Effects of Multiple Treatments of Formic Acid on the Chemical Properties and Structural Features of Bamboo Powder
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Composition Changes in BP After Formic Acid Pretreatment
2.2. Enzymatic Hydrolysis of Pretreated BPs
2.3. Characterization of Pretreated BPs
2.4. Characterization of MWL and FAL
3. Materials and Methods
3.1. Materials
3.2. Formic Acid Pretreatment
3.3. Enzymatic Hydrolysis
3.4. Preparation of MWL and FAL
3.5. Characterization of BPs and Lignin
3.5.1. Contact Angle of Raw and Pretreated BPs
3.5.2. XRD of Raw and Pretreated BPs
3.5.3. FT-IR of Lignin
3.5.4. Thermogravimetric Analysis of MWL and FAL
3.6. Analysis Methods
3.6.1. Chemical Composition of BP
3.6.2. HPLC Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, J.; Cheng, M.; Zhao, C.; Shao, Q.; Hassan, M. Combined Oxidization and Liquid Ammonia Pretreatment of Bamboo of Various Ages and Species for Maximizing Fermentable Sugar Release. Bioresour. Technol. 2022, 343, 126085. [Google Scholar] [CrossRef]
- Xiong, B.; Ma, S.; Chen, B.; Feng, Y.; Peng, Z.; Tang, X.; Yang, S.; Sun, Y.; Lin, L.; Zeng, X.; et al. Formic Acid-Facilitated Hydrothermal Pretreatment of Raw Biomass for Co-Producing Xylo-Oligosaccharides, Glucose, and Lignin. Ind. Crops Prod. 2023, 193, 116195. [Google Scholar] [CrossRef]
- Lin, W.; Xing, S.; Jin, Y.; Lu, X.; Huang, C.; Yong, Q. Insight into Understanding the Performance of Deep Eutectic Solvent Pretreatment on Improving Enzymatic Digestibility of Bamboo Residues. Bioresour. Technol. 2020, 306, 123163. [Google Scholar] [CrossRef] [PubMed]
- Sweygers, N.; Depuydt, D.E.C.; Van Vuure, A.W.; Degrève, J.; Potters, G.; Dewil, R.; Appels, L. Simultaneous Production of 5-Hydroxymethylfurfural and Furfural from Bamboo (Phyllostachys nigra “Boryana”) in a Biphasic Reaction System. Chem. Eng. J. 2020, 386, 123957. [Google Scholar] [CrossRef]
- Huang, C.; Fang, G.; Zhou, Y.; Du, X.; Yu, L.; Meng, X.; Li, M.; Yoo, C.G.; Chen, B.; Zhai, S.; et al. Increasing the Carbohydrate Output of Bamboo Using a Combinatorial Pretreatment. ACS Sustain. Chem. Eng. 2020, 8, 7380–7393. [Google Scholar] [CrossRef]
- Zhao, X.; Cheng, K.; Liu, D. Organosolv Pretreatment of Lignocellulosic Biomass for Enzymatic Hydrolysis. Appl. Microbiol. Biotechnol. 2009, 82, 815–827. [Google Scholar] [CrossRef] [PubMed]
- Chang, X.; Bai, Y.; Wu, R.; Liu, D.; Zhao, X. Heterogeneity of Lignocellulose Must Be Considered for Kinetic Study: A Case on Formic Acid Fractionation of Sugarcane Bagasse with Different Pseudo-Homogeneous Kinetic Models. Renew. Energy 2020, 162, 2246–2258. [Google Scholar] [CrossRef]
- Zhong, X.; Yuan, R.; Zhang, B.; Wang, B.; Chu, Y.; Wang, Z. Full Fractionation of Cellulose, Hemicellulose, and Lignin in Pith-Leaf Containing Corn Stover by One-Step Treatment Using Aqueous Formic Acid. Ind. Crops Prod. 2021, 172, 113962. [Google Scholar] [CrossRef]
- Chen, C.Z.; Li, M.F.; Wu, Y.Y.; Sun, R.C. Integration of Ambient Formic Acid Process and Alkaline Hydrogen Peroxide Post-Treatment of Furfural Residue to Enhance Enzymatic Hydrolysis. Ind. Eng. Chem. Res. 2014, 53, 12935–12942. [Google Scholar] [CrossRef]
- Wu, R.; Zhao, X.; Liu, D. Structural Features of Formiline Pretreated Sugar Cane Bagasse and Their Impact on the Enzymatic Hydrolysis of Cellulose. ACS Sustain. Chem. Eng. 2016, 4, 1255–1261. [Google Scholar] [CrossRef]
- Zhang, Y.; Hou, Q.; Xu, W.; Qin, M.; Fu, Y.; Wang, Z.; Willför, S.; Xu, C. Revealing the Structure of Bamboo Lignin Obtained by Formic Acid Delignification at Different Pressure Levels. Ind. Crops Prod. 2017, 108, 864–871. [Google Scholar] [CrossRef]
- Qiao, H.; Wang, Y.; Ma, Z.; Han, M.; Zheng, Z.; Ouyang, J. In-Depth Investigation of Formic Acid Pretreatment for Various Biomasses: Chemical Properties, Structural Features, and Enzymatic Hydrolysis. Bioresour. Technol. 2023, 374, 128747. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Y.; Li, M.F. Discrepancy of Lignin Dissolution from Eucalyptus during Formic Acid Fractionation. Int. J. Biol. Macromol. 2020, 164, 4662–4670. [Google Scholar] [CrossRef]
- Yu, G.; Li, B.; Liu, C.; Zhang, Y.; Wang, H.; Mu, X. Fractionation of the Main Components of Corn Stover by Formic Acid and Enzymatic Saccharification of Solid Residue. Ind. Crops Prod. 2013, 50, 750–757. [Google Scholar] [CrossRef]
- Jin, C.; Yang, M.; E, S.; Liu, J.; Zhang, S.; Zhang, X.; Sheng, K.; Zhang, X. Corn Stover Valorization by One-Step Formic Acid Fractionation and Formylation for 5-Hydroxymethylfurfural and High Guaiacyl Lignin Production. Bioresour. Technol. 2020, 299, 122586. [Google Scholar] [CrossRef]
- Ma, Z.; Qiao, H.; Wang, Y.; Ji, C.; Yu, C.; Zheng, Z.; Ouyang, J. Promoting Efficient High-Solids Formic Acid Pretreatment of Poplar for Enzymatic Saccharification via Pre-Impregnation Strategy. Ind. Crops Prod. 2024, 222, 119689. [Google Scholar] [CrossRef]
- Zhao, X.; Xu, X.; Ling, Z.; Huang, C.; Lai, C.; Yong, Q. Enhancing Enzymatic Hydrolysis of Masson Pine by Sulfuric Acid Catalyzed γ-Valerolactone Synergistic Pretreatment under a Lignin-First Strategy. Ind. Crops Prod. 2024, 216, 118760. [Google Scholar] [CrossRef]
- Zhang, Y.; Qin, M.; Xu, W.; Fu, Y.; Wang, Z.; Li, Z.; Willför, S.; Xu, C.; Hou, Q. Structural Changes of Bamboo-Derived Lignin in an Integrated Process of Autohydrolysis and Formic Acid Inducing Rapid Delignification. Ind. Crops Prod. 2018, 115, 194–201. [Google Scholar] [CrossRef]
- Wang, W.Y.; Guo, B.X.; Wang, R.; Liu, H.M.; Qin, Z. Revealing the Structural Changes of Lignin in Chinese Quince (Chaenomeles Sinensis) Fruit as It Matures. Int. J. Biol. Macromol. 2024, 264, 130718. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Zhu, X.; Guo, H.; Que, H.; Wang, D.; Liang, D.; He, T.; Hu, C.; Xu, C.; Gu, X. Efficient Depolymerization of Alkaline Lignin to Phenolic Compounds at Low Temperatures with Formic Acid over Inexpensive Fe-Zn/Al2O3 Catalyst. Energy Fuels 2020, 34, 7121–7130. [Google Scholar] [CrossRef]
- Shao, Z.; Fu, Y.; Wang, P.; Zhang, Y.; Qin, M.; Li, X.; Zhang, F. Modification of the Aspen Lignin Structure during Integrated Fractionation Process of Autohydrolysis and Formic Acid Delignification. Int. J. Biol. Macromol. 2020, 165, 1727–1737. [Google Scholar] [CrossRef] [PubMed]
- Li, M.F.; Sun, S.N.; Xu, F.; Sun, R.C. Formic Acid Based Organosolv Pulping of Bamboo (Phyllostachys acuta): Comparative Characterization of the Dissolved Lignins with Milled Wood Lignin. Chem. Eng. J. 2012, 179, 80–89. [Google Scholar] [CrossRef]
- Qiao, H.; Han, M.; Ouyang, S.; Zheng, Z.; Ouyang, J. An Integrated Lignocellulose Biorefinery Process: Two-Step Sequential Treatment with Formic Acid for Efficiently Producing Ethanol and Furfural from Corn Cobs. Renew. Energy 2022, 191, 775–784. [Google Scholar] [CrossRef]
- Bjorkman, A. Isolation of Lignin from Finely Divided Wood with Neutral Solvents. Nature 1954, 174, 1057–1058. [Google Scholar] [CrossRef]
- Heiss-Blanquet, S.; Zheng, D.; Ferreira, N.L.; Lapierre, C.; Baumberger, S. Effect of Pretreatment and Enzymatic Hydrolysis of Wheat Straw on Cell Wall Composition, Hydrophobicity and Cellulase Adsorption. Bioresour. Technol. 2011, 102, 5938–5946. [Google Scholar] [CrossRef]
- Kurakake, M.; Ooshima, H.; Kato, J.; Harano, Y. Pretreatment of Bagasse by Nonionic Surfactant for the Enzymatic Hydrolysis. Bioresour. Technol. 1994, 49, 247–251. [Google Scholar] [CrossRef]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass: Laboratory Analytical Procedure (LAP); NREL: Golden, CO, USA, 2008; Revised July 2011. [Google Scholar]
Based on the Raw Material | Based on the Sample in the Last Cycle | |||||
---|---|---|---|---|---|---|
Cellulose Recovery/% | Hemicellulose Removal/% | Lignin Removal/% | Cellulose Recovery/% | Hemicellulose Removal/% | Lignin Removal/% | |
1st | 94.4 ± 1.8 | 85.0 ± 0.1 | 82.5 ± 1.7 | 94.4 ± 1.8 | 85.0 ± 0.1 | 82.5 ± 1.7 |
2nd | 93.0 ± 0.2 | 91.7 ± 0.1 | 91.4 ± 0.1 | 98.6 ± 0.2 | 44.6 ± 0.4 | 50.5 ± 0.3 |
3rd | 90.8 ± 0.2 | 94.2 ± 0.1 | 93.1 ± 0.1 | 97.6 ± 0.2 | 30.6 ± 0.4 | 19.8 ± 0.9 |
4th | 85.9 ± 0.4 | 95.4 ± 0.2 | 93.9 ± 0.1 | 94.6 ± 0.4 | 20.3 ± 3.7 | 12.2 ± 1.2 |
5th | 80.8 ± 0.2 | 96.3 ± 0.1 | 94.7 ± 0.1 | 94.1 ± 0.2 | 19.2 ± 2.1 | 12.1 ± 0.4 |
Wavenumbers/cm−1 | Assignments |
---|---|
3434 | O–H stretch vibration |
2930 | C–H stretch in –OCH3 |
2850 | C–H stretching vibration of –CH2 |
1724 | C=O stretch vibration |
1602, 1513, 1422 | Aromatic skeletal vibrations |
1327 | S unit |
1264 | C=O stretch in G units |
1165 | C=O in conjugated structure in SGH |
1122 | S units |
1030 | G units |
835 | C–H out-of-plane of the S unit and in all positions of H units |
Samples | Temperature °C | Weight Loss %/min | Char Residues (800 °C) % |
---|---|---|---|
MWL | 355 | 0.31 | 27.9 |
FAL-1 | 345 | 0.28 | 34.5 |
FAL-2 | 345 | 0.28 | 35.4 |
FAL-3 | 345 | 0.31 | 33.5 |
FAL-4 | 340 | 0.38 | 27.8 |
FAL-5 | 335 | 0.46 | 23.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, H.; Liu, Y.; Feng, Y.; Pan, X.; Zhuang, X.; Ouyang, J. Effects of Multiple Treatments of Formic Acid on the Chemical Properties and Structural Features of Bamboo Powder. Molecules 2025, 30, 398. https://doi.org/10.3390/molecules30020398
Qiao H, Liu Y, Feng Y, Pan X, Zhuang X, Ouyang J. Effects of Multiple Treatments of Formic Acid on the Chemical Properties and Structural Features of Bamboo Powder. Molecules. 2025; 30(2):398. https://doi.org/10.3390/molecules30020398
Chicago/Turabian StyleQiao, Hui, Yue Liu, Yongshun Feng, Xin Pan, Xiaowei Zhuang, and Jia Ouyang. 2025. "Effects of Multiple Treatments of Formic Acid on the Chemical Properties and Structural Features of Bamboo Powder" Molecules 30, no. 2: 398. https://doi.org/10.3390/molecules30020398
APA StyleQiao, H., Liu, Y., Feng, Y., Pan, X., Zhuang, X., & Ouyang, J. (2025). Effects of Multiple Treatments of Formic Acid on the Chemical Properties and Structural Features of Bamboo Powder. Molecules, 30(2), 398. https://doi.org/10.3390/molecules30020398