor for the detection of miRNA221 in triple-negative breast cancer tumor. Chem. Eng. J. 2022, 448, 137636. [Google Scholar] [CrossRef]
- Li, M.; Li, Z.; Wang, P.; Ma, Q. A novel bimetallic MXene derivative QD-based ECL sensor for miRNA-27a-3p detection. Biosens. Bioelectron. 2023, 228, 115225. [Google Scholar] [CrossRef]
- Jian, A.; Wang, M.; Wang, L.; Zhang, B.; Zhang, X. One-pot synthesis of Cu2O/C@H-TiO2 nanocomposites with enhanced visible-light photocatalytic activity. RSC Adv. 2019, 9, 41540–41548. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Wang, Z.; Liu, N.; Sun, Y.; Han, D.; Liu, Y.; Niu, L.; Kang, Z. Author affiliations High-yield fabrication of Ti3C2Tx MXene quantum dots and their electrochemiluminescence behavior. Nanoscale 2018, 10, 14000–14004. [Google Scholar] [CrossRef]
- Song, L.; Zhu, S.; Tong, L.; Wang, W.; Ouyang, C.; Xu, F.; Wang, Y. MXene quantum dot rivet reinforced Ni-Co LDH for boosting electrochemical activity and cycling stability. Mater. Adv. 2021, 2, 5622–5628. [Google Scholar] [CrossRef]
Samples | Add (nM) | Founded (nM) | Recovery/% | RSD/% |
---|---|---|---|---|
FBS | 10 | 9.22 ± 0.41 | 92.21 | 5.70 |
1 | 1.04 ± 0.05 | 104.2 | 4.12 | |
0.1 | 0.102 ± 0.004 | 101.9 | 3.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, W.; Yan, S.; Xiao, C.; Shi, D.; Hua, Q.; Hao, X.; Zhang, W.; Zhuang, X. A Novel Molecularly Imprinted Electrochemiluminescence Sensor Based on Mxene Quantum Dots for Selective Detection of Oseltamivir in Biological Samples. Molecules 2025, 30, 152. https://doi.org/10.3390/molecules30010152
Guo W, Yan S, Xiao C, Shi D, Hua Q, Hao X, Zhang W, Zhuang X. A Novel Molecularly Imprinted Electrochemiluminescence Sensor Based on Mxene Quantum Dots for Selective Detection of Oseltamivir in Biological Samples. Molecules. 2025; 30(1):152. https://doi.org/10.3390/molecules30010152
Chicago/Turabian StyleGuo, Wei, Shiqiang Yan, Chaoqiang Xiao, Dayong Shi, Qing Hua, Xiaowen Hao, Wenjuan Zhang, and Xuming Zhuang. 2025. "A Novel Molecularly Imprinted Electrochemiluminescence Sensor Based on Mxene Quantum Dots for Selective Detection of Oseltamivir in Biological Samples" Molecules 30, no. 1: 152. https://doi.org/10.3390/molecules30010152
APA StyleGuo, W., Yan, S., Xiao, C., Shi, D., Hua, Q., Hao, X., Zhang, W., & Zhuang, X. (2025). A Novel Molecularly Imprinted Electrochemiluminescence Sensor Based on Mxene Quantum Dots for Selective Detection of Oseltamivir in Biological Samples. Molecules, 30(1), 152. https://doi.org/10.3390/molecules30010152