Thermally Induced Phenomena in Amorphous Nifedipine: The Correlation Between the Structural Relaxation and Crystal Growth Kinetics
Abstract
:1. Introduction
2. Results
2.1. Base Calorimetric Measurements
2.2. Quantification of the Thermo-Kinetic Behavior
2.3. Structural Relaxation Measurements
2.4. Raman and Optical Microscopy Measurements
3. Discussion
3.1. Structural Relaxation Kinetics
3.2. Cold Crystallization Kinetics
3.3. Correlation Between the Relaxation and Crystallization Kinetics
4. Materials and Methods
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pramadana, T.; Rachmawati, A.; Pusianawati, D. Comparison of nifedipine and isoxsuprine to cervical length in threatened preterm labor. Indones. J. Obstet. Gynecol. Sci. 2021, 4, 56–63. [Google Scholar] [CrossRef]
- Aryana, M.; Winata, I.; Setiawan, W. Magnesium sulphate and nifedipine in management of preterm premature rupture of membranes. Eur. J. Med. Health Sci. 2022, 4, 87–89. [Google Scholar] [CrossRef]
- Mohammadi, E.; Teymoordash, S.; Norouzi, A.; Norouzi, F.; Norouzi, H. Comparison of the effect of nifedipine alone and the combination of nifedipine and sildenafil in delaying preterm labor: A randomized clinical trial. J. Fam. Reprod. Health 2021, 15, 112–117. [Google Scholar] [CrossRef]
- Winden, T.; Nijman, T.; Kleinrouweler, C.; Salim, R.; Kashanian, M.; Al-Omari, W.R.; Pajkrt, E.; Mol, B.W.; Oudijk, M.A.; Roos, C. Tocolysis with nifedipine versus atosiban and perinatal outcome: An individual participant data meta-analysis. BMC Pregnancy Childbirth 2022, 22, 567. [Google Scholar] [CrossRef]
- George, R.; Thomas, C.; Joy, C.; Varghese, B.; Undela, K.; Adela, R. Comparative efficacy and safety of oral nifedipine with other antihypertensive medications in the management of hypertensive disorders of pregnancy: A systematic review and meta-analysis of randomized controlled trials. J. Hypertens. 2022, 40, 1876–1886. [Google Scholar] [CrossRef]
- Salman, S.; Habib, D.; Atef, M.; Abbas, A. The effect of oral nifedipine versus parenteral magnesium sulfate and ritodrine for tocolysis in patients with threatened preterm labor: A randomized controlled trial. Open J. Obstet. Gynecol. 2019, 9, 1142–1150. [Google Scholar] [CrossRef]
- Nivethana, K.B.; Senthil, P.; Krupanidhi, K. A comparative study of iv labetalol with oral nifedipine in severe preeclampsia. Int. J. Clin. Obstet. Gynaecol. 2020, 4, 388–392. [Google Scholar]
- Yart, L.; Frieden, M.; Konig, S.; Cohen, M.; Tejada, B. Dual effect of nifedipine on pregnant human myometrium contractility: Implication of trpc1. J. Cell. Physiol. 2022, 237, 1980–1991. [Google Scholar] [CrossRef]
- Eroglu, T.; Mohr, G.; Blom, M.; Verkerk, A.; Souverein, P.; Torp-Pedersen, C.; Folke, F.; Wissenberg, M.; van den Brink, L.; Davis, R.P.; et al. Differential effects on out-of-hospital cardiac arrest of dihydropyridines: Real-world data from population-based cohorts across two European countries. Eur. Heart J.—Cardiovasc. Pharmacother. 2019, 6, 347–355. [Google Scholar] [CrossRef]
- Salman, N.; Mumtaz, A.; Noreen, S.; Butt, A.; Ahmed, M.; Fatima, T. Postpartum discharge on labetalol was associated with increase risk of readmission for hypertension compared with discharge on nifedipine. Pak. J. Med. Health Sci. 2023, 17, 597–598. [Google Scholar] [CrossRef]
- Othman, J. Oropharyngeal angioedema due to nifedipine hypersensitivity post-hemithyroidectomy. J. Pharm. Negat. Res. 2022, 13, 977–980. [Google Scholar] [CrossRef]
- Shelke, O.; Kulkarni, A. Formulation, development and evaluation of nifedipine emulgel for treatment of anal fissures using polymeric emulsifiers. Indian J. Pharm. Educ. Res. 2019, 53, 74–81. [Google Scholar] [CrossRef]
- Wasan, E.; Zhao, J.; Poteet, J.; Mohammed, M.; Syeda, J.; Soulsbury, K.; Cawthray, J.; Bunyamin, A.; Zhang, C.; Fahlman, B.M.; et al. Development of a uv-stabilized topical formulation of nifedipine for the treatment of raynaud phenomenon and chilblains. Pharmaceutics 2019, 11, 594. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Yu, Y.; Liu, L.; Wang, C.; Guo, N.; Wang, X.; Xiang, X.; Han, B. Application of physiologically-based pharmacokinetic/pharmacodynamic models to evaluate the interaction between nifedipine and apatinib. Front. Pharmacol. 2022, 13, 970539. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, T.; Zhang, Y.; Li, W.; Guo, L.; Liu, Y.; Qu, X.; Wang, Q.; Mao, S.; Chen, X.; et al. Effects of apatinib on the pharmacokinetics of nifedipine and warfarin in patients with advanced solid tumors. Drug Des. Dev. Ther. 2020, 14, 1963–1970. [Google Scholar] [CrossRef]
- Niu, W.; Li, S.; Jin, S.; Lin, X.; Zhang, M.; Cai, W.; Jiao, Z.; Xiang, X. Investigating the interaction between nifedipine- and ritonavir-containing antiviral regimens: A physiologically based pharmacokinetic/pharmacodynamic analysis. Br. J. Clin. Pharmacol. 2020, 87, 2790–2806. [Google Scholar] [CrossRef] [PubMed]
- Tan, M. Use of physiologically-based pharmacokinetic modeling to understand the effect of omeprazole administration on the pharmacokinetics of oral extended-release nifedipine. CPT Pharmacomet. Syst. Pharmacol. 2023, 13, 247–256. [Google Scholar] [CrossRef]
- Zhao, L. Effect of omeprazole administration on the pharmacokinetics of oral extended-release nifedipine in healthy subjects. Clin. Pharmacol. Ther. 2023, 114, 1134–1141. [Google Scholar] [CrossRef]
- Beser, D.; Oluklu, D.; Hendem, D.; Yildirim, M.; Ersak, D.; Ayhan, S.; Sahin, D. Fetal echocardiographic evaluation before and after nifedipine treatment in preterm labor. Echocardiography 2022, 39, 1245–1251. [Google Scholar] [CrossRef]
- Adeosun, A.; Aroworamimo, A.; Ighodaro, O.; Asejeje, F.; Akinloye, O. Blood pressure lowering, antidyslipidemic and nitric oxide modulatory effects of methanol extract of struchium sparganophora leaves on dexamethasone-salt model of hypertension in rats. Egypt. J. Basic Appl. Sci. 2021, 8, 252–260. [Google Scholar] [CrossRef]
- Milliner, B.; Brant-Zawadzki, G.; McIntosh, S. Effect of calcium-channel blockade on the cold-induced vasodilation response. Wilderness Environ. Med. 2020, 31, 312–316. [Google Scholar] [CrossRef] [PubMed]
- Mantas, A.; Mihranyan, A. Immediate-Release Nifedipine Binary Dry Powder Mixtures with Nanocellulose Featuring Enhanced Solubility and Dissolution Rate. Pharmaceutics 2019, 11, 37. [Google Scholar] [CrossRef] [PubMed]
- Alqurshi, A.; Andrew Chan, K.L.; Royall, P.G. In-Situ Freeze-Drying-Forming Amorphous Solids Directly within Capsules: An Investigation of Dissolution Enhancement for A Poorly Soluble Drug. Sci. Rep. 2017, 7, 2910. [Google Scholar] [CrossRef]
- Ueda, K.; Yamazoe, C.; Yasuda, Y.; Higashi, K.; Kawakami, K.; Moribe, K. Mechanism of Enhanced Nifedipine Dissolution by Polymer-Blended Solid Dispersion through Molecular-Level Characterization. Mol. Pharm. 2018, 15, 4099–4109. [Google Scholar] [CrossRef]
- Taokaew, S.; Ofuchi, M.; Kobayashi, T. Chitin Biomass-Nifedipine Amorphous Solid Dispersion for Enhancement of Hydrophobic Drug Dissolution in Aqueous Media. Sustain. Chem. Pharm. 2020, 17, 100284. [Google Scholar] [CrossRef]
- Tubtimsri, S.; Weerapol, Y. Improvement in Solubility and Absorption of Nifedipine Using Solid Solution: Correlations between Surface Free Energy and Drug Dissolution. Polymers 2021, 31, 2963. [Google Scholar] [CrossRef]
- Shi, Q.; Chen, H.; Wang, Y.; Xu, J.; Liu, Z.; Zhang, C. Recent advances in drug polymorphs: Aspects of pharmaceutical properties and selective crystallization. Int. J. Pharm. 2022, 611, 121320. [Google Scholar] [CrossRef]
- Gui, Y.; Huang, C.; Shi, C.; Stelzer, T.; Geoff, G.; Zhang, Z.; Yu, L. Polymorphic selectivity in crystal nucleation. J. Chem. Phys. 2022, 156, 144504. [Google Scholar] [CrossRef]
- Gui, Y.; Yao, X.; Guzei, I.A.; Aristov, M.M.; Yu, J.; Yu, L. A mechanism for reversible solid-state transitions involving nitro torsion. Chem. Mater. 2020, 32, 7754. [Google Scholar] [CrossRef]
- Gunn, E.; Guzei, I.A.; Cai, T.; Yu, L. Polymorphism of Nifedipine: Crystal Structure and Reversible Transition of the Metastable β Polymorph. Cryst. Growth Des. 2012, 12, 2037–2043. [Google Scholar] [CrossRef]
- Klimakow, M.; Rademann, K.; Emmerling, F. Toward Novel Pseudo-Polymorphs of Nifedipine: Elucidation of a Slow Crystallization Process. Cryst. Growth Des. 2010, 10, 2693–2698. [Google Scholar] [CrossRef]
- Ishida, H.; Wu, T.; Yu, L. Sudden rise of crystal growth rate of nifedipine near Tg without and with polyvinylpyrrolidone. J. Pharm. Sci. 2007, 96, 1131–1138. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Shi, P.; Du, S.; Wang, L.; Han, D.; Zhou, L.; Tang, W.; Gong, J. Revealing the role of anisotropic solvent interaction in crystal habit formation of nifedipine. J. Cryst. Growth 2020, 552, 125941. [Google Scholar] [CrossRef]
- Gnutzmann, T.; Kahlau, R.; Scheifler, S.; Friedrichs, F.; Rossler, E.A.; Rademann, K.; Emmerling, F. Crystal growth rates and molecular dynamics of nifedipine. CrystEngComm 2013, 15, 4062–4069. [Google Scholar] [CrossRef]
- Cheng, S.; McKenna, G.B. Nanoconfinement Effects on the Glass Transition and Crystallization Behaviors of Nifedipine. Mol. Pharm. 2019, 16, 856–866. [Google Scholar] [CrossRef]
- Luo, M.; Chen, A.; Huang, C.; Guo, M.; Cai, T. Effects of Polymers on Cocrystal Growth in a Drug–Drug Coamorphous System: Relations between Glass-to-Crystal Growth and Surface-Enhanced Crystal Growth. Mol. Pharm. 2024, 21, 3591–3602. [Google Scholar] [CrossRef]
- Cai, T.; Zhu, L.; Yu, L. Crystallization of Organic Glasses: Effects of Polymer Additives on Bulk and Surface Crystal Growth in Amorphous Nifedipine. Pharm. Res. 2011, 28, 2458–2466. [Google Scholar] [CrossRef]
- Sun, Y.; Zhu, L.; Wu, T.; Cai, T.; Gunn, E.; Yu, L. Stability of Amorphous Pharmaceutical Solids: Crystal Growth Mechanisms and Effect of Polymer Additives. AAPS J. 2012, 14, 380–388. [Google Scholar] [CrossRef]
- Zhu, L.; Wong, L.; Yu, L. Surface-Enhanced Crystallization of Amorphous Nifedipine. Mol. Pharm. 2008, 5, 921–926. [Google Scholar] [CrossRef]
- Chattoraj, S.; Bhugra, C.; Li, Z.J.; Sun, C.C. Effect of Heating Rate and Kinetic Model Selection on Activation Energy of Non-isothermal Crystallization of Amorphous Felodipine. J. Pharm. Sci. 2014, 103, 3950–3957. [Google Scholar] [CrossRef]
- Zhou, D.; Schmitt, E.A.; Zhang, G.G.; Law, D.; Vyazovkin, S.; Wight, C.A.; Grant, D.J.W. Crystallization Kinetics of Amorphous Nifedipine Studied by Model-Fitting and Model-Free Approaches. J. Pharm. Sci. 2003, 92, 1779–1792. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; McKenna, G.B. Isothermal Crystallization and Time–Temperature Transformation of Amorphous Nifedipine: A Case of Polymorphism Formation and Conversion. Mol. Pharm. 2021, 18, 2786–2802. [Google Scholar] [CrossRef] [PubMed]
- Grooff, D.; De Villiers, M.M.; Liebenberg, W. Thermal methods for evaluating polymorphic transitions in nifedipine. Thermochim. Acta 2007, 454, 33–42. [Google Scholar] [CrossRef]
- Mallamace, F.; Branca, C.; Corsaro, C.; Leone, N.; Spooren, J.; Chen, S.-H.; Stanley, H.E. Transport properties of glass-forming liquids suggest that dynamic crossover temperature is as important as the glass transition temperature. Proc. Natl. Acad. Sci. USA 2010, 107, 22457–22462. [Google Scholar] [CrossRef]
- Martin, J.D.; Hillis, B.G.; Hou, F. Transition Zone Theory Compared to Standard Models: Reexamining the Theory of Crystal Growth from Melts. J. Phys. Chem. C 2020, 124, 18724–18740. [Google Scholar] [CrossRef]
- Svoboda, R.; Košťálová, D.; Krbal, M.; Komersová, A. Indomethacin: The Interplay between Structural Relaxation, Viscous Flow and Crystal Growth. Molecules 2022, 27, 5668. [Google Scholar] [CrossRef]
- Adam, G.; Gibbs, J.H. On the Temperature Dependence of Cooperative Relaxation Properties in Glass-Forming Liquids. J. Chem. Phys. 1965, 43, 139–146. [Google Scholar] [CrossRef]
- Mehta, M.; Ragoonanan, V.; McKenna, G.B.; Suryanarayanan, R. Correlation between Molecular Mobility and Physical Stability in Pharmaceutical Glasses. Mol. Pharm. 2016, 13, 1267–1277. [Google Scholar] [CrossRef]
- Berthier, L.; Chandler, D.; Garrahan, J.P. Length scale for the onset of Fickian diffusion in supercooled liquids. Eur. Lett. 2005, 69, 320–326. [Google Scholar] [CrossRef]
- Svoboda, R. Utilization of “q+/q- = const.” DSC cycles for enthalpy relaxation studies. Eur. Polym. J. 2014, 59, 180–188. [Google Scholar] [CrossRef]
- Svoboda, R.; Kozlová, K. Thermo-structural characterization of phase transitions in amorphous griseofulvin: From sub-Tg relaxation and crystal growth to high-temperature decomposition. Molecules 2024, 29, 1516. [Google Scholar] [CrossRef]
- Svoboda, R.; Macháčková, J.; Nevyhoštěná, M.; Komersová, A. Thermal stability of amorphous nimesulide: From glass formation to crystal growth and thermal degradation. Phys. Chem. Chem. Phys. 2024, 26, 856–872. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.L.A.; Fleming, O.S.; Kazarian, S.G.; Vassou, D.; Chryssikos, G.D.; Gionis, V. Polymorphism and devitrification of nifedipine under controlled humidity: A combined FT-Raman, IR and Raman microscopic investigation. J. Raman Spectrosc. 2004, 35, 353–359. [Google Scholar] [CrossRef]
- Tool, A.Q. Relation between inelastic deformability and thermal expansion of glass in its annealing range. J. Am. Ceram. Soc. 1946, 29, 240–253. [Google Scholar] [CrossRef]
- Narayanaswamy, O.S. A model of structural relaxation in glass. J. Am. Ceram. Soc. 1971, 54, 491–497. [Google Scholar] [CrossRef]
- Moynihan, C.T.; Easteal, A.J.; DeBolt, M.A.; Tucker, J. Dependence of the fictive temperature of glass on cooling rate. J. Am. Ceram. Soc. 1976, 59, 12–16. [Google Scholar] [CrossRef]
- Svoboda, R.; Málek, J. Description of macroscopic relaxation dynamics in glasses. J. Non-Cryst. Solids 2013, 378, 186–195. [Google Scholar] [CrossRef]
- Debolt, M.A.; Easteal, A.J.; Macedo, P.B.; Moynihan, C.T. Analysis of Structural Relaxation in Glass Using Rate Heating Data. J. Am. Ceram. Soc. 1976, 59, 16–21. [Google Scholar] [CrossRef]
- Svoboda, R.; Málek, J. Enthalpy relaxation in Ge-Se glassy system. J. Therm. Anal. Cal. 2013, 113, 831–842. [Google Scholar] [CrossRef]
- Angell, C.A.; Ngai, K.L.; McKenna, G.B.; McMillan, P.F.; Martin, S.W. Relaxation in glassforming liquids and amorphous solids. J. Appl. Phys. 2000, 88, 3113–3157. [Google Scholar] [CrossRef]
- Šesták, J. Science of Heat and Thermophysical Studies: A Generalized Approach to Thermal Analysis; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Šesták, J. Thermophysical Properties of Solids, Their Measurements and Theoretical Analysis; Elsevier: Amsterdam, The Netherlands, 1984. [Google Scholar]
- Johnson, W.A.; Mehl, K.F. Reaction kinetics in processes of nucleation and growth. Trans. Am. Inst. Min. Metall. Eng. 1939, 135, 416–442. [Google Scholar]
- Avrami, M. Kinetics of phase change I—General theory. J. Chem. Phys. 1939, 7, 1103–1112. [Google Scholar] [CrossRef]
- Avrami, M. Kinetics of phase change. II—Transformation-time relations for random distribution of nuclei. J. Chem. Phys. 1940, 7, 212–224. [Google Scholar] [CrossRef]
- Avrami, M. Granulation, phase change, and microstructure—Kinetics of phase change III. J. Chem. Phys. 1941, 7, 177–184. [Google Scholar] [CrossRef]
- Kissinger, H.E. Reaction kinetics in differential thermal analysis. Anal. Chem. 1957, 29, 1702–1706. [Google Scholar] [CrossRef]
- Svoboda, R.; Čičmanec, P.; Málek, J. Kissinger equation versus glass transition phenomenology. J. Therm. Anal. Cal. 2013, 114, 285–293. [Google Scholar] [CrossRef]
- Svoboda, R.; Chovanec, J.; Slang, S.; Beneš, L.; Konrád, P. Single-curve multivariate kinetic analysis: Application to the crystallization of commercial Fe-Si-Cr-B amorphous alloys. J. Alloys Compd. 2022, 889, 161672. [Google Scholar] [CrossRef]
- Hasebe, M.; Musumeci, D.; Powell, C.T.; Cai, T.; Gunn, E.; Zhu, L.; Yu, L.J. Fast surface crystal growth on molecular glasses and its termination by the onset of fluidity. Phys. Chem. B 2014, 118, 7638–7646. [Google Scholar] [CrossRef]
- Madejczyk, O.; Minecka, A.; Kamińska, E.; Heczko, D.; Tarnacka, M.; Wolnica, K.; Kamiński, K.; Paluch, M. Studying the crystal growth of selected active pharmaceutical ingredients from single-and two-component systems above and below the glass transition temperature. Cryst. Growth Des. 2019, 19, 1031–1040. [Google Scholar] [CrossRef]
- Hodge, I. Adam-Gibbs formulation of non-linear enthalpy relaxation. J. Non-Cryst. Solids 1991, 131–133, 435–441. [Google Scholar] [CrossRef]
- Chromčiková, M.; Liška, M. Simple relaxation model of the reversible part of the StepScan® DSC record of glass transition. J. Therm. Anal. 2006, 84, 703–708. [Google Scholar] [CrossRef]
- Hutchinson, J.M.; Kovacs, A.J. Effects of thermal history on structural recovery of glasses during isobaric heating. Polym. Eng. Sci. 1984, 24, 1087–1103. [Google Scholar] [CrossRef]
- Hutchinson, J.M.; Ruddy, M. Thermal cycling of glasses. II. Experimental evaluation of the structure (or non-linearity) parameter x. J. Polym. Sci. 1988, 26, 2341–2366. [Google Scholar] [CrossRef]
- Wu, T.; Sun, Y.; Li, N.; de Villiers, M.M.; Yu, L. Inhibiting Surface Crystallization of Amorphous Indomethacin by Nanocoating. Langmuir 2007, 23, 5148–5153. [Google Scholar] [CrossRef]
- Descamps, M.; Dudognon, E. Crystallization from the Amorphous State: Nucleation–Growth Decoupling, Polymorphism Interplay, and the Role of Interfaces. J. Pharm. Sci. 2014, 103, 2615–2628. [Google Scholar] [CrossRef]
- Filho, R.O.C.; Franco, P.I.B.M.; Conceicao, E.C.; Leles, M.I.G. Stability studies on nifedipine tablets using thermogravimetry and differential scanning calorimetry. J. Therm. Anal. Calorim. 2009, 97, 343–347. [Google Scholar] [CrossRef]
- Shamsipur, M.; Hemmateenejad, B.; Akhond, M.; Javidnia, K.; Miri, R. A study of the photo-degradation kinetics of nifedipine by multivariate curve resolution analysis. J. Pharm. Biomed. Anal. 2003, 31, 1013–1019. [Google Scholar] [CrossRef]
Powder | 50–125 | 125–180 | 180–250 | 250–300 | 300–500 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | St.Dev. | Mean | St.Dev. | Mean | St.Dev. | Mean | St.dev. | Mean | St.Dev. | |
log(A1) | 16.22 | 0.20 | 17.72 | 0.09 | 15.96 | 0.08 | 16.53 | 0.15 | 15.53 | 0.10 |
E1 | 114.30 | 0.00 | 124.00 | 0.00 | 114.90 | 0.00 | 118.10 | 0.00 | 113.30 | 0.00 |
N1 | 0.70 | 0.06 | 0.66 | 0.09 | 0.64 | 0.06 | 0.75 | 0.13 | 0.75 | 0.08 |
M1 | 0.97 | 0.06 | 1.00 | 0.04 | 0.98 | 0.05 | 0.99 | 0.05 | 0.90 | 0.04 |
log(A2) | 14.01 | 0.23 | 14.96 | 0.24 | 12.86 | 0.17 | 13.85 | 0.37 | 13.45 | 0.36 |
E2 | 104.90 | 0.00 | 108.30 | 0.00 | 98.90 | 0.00 | 102.50 | 0.00 | 100.80 | 0.00 |
N2 | 0.96 | 0.20 | 1.12 | 0.21 | 1.36 | 0.45 | 1.31 | 0.66 | 1.05 | 0.30 |
M2 | 0.72 | 0.11 | 0.94 | 0.14 | 0.86 | 0.11 | 0.98 | 0.15 | 0.96 | 0.15 |
log(A3) | 15.72 | 0.15 | 17.28 | 0.16 | 15.45 | 0.14 | 16.13 | 0.18 | 15.23 | 0.19 |
E3 | 114.30 | 0.00 | 124.00 | 0.00 | 114.90 | 0.00 | 118.10 | 0.00 | 113.30 | 0.00 |
N3 | 0.50 | 0.24 | 0.49 | 0.11 | 0.50 | 0.22 | 0.74 | 0.17 | 0.87 | 0.41 |
M3 | 0.55 | 0.11 | 0.70 | 0.12 | 0.62 | 0.15 | 0.71 | 0.14 | 0.64 | 0.08 |
ΔH1/ΔH | 0.40 | 0.10 | 0.30 | 0.04 | 0.30 | 0.13 | 0.32 | 0.04 | 0.44 | 0.15 |
ΔH2/ΔH | 0.38 | 0.06 | 0.32 | 0.03 | 0.32 | 0.04 | 0.26 | 0.05 | 0.24 | 0.10 |
ΔH | 20.8 | 2.6 | 20.8 | 2.8 | 20.5 | 3.5 | 20.7 | 3.3 | 20.7 | 3.3 |
r | 0.9996 | 0.0003 | 0.9996 | 0.0003 | 0.9962 | 0.0045 | 0.9973 | 0.0063 | 0.9979 | 0.0042 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Svoboda, R. Thermally Induced Phenomena in Amorphous Nifedipine: The Correlation Between the Structural Relaxation and Crystal Growth Kinetics. Molecules 2025, 30, 175. https://doi.org/10.3390/molecules30010175
Svoboda R. Thermally Induced Phenomena in Amorphous Nifedipine: The Correlation Between the Structural Relaxation and Crystal Growth Kinetics. Molecules. 2025; 30(1):175. https://doi.org/10.3390/molecules30010175
Chicago/Turabian StyleSvoboda, Roman. 2025. "Thermally Induced Phenomena in Amorphous Nifedipine: The Correlation Between the Structural Relaxation and Crystal Growth Kinetics" Molecules 30, no. 1: 175. https://doi.org/10.3390/molecules30010175
APA StyleSvoboda, R. (2025). Thermally Induced Phenomena in Amorphous Nifedipine: The Correlation Between the Structural Relaxation and Crystal Growth Kinetics. Molecules, 30(1), 175. https://doi.org/10.3390/molecules30010175