Luminescent Lanthanide Infinite Coordination Polymers for Ratiometric Sensing Applications
Abstract
:1. Introduction
2. Ratiometric Ln-CPs: Composition and Sensing Mechanism
2.1. Composition of Ratiometric Ln-CPs
2.2. Sensing Mechanism of Ratiometric Ln-CPs Sensors
3. Applications of the Ratiometric Ln-CPs
3.1. Ions
3.1.1. Fe2+/Fe3+
3.1.2. Cu2+
3.1.3. Ag+
3.1.4. Hg2+
3.1.5. PO43−
3.1.6. •OH
3.2. Small Biomolecules
3.2.1. Hydrogen Peroxide
3.2.2. Glucose
3.2.3. Hydrogen Sulfide
3.2.4. Dopamine
3.2.5. Histamine
3.2.6. Tryptophan
3.2.7. Dipicolinic Acid
3.3. Small Molecule Drugs
3.3.1. Ciprofloxacin and Pefloxacin
3.3.2. Tetracycline and Oxytetracycline
3.4. Biomacromolecules
3.4.1. Alkaline Phosphatase
3.4.2. Acetylcholinesterase
3.4.3. β-Amyloid Peptide
3.5. Others
3.5.1. Water Content
3.5.2. pH
3.5.3. Temperature
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Ln-CPs | Lanthanide coordination polymers |
ICPs | Infinite coordination polymers |
CPs | Coordination polymers |
ACPs | Amorphous coordination polymers |
MOFs | Metal–organic frameworks |
DPA | Dipicolinic acid |
Tc | Tetracycline |
ALP | Alkaline phosphatase |
GMP | Guanosine-5′-monophosphate |
CDs | Carbon dots |
AMP | Adenosine monophosphate |
Phen | Phenanthroline |
AA | Ascorbic acid |
CPNPs | Coordination polymer nanoprobe |
IPA | Isophthalic acid |
PET | Photoinduced electron transfer |
Pi | Phosphate ions |
Lys | Lysine |
ROS | Reactive oxygen species |
3-CPBA | 3-Carboxyphenylboronic acid |
HBA | 3-Hydroxybenzoic acid |
GDP | Guanine diphosphate |
TA | Terephthalic acid |
TAOH | 2-Hydroxyterephthalic acid |
Gox | Glucose oxidase |
ATA | 2-Aminoterephthalic acid |
RhB | Rhodamine B |
ELISA | Enzyme-linked immunosorbent assay |
H2S | Hydrogen sulfide |
DA | Dopamine |
HOFs | Hydrogen-bonded organic frameworks |
5-FITC | Fluorescein isothiocyanate |
Trp | Tryptophan |
5-HIAA | 5-Hydroxyindoleacetic acid |
COFs | Covalent organic frameworks |
TPE-TS | Tetra(4-sulfophenyl)ethene |
CIP | Ciprofloxacin |
PFLX | Pefloxacin |
BSA | Bovine serum albumin |
Au NCs | Gold nanoclusters |
ML | Machine learning |
OTC | Oxytetracycline |
AE | Antenna effect |
IFE | Inner filter effect |
Cit | Citrate |
MRLs | Maximum residue limits |
POCT | Point-of-care testing |
H4TCPE | 1,1,2,2-Tetra(4-carboxylphenyl)-ethylene |
AIE | Aggregation-induced emission |
ALP | Alkaline phosphatase |
ThT | Thioflavin T |
FRET | Förster resonance energy transfer |
AChE | Acetylcholinesterase |
Aβ | Amyloid-beta |
AD | Alzheimer’s disease |
pNIPAM | Poly(N-isopropylacrylamide) |
BTB | 1,3,5-tri(4-carboxyphenyl) benzene |
References
- Binnemans, K. Lanthanide-Based Luminescent Hybrid Materials. Chem. Rev. 2009, 109, 4283–4374. [Google Scholar]
- Eliseeva, S.V.; Bünzli, J.-C.G. Lanthanide luminescence for functional materials and bio-sciences. Chem. Soc. Rev. 2010, 39, 189–227. [Google Scholar] [CrossRef]
- Costa, I.F.; Blois, L.; Paolini, T.B.; Assunção, I.P.; Teotonio, E.E.S.; Felinto, M.C.F.C.; Moura Jr, R.T.; Longo, R.L.; Faustino, W.M.; Carlos, L.D.; et al. Luminescence properties of lanthanide tetrakis complexes as molecular light emitters. Coord. Chem. Rev. 2024, 502, 215590. [Google Scholar] [CrossRef]
- Zhou, J.; Zheng, G.; Liu, X.; Dong, G.; Qiu, J. Defect engineering in lanthanide doped luminescent materials. Coord. Chem. Rev. 2021, 448, 214178. [Google Scholar] [CrossRef]
- Xu, X.; Wang, Z.; Hou, J.; Zhang, T.; Zhao, X.; Di, S.; Li, Z. Upconversion Emission and Dual-Mode Sensing Characteristics of NaYF4:Yb3+/Er3+ Microcrystals at High and Ultralow Temperatures. Nanomaterials 2024, 14, 871. [Google Scholar] [CrossRef]
- Ming, J.; Chen, Y.; Miao, H.; Fan, Y.; Wang, S.; Chen, Z.; Guo, Z.; Guo, Z.; Qi, L.; Wang, X.; et al. High-brightness transition metal-sensitized lanthanide near-infrared luminescent nanoparticles. Nature Photonics 2024, 18, 1254–1262. [Google Scholar] [CrossRef]
- Manna, F.; Oggianu, M.; Mameli, V.; Lai, S.; Simbula, A.; Quochi, F.; Avarvari, N.; Mercuri, M.L. Thiophenyl Anilato-Based NIR-Emitting Lanthanide (LnIII = Er, Yb) Dinuclear Complexes. Molecules 2024, 29, 5804. [Google Scholar] [CrossRef]
- Mei, Z.; Ni, Q.; Li, M.; Li, J.; Huo, J.; Liu, W.; Wang, Q. Extension of Spectral Shift Controls from Equivalent Substitution to an Energy Migration Model Based on Eu2+/Tb3+-Activated Ba4–xSrxGd3–xLuxNa3(PO4)6F2 Phosphors. Inorg. Chem. 2021, 60, 16507–16517. [Google Scholar] [CrossRef] [PubMed]
- Yan, B. Lanthanide-Functionalized Metal–Organic Framework Hybrid Systems To Create Multiple Luminescent Centers for Chemical Sensing. Acc. Chem. Res. 2017, 50, 2789–2798. [Google Scholar] [CrossRef] [PubMed]
- Parker, D.; Fradgley, J.D.; Wong, K.-L. The design of responsive luminescent lanthanide probes and sensors. Chem. Soc. Rev. 2021, 50, 8193–8213. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Jiang, Y.; Tissot, A.; Serre, C. Luminescent sensing platforms based on lanthanide metal-organic frameworks: Current strategies and perspectives. Coord. Chem. Rev. 2023, 497, 215454. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, Y.; Hao, Y.; Zhu, X.; Zhang, Y.; Zhou, Y.; Tan, H.; Xu, M. All-in-One Luminescent Lanthanide Coordination Polymer Nanoprobe for Facile Detection of Protein Kinase Activity. Anal. Chem. 2022, 94, 10730–10736. [Google Scholar] [CrossRef]
- Hao, Y.Q.; Chen, S.; Zhou, Y.L.; Zhang, Y.T.; Xu, M.T. Recent Progress in Metal-Organic Framework (MOF) Based Luminescent Chemodosimeters. Nanomaterials 2019, 9, 974. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, X.; Tang, Y.; Zhang, C.C.; Fu, H.; Wu, N.; Ma, L.; Gao, J.; Wang, Q. Oxidative deoximation reaction induced recognition of hypochlorite based on a new fluorescent lanthanide-organic framework. Chem. Eng. J. 2018, 351, 364–370. [Google Scholar] [CrossRef]
- Li, X.; Gu, J.; Zhou, Z.; Ma, L.; Tang, Y.; Gao, J.; Wang, Q. New lanthanide ternary complex system in electrospun nanofibers: Assembly, physico-chemical property and sensor application. Chem. Eng. J. 2019, 358, 67–73. [Google Scholar] [CrossRef]
- Wu, X.; Ruan, C.; Zhou, S.; Zou, L.; Wang, R.; Li, G. Lanthanide coordination polymers@CuO nanoparticles: Enhanced self-cascade nanoenzyme activity and ratiometric fluorescence assay of glutathione. Spectrochim. Acta A 2024, 317, 124410. [Google Scholar] [CrossRef]
- Li, F.; Tu, L.; Zhang, Y.; Huang, D.; Liu, X.; Zhang, X.; Du, J.; Fan, R.; Yang, C.; Krämer, K.W.; et al. Size-dependent lanthanide energy transfer amplifies upconversion luminescence quantum yields. Nat. Photonics 2024, 18, 440–449. [Google Scholar] [CrossRef]
- Cheng, X.; Zhou, J.; Yue, J.; Wei, Y.; Gao, C.; Xie, X.; Huang, L. Recent Development in Sensitizers for Lanthanide-Doped Upconversion Luminescence. Chem. Rev. 2022, 122, 15998–16050. [Google Scholar] [CrossRef]
- Bell, D.J.; Natrajan, L.S.; Riddell, I.A. Design of lanthanide based metal–organic polyhedral cages for application in catalysis, sensing, separation and magnetism. Coord. Chem. Rev. 2022, 472, 214786. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, S.; Zhao, Z.-S.; Wang, Z.; Zhang, R.; Liu, L.; Han, Z.-B. Recent progress in lanthanide metal–organic frameworks and their derivatives in catalytic applications. Inorg. Chem. Front. 2021, 8, 590–619. [Google Scholar] [CrossRef]
- Ansari, A.A.; Parchur, A.K.; Chen, G. Surface modified lanthanide upconversion nanoparticles for drug delivery, cellular uptake mechanism, and current challenges in NIR-driven therapies. Coord. Chem. Rev. 2022, 457, 214423. [Google Scholar] [CrossRef]
- Mohanty, S.; Lederer, M.; Premcheska, S.; Rijckaert, H.; De Buysser, K.; Bruneel, E.; Skirtach, A.; Van Hecke, K.; Kaczmarek, A.M. Exploring the potential of lanthanide-doped oxyfluoride materials for bright green upconversion and their promising applications towards temperature sensing and drug delivery. J. Mater. Chem. C 2024, 12, 11785–11802. [Google Scholar] [CrossRef] [PubMed]
- Jethva, P.; Momin, M.; Khan, T.; Omri, A. Lanthanide-Doped Upconversion Luminescent Nanoparticles—Evolving Role in Bioimaging, Biosensing, and Drug Delivery. Materials 2022, 15, 2374. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Zhang, H.; Zhang, F. Expanding NIR-II Lanthanide Toolboxes for Improved Biomedical Imaging and Detection. Acc. Mater. Res. 2023, 4, 536–547. [Google Scholar] [CrossRef]
- Monteiro, J.H.S.K. Recent Advances in Luminescence Imaging of Biological Systems Using Lanthanide(III) Luminescent Complexes. Molecules 2020, 25, 2089. [Google Scholar] [CrossRef]
- Lin, Z.; Richardson, J.J.; Zhou, J.; Caruso, F. Direct synthesis of amorphous coordination polymers and metal–organic frameworks. Nat. Rev. Chem. 2023, 7, 273–286. [Google Scholar] [CrossRef] [PubMed]
- Arroyos, G.; da Silva, C.M.; Theodoroviez, L.B.; Campanella, J.E.M.; Frem, R.C.G. Insights on Luminescent Micro- and Nanospheres of Infinite Coordination Polymers. Chem. Eur. J. 2022, 28, e202103104. [Google Scholar] [CrossRef]
- Deng, J.; Wu, F.; Yu, P.; Mao, L. On-site sensors based on infinite coordination polymer nanoparticles: Recent progress and future challenge. Appl. Mater. Today 2018, 11, 338–351. [Google Scholar] [CrossRef]
- Nishiyabu, R.; Hashimoto, N.; Cho, T.; Watanabe, K.; Yasunaga, T.; Endo, A.; Kaneko, K.; Niidome, T.; Murata, M.; Adachi, C.; et al. Nanoparticles of Adaptive Supramolecular Networks Self-Assembled from Nucleotides and Lanthanide Ions. J. Am. Chem. Soc. 2009, 131, 2151–2158. [Google Scholar] [CrossRef]
- Liu, J.; Morikawa, M.-a.; Kimizuka, N. Conversion of Molecular Information by Luminescent Nanointerface Self-Assembled from Amphiphilic Tb(III) Complexes. J. Am. Chem. Soc. 2011, 133, 17370–17374. [Google Scholar] [CrossRef] [PubMed]
- Nishiyabu, R.; Aimé, C.; Gondo, R.; Noguchi, T.; Kimizuka, N. Confining Molecules within Aqueous Coordination Nanoparticles by Adaptive Molecular Self-Assembly. Angew. Chem. Int. Ed. 2009, 48, 9465–9468. [Google Scholar] [CrossRef]
- Tong, Y.-J.; Gong, X.; Chen, Y.; Wu, L.; Wang, D.; Xu, J.; Gong, Z. Promoting photoluminescent sensing performances of lanthanide materials with auxiliary ligands. TrAC Trends Anal. Chem. 2024, 171, 117482. [Google Scholar] [CrossRef]
- Sahoo, J.; Krishnaraj, C.; Sun, J.; Bihari Panda, B.; Subramanian, P.S.; Sekhar Jena, H. Lanthanide based inorganic phosphates and biological nucleotides sensor. Coord. Chem. Rev. 2022, 466, 214583. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, W.; Hu, Z.; Wang, G.; Uvdal, K. Coordination polymers for energy transfer: Preparations, properties, sensing applications, and perspectives. Coord. Chem. Rev. 2015, 284, 206–235. [Google Scholar] [CrossRef]
- Guan, Y.; Shuai, X.; Ruan, X.; Wang, Y.; Wei, Y. Both carbon dots precursor and organic bridge ligands for coordination polymers: AMP-based ratiometric fluorescent probes and its application in bovine serum albumin detection. Int. J. Biol. Macromol. 2025, 290, 139049. [Google Scholar] [CrossRef]
- Zhou, Q.-Y.; Song, Y.; Yan, X.-X.; Yu, Y.; Liu, L.-L.; Qiu, H.-D.; Li, P.; Su, X.-D. A convenient colorimetric assay for Cr(VI) detection based on homogeneous Cu(II)–GMP system with oxidoreductase-like activity. Talanta 2025, 281, 126884. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Lou, S.; Yang, B.; Wu, M.; Hao, H.; Guo, Z. Light-activated nanozymes (adenosine monophosphate-Ce3+-fluorescein) for colorimetric detection of carbaryl by breaking a pH limitation. Sens. Actuators B Chem. 2023, 396, 134548. [Google Scholar] [CrossRef]
- Liu, J.; Cao, Y.; Zhu, X.; Zou, L.; Li, G.; Ye, B. Enhanced oxidase-mimicking activity of Ce4+ by complexing with nucleotides and its tunable activity for colorimetric detection of Fe2+. Chem. Commun. 2021, 57, 8340–8343. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Hu, J.; Xu, J.; Ji, Y.; Li, R. Self-Calibrating Lanthanide Infinite Coordination Polymer Constructs Fluorescent Probes: A Sensitive Approach for Early Diagnosis of Hepatocellular Carcinoma and Environmental Analysis. ACS Appl. Mater. Inter. 2023, 15, 51823–51832. [Google Scholar] [CrossRef]
- Suárez-García, S.; Solórzano, R.; Novio, F.; Alibés, R.; Busqué, F.; Ruiz-Molina, D. Coordination polymers nanoparticles for bioimaging. Coord. Chem. Rev. 2021, 432, 213716. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, S.; Luo, S.; Wu, D. Therapeutic agent-based infinite coordination polymer nanomedicines for tumor therapy. Coord. Chem. Rev. 2021, 445, 214059. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Y.; Tu, D.; Chen, M.; Zhang, Y.; Gao, H.; Chen, X. Tumor-Microenvironment-Responsive Biodegradable Nanoagents Based on Lanthanide Nucleotide Self-Assemblies toward Precise Cancer Therapy. Angew. Chem. Int. Ed. 2022, 61, e202116983. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, J.; Zhou, R.; Zeng, X.; Zhao, H.; Chen, Q.; Wu, P. Universal “Three-in-One” Matrix to Maximize Reactive Oxygen Species Generation from Food and Drug Administration-Approved Photosensitizers for Photodynamic Inactivation of Biofilms. ACS Appl. Mater. Inter. 2022, 14, 15059–15068. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, Y.; Yao, D.; Wu, J.; Hu, Y.; Yuan, A. Nanoscale coordination polymers induce immunogenic cell death by amplifying radiation therapy mediated oxidative stress. Nat. Commun. 2021, 12, 145. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Liang, X.; He, T.; Qin, X.; Li, X.; Li, Y.; Li, L.; Loh, X.J.; Gong, C.; Liu, X. Lanthanide-Nucleotide Coordination Nanoparticles for STING Activation. J. Am. Chem. Soc. 2022, 144, 16366–16377. [Google Scholar] [CrossRef]
- Goshisht, M.K.; Tripathi, N.; Patra, G.K.; Chaskar, M. Organelle-targeting ratiometric fluorescent probes: Design principles, detection mechanisms, bio-applications, and challenges. Chem. Sci. 2023, 14, 5842–5871. [Google Scholar] [CrossRef]
- Park, S.-H.; Kwon, N.; Lee, J.-H.; Yoon, J.; Shin, I. Synthetic ratiometric fluorescent probes for detection of ions. Chem. Soc. Rev. 2020, 49, 143–179. [Google Scholar] [CrossRef]
- Luo, L.; Cheng, J.; Chen, S.; Zhang, P.; Chen, S.; Tang, Z.; Zeng, R.; Xu, M.; Hao, Y. A near-infrared ratiometric fluorescent probe for hydrazine and its application for gaseous sensing and cell imaging. Spectrochim. Acta A 2023, 296, 122692. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yang, S.; Liu, X.; Yang, T.; Han, T.; He, X.; Jiang, Y.; Hao, Y. A near-infrared turn-on fluorescent probe for the rapid detection of selenocysteine and its application of imaging in living cells and mice. Microchem. J. 2021, 170, 106681. [Google Scholar] [CrossRef]
- Hao, Y.Q.; Zhang, Y.T.; Zhang, A.M.; Sun, Q.L.; Zhu, J.; Qu, P.; Chen, S.; Xu, M.T. A benzothiazole-based ratiometric fluorescent probe for detection of formaldehyde and its applications for bioimaging. Spectrochim. Acta A 2020, 229, 117988. [Google Scholar] [CrossRef]
- Hao, Y.Q.; Yin, Q.Y.; Zhang, Y.T.; Xu, M.T.; Chen, S. Recent Progress in the Development of Fluorescent Probes for Thiophenol. Molecules 2019, 24, 3716. [Google Scholar] [CrossRef] [PubMed]
- Yan, B. Luminescence response mode and chemical sensing mechanism for lanthanide-functionalized metal–organic framework hybrids. Inorg. Chem. Front. 2021, 8, 201–233. [Google Scholar] [CrossRef]
- Gorai, T.; Schmitt, W.; Gunnlaugsson, T. Highlights of the development and application of luminescent lanthanide based coordination polymers, MOFs and functional nanomaterials. Dalton Trans. 2021, 50, 770–784. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Bo, C.; Guo, S. Luminescent Ln-MOFs for Chemical Sensing Application on Biomolecules. ACS Sens. 2024, 9, 4402–4424. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Sun, B.; Su, Z.; Hong, G.; Li, X.; Liu, Y.; Pan, Q.; Sun, J. Lanthanide-MOFs as multifunctional luminescent sensors. Inorg. Chem. Front. 2022, 9, 3259–3266. [Google Scholar] [CrossRef]
- Sahoo, S.; Mondal, S.; Sarma, D. Luminescent Lanthanide Metal Organic Frameworks (LnMOFs): A Versatile Platform towards Organomolecule Sensing. Coord. Chem. Rev. 2022, 470, 214707. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, D. Lanthanide-functionalized metal–organic frameworks as ratiometric luminescent sensors. J. Mater. Chem. C 2020, 8, 12739–12754. [Google Scholar] [CrossRef]
- Zhao, S.-N.; Wang, G.; Poelman, D.; Voort, P.V.D. Luminescent Lanthanide MOFs: A Unique Platform for Chemical Sensing. Materials 2018, 11, 572. [Google Scholar] [CrossRef]
- Lu, Y.; Ruan, G.; Du, W.; Li, J.; Yang, N.; Wu, Q.; Lu, L.; Zhang, C.; Li, L. Recent progress in rational design of fluorescent probes for Fe2+ and bioapplication. Dyes Pigments 2021, 190, 109337. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, X.; Jang, W.J.; Yan, M.; Yoon, J. Binding- and activity-based small molecule fluorescent probes for the detection of Cu+, Cu2+, Fe2+ and Fe3+ in biological systems. Coord. Chem. Rev. 2025, 522, 216201. [Google Scholar] [CrossRef]
- Xu, Y.Y.; Zhang, Z.Z.; Lv, P.Y.; Duan, Y.H.; Li, G.P.; Ye, B.X. Ratiometric fluorescence sensing of Fe2+/3+ by carbon dots doped lanthanide coordination polymers. J. Lumin. 2019, 205, 519–524. [Google Scholar] [CrossRef]
- Lv, P.; Xu, Y.; Liu, Z.; Li, G.; Ye, B. Carbon dots doped lanthanide coordination polymers as dual-function fluorescent probe for ratio sensing Fe2+/3+ and ascorbic acid. Microchem. J. 2020, 152, 104255. [Google Scholar] [CrossRef]
- Yan, L.; Bao, K.; Xu, X.; Li, L.; Wu, X. Recent progress in fluorescent probes for Cu2+ based on small organic molecules. J. Mol. Struct. 2024, 1316, 139100. [Google Scholar] [CrossRef]
- Falcone, E.; Okafor, M.; Vitale, N.; Raibaut, L.; Sour, A.; Faller, P. Extracellular Cu2+ pools and their detection: From current knowledge to next-generation probes. Coord. Chem. Rev. 2021, 433, 213727. [Google Scholar] [CrossRef]
- Tong, Y.-J.; Yu, L.-D.; Wu, L.-L.; Cao, S.-P.; Guo, Y.-L.; Liang, R.-P.; Qiu, J.-D. Ratiometric Detection of Cu2+ Using a Luminol-Tb-GMP Nanoprobe with High Sensitivity and Selectivity. ACS Sustain. Chem. Eng. 2018, 6, 9333–9341. [Google Scholar] [CrossRef]
- Zhang, J.F.; Zhou, Y.; Yoon, J.; Kim, J.S. Recent progress in fluorescent and colorimetric chemosensors for detection of precious metal ions (silver, gold and platinum ions). Chem. Soc. Rev. 2011, 40, 3416–3429. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Barman, P.; Dey, N.; Watkinson, M. Recent developments in pyrene-based fluorescence recognition and imaging of Ag+ and Pb2+ ions: Synthesis, applications and challenges. Sens. Diagn. 2024, 3, 946–967. [Google Scholar] [CrossRef]
- Liu, S.; Tian, J.; Zhu, L.; Tian, H.; Yang, M.; Huang, K.; Xu, W. A rapid fluorescent ratiometric Ag+ sensor based on synthesis of a dual-emission ternary nucleotide/terbium complex probe. Microchem. J. 2021, 170, 106658. [Google Scholar] [CrossRef]
- Low, K.M.; Lin, X.; Wu, H.; Li, S.F.Y. Ion-Imprinted Polymer-Based Sensor for the Detection of Mercury Ions. Polymers 2024, 16, 652. [Google Scholar] [CrossRef] [PubMed]
- Dai, D.; Yang, J.; Wang, Y.; Yang, Y.-W. Recent Progress in Functional Materials for Selective Detection and Removal of Mercury(II) Ions. Adv. Funct. Mater. 2021, 31, 2006168. [Google Scholar] [CrossRef]
- Hao, Y.Q.; Cui, Y.L.; Qu, P.; Sun, W.Z.; Liu, S.P.; Zhang, Y.T.; Li, D.L.; Zhang, F.Q.; Xu, M.T. A novel strategy for the construction of photoelectrochemical sensing platform based on multifunctional photosensitizer. Electrochim. Acta 2018, 259, 179–187. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, Y.; He, S.; Xu, Y.; Li, G.; Ye, B. Ratiometric fluorescence sensing of mercuric ion based on dye-doped lanthanide coordination polymer particles. Anal. Chim. Acta 2018, 1014, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Lv, P.; Cao, Y.; Liu, Z.; Wang, R.; Ye, B.; Li, G. Dual luminescent lanthanide coordination polymers for ratiometric sensing and efficient removal of Hg2+. Anal. Methods 2020, 12, 91–96. [Google Scholar] [CrossRef]
- Tong, Y.-J.; Qi, J.-X.; Song, A.-M.; Zhong, X.-L.; Jiang, W.; Zhang, L.; Liang, R.-P.; Qiu, J.-D. Electronic synergy between ligands of luminol and isophthalic acid for fluorescence ratiometric detection of Hg2+. Anal. Chim. Acta 2020, 1128, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Hu, C.; Wang, X.; Luo, Z.; Zhen, S.; Zhan, L.; Huang, C.; Li, Y. Facile synthesis of dual-ligand terbium-organic gels as ratiometric fluorescence probes for efficient mercury detection. J. Hazard. Mater. 2022, 436, 129080. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Ma, J. Recent advances in the determination of phosphate in environmental water samples: Insights from practical perspectives. TrAC Trends Anal. Chem. 2020, 127, 115908. [Google Scholar] [CrossRef]
- Lawal, A.T.; Adeloju, S.B. Progress and recent advances in phosphate sensors: A review. Talanta 2013, 114, 191–203. [Google Scholar] [CrossRef]
- He, Y.; Han, C.; Du, H.; Ye, Y.; Tao, C. Potentiometric Phosphate Ion Sensor Based on Electrochemically Modified All-Solid-State Copper Electrode for Phosphate Ions’ Detection in Real Water. Chemosensors 2024, 12, 53. [Google Scholar] [CrossRef]
- Han, L.; Liu, S.G.; Yang, Y.Z.; Fan, Y.Z.; Zhou, J.; Zhang, X.Y.; Li, N.B.; Luo, H.Q. A lanthanide coordination polymer as a ratiometric fluorescent probe for rapid and visual sensing of phosphate based on the target-triggered competitive effect. J. Mater. Chem. C 2020, 8, 13063–13071. [Google Scholar] [CrossRef]
- Luo, Z.; Hu, C.; Dai, W.; Chen, G.; Zhan, L.; Huang, C.; Li, Y. Dual-emission Tb-based coordination polymer as a ratiometric fluorescence probe for the detection of phosphate. Microchim. Acta 2024, 191, 317. [Google Scholar] [CrossRef]
- Wu, H.; Ling, Y.; Ju, S.; Chen, Y.; Xu, M.; Tang, Y. A smartphone-integrated light-up lanthanide fluorescent probe for the visual and ratiometric detection of total phosphorus in human urine and environmental water samples. Spectrochim. Acta A 2022, 279, 121360. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-N.; Wu, X.-Y.; Liang, Y.-Q.; Zeng, J.-Y.; Wu, Y.-X.; Lai, J.-P.; Sun, H. A strategy of “fluorescence-visualization dual channel” for highly sensitive and rapid detection of phosphate biomarkers based on stimulus-responsive infinite coordination polymers. Sens. Actuators B Chem. 2022, 370, 132366. [Google Scholar] [CrossRef]
- Wang, H.; Ai, M.; Liu, J. Detecting phosphate using lysine-sensitized terbium coordination polymer nanoparticles as ratiometric luminescence probes. Anal. Bioanal. Chem. 2023, 415, 2185–2191. [Google Scholar] [CrossRef] [PubMed]
- Dai, M.; Niu, Q.; Wu, S.; Lin, Y.; Biswas, J.K.; Yang, C. Hydroxyl radicals in ozone-based advanced oxidation of organic contaminants: A review. Environ. Chem. Lett. 2024, 22, 3059–3106. [Google Scholar] [CrossRef]
- Hou, J.-T.; Zhang, M.; Liu, Y.; Ma, X.; Duan, R.; Cao, X.; Yuan, F.; Liao, Y.-X.; Wang, S.; Xiu Ren, W. Fluorescent detectors for hydroxyl radical and their applications in bioimaging: A review. Coord. Chem. Rev. 2020, 421, 213457. [Google Scholar] [CrossRef]
- Alanazi, M.; Yong, J.; Wu, M.; Zhang, Z.; Tian, D.; Zhang, R. Recent Advances in Detection of Hydroxyl Radical by Responsive Fluorescence Nanoprobes. Chem. Asian J. 2024, 19, e202400105. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Li, Q.; Wang, C.; Tan, H. Ratiometric detection of hydroxy radicals based on functionalized europium(III) coordination polymers. Microchim. Acta 2017, 185, 9. [Google Scholar] [CrossRef]
- Patel, V.; Kruse, P.; Selvaganapathy, P.R. Solid State Sensors for Hydrogen Peroxide Detection. Biosensors 2021, 11, 9. [Google Scholar] [CrossRef]
- Winterbourn, C.C. Biological Production, Detection, and Fate of Hydrogen Peroxide. Antioxid. Redox Signal. 2017, 29, 541–551. [Google Scholar] [CrossRef] [PubMed]
- Galligan, J.J.; Baeumner, A.J.; Duerkop, A. Recent advances and trends in optical devices and sensors for hydrogen peroxide detection. TrAC Trends Anal. Chem. 2024, 180, 117948. [Google Scholar] [CrossRef]
- Ai, M.; Jiang, Y.; Xiao, Z.; Liu, J.; Liu, C. Ratiometric luminescence detection of H2O2 in food samples using a terbium coordination polymer sensitized with 3-carboxyphenylboronic acid. Spectrochim. Acta A 2024, 313, 124114. [Google Scholar] [CrossRef]
- Wu, X.; Ruan, C.; Zhu, X.; Zou, L.; Wang, R.; Li, G. Copper-doped Lanthanide Coordination Polymers as Luminescent Nanoenzyme for Ratiometric Sensing of H2O2 and Glutathione. J. Fluoresc. 2024. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Wang, C.H.; Tan, H.L. Lanthanide/nucleotide coordination polymers: An excellent host platform for encapsulating enzymes and fluorescent nanoparticles to enhance ratiometric sensing. J. Mater. Chem. B 2017, 5, 7692–7700. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Wu, X.; Liu, J.; Zou, L.; Ye, B.; Li, G. Lanthanide coordination polymers used for fluorescent ratiometric sensing of H2O2 and glucose. Inorg. Chem. Commun. 2022, 144, 109849. [Google Scholar] [CrossRef]
- Gao, N.; Zhang, Z.; Xiao, Y.; Huang, P.; Wu, F.-Y. Integrated ratiometric luminescence sensing strategy based on encapsulation of guests in heterobinuclear lanthanide coordination polymer nanoparticles for glucose detection in human serum. Talanta 2023, 265, 124854. [Google Scholar] [CrossRef] [PubMed]
- Du, M.; Li, N.; Mao, G.; Liu, Y.; Wang, X.; Tian, S.; Hu, Q.; Ji, X.; Liu, Y.; He, Z. Self-assembled fluorescent Ce(Ⅲ) coordination polymer as ratiometric probe for HIV antigen detection. Anal. Chim. Acta 2019, 1084, 116–122. [Google Scholar] [CrossRef]
- Xiong, P.; Cheng, W.; Chen, X.; Niu, H. Research progress of hydrogen sulfide fluorescent probes targeting organelles. Talanta 2025, 281, 126869. [Google Scholar] [CrossRef] [PubMed]
- Andrés, C.M.C.; Pérez de la Lastra, J.M.; Andrés Juan, C.; Plou, F.J.; Pérez-Lebeña, E. Chemistry of Hydrogen Sulfide—Pathological and Physiological Functions in Mammalian Cells. Cells 2023, 12, 2684. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Yang, Y.; Wang, W.; Gu, H.; Chen, W.; Li, C.; Zhang, P.; Zeng, R.; Xu, M.; Chen, S. Development of a Photoelectrochemical Microelectrode Using an Organic Probe for Monitoring Hydrogen Sulfide in Living Brains. Anal. Chem. 2024, 96, 19822–19832. [Google Scholar] [CrossRef]
- Li, T.; Hao, Y.; Dong, H.; Li, C.; Liu, J.; Zhang, Y.; Tang, Z.; Zeng, R.; Xu, M.; Chen, S. Target-Induced In Situ Formation of Organic Photosensitizer: A New Strategy for Photoelectrochemical Sensing. ACS Sens. 2022, 7, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Su, W.; Zheng, H.; Yang, S.; Yang, T.; Han, T.; Dessie, W.; He, X.; Jiang, Y.; Hao, Y. Two phenanthroimidazole turn-on probes for the rapid detection of selenocysteine and its application in living cells imaging. Spectrochim. Acta A 2022, 267, 120585. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Li, Q.; Wang, C.; Tan, H. Copper (II)-mediated fluorescence of lanthanide coordination polymers doped with carbon dots for ratiometric detection of hydrogen sulfide. Sens. Actuators B Chem. 2017, 253, 27–33. [Google Scholar] [CrossRef]
- Zeng, H.-H.; Yu, K.; Huang, J.; Liu, F.; Zhang, Z.-Y.; Chen, S.-P.; Zhang, F.; Guan, S.-P.; Qiu, L. Ratiometric fluorescence detection of sulfide ions based on lanthanide coordination polymer using guanosine diphosphate as ligand. Colloids Surf. B Biointerfaces 2021, 204, 111796. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Li, Y. Past, Present, and Future of Tools for Dopamine Detection. Neuroscience 2023, 525, 13–25. [Google Scholar] [CrossRef]
- Balkourani, G.; Brouzgou, A.; Tsiakaras, P. A review on recent advancements in electrochemical detection of dopamine using carbonaceous nanomaterials. Carbon 2023, 213, 118281. [Google Scholar] [CrossRef]
- Rusheen, A.E.; Gee, T.A.; Jang, D.P.; Blaha, C.D.; Bennet, K.E.; Lee, K.H.; Heien, M.L.; Oh, Y. Evaluation of electrochemical methods for tonic dopamine detection in vivo. TrAC Trends Anal. Chem. 2020, 132, 116049. [Google Scholar] [CrossRef]
- Ruan, C.; Zhou, S.; Wu, X.; Zou, L.; Wang, R.; Li, G. Lanthanide coordination polymers as luminescent laccase mimics for ratiometric sensing of dopamine. Spectrochim. Acta A 2025, 327, 125398. [Google Scholar] [CrossRef]
- Koo, P.-L.; Lim, G.-K. A review on analytical techniques for quantitative detection of histamine in fish products. Microchem. J. 2023, 189, 108499. [Google Scholar] [CrossRef]
- Tsiasioti, A.; Zacharis, C.K.; Tzanavaras, P.D. Derivatization strategies for the determination of histamine in food samples: A review of recent separation-based methods. TrAC Trends Anal. Chem. 2023, 168, 117302. [Google Scholar] [CrossRef]
- Li, H.; Li, M.; Zhang, S.; Chen, M.; Wang, J. Packaged europium/fluorescein-based hydrogen bond organic framework as ratiometric fluorescent probe for visual real-time monitoring of seafood freshness. Talanta 2024, 272, 125809. [Google Scholar] [CrossRef] [PubMed]
- Imanzadeh, H.; Sefid-Sefidehkhan, Y.; Afshary, H.; Afruz, A.; Amiri, M. Nanomaterial-based electrochemical sensors for detection of amino acids. J. Pharm. Biomed. Anal. 2023, 230, 115390. [Google Scholar] [CrossRef]
- Dinu, A.; Apetrei, C. A Review of Sensors and Biosensors Modified with Conducting Polymers and Molecularly Imprinted Polymers Used in Electrochemical Detection of Amino Acids: Phenylalanine, Tyrosine, and Tryptophan. Int. J. Mol. Sci. 2022, 23, 1218. [Google Scholar] [CrossRef] [PubMed]
- Ehrenshaft, M.; Deterding, L.J.; Mason, R.P. Tripping up Trp: Modification of protein tryptophan residues by reactive oxygen species, modes of detection, and biological consequences. Free Radical Biol. Med. 2015, 89, 220–228. [Google Scholar] [CrossRef]
- Quan, X.; Yan, B. A ternary dual-emission Eu(III)-functionalized HOF/COF hybrid: Tryptophan, 5-hydroxyindoleacetic acid ratiometric fluorescence detection and latent fingerprint identification. Sens. Actuators B Chem. 2024, 409, 135590. [Google Scholar] [CrossRef]
- Kayani, K.F.; Shatery, O.B.A.; Mohammed, S.J.; Ahmed, H.R.; Hamarawf, R.F.; Mustafa, M.S. Synthesis and applications of luminescent metal organic frameworks (MOFs) for sensing dipicolinic acid in biological and water samples: A review. Nanoscale Adv. 2025, 7, 13–41. [Google Scholar] [CrossRef]
- Sabei, F.Y. Colorimetric and fluorescent sensors based on nanomaterials for the detection of dipicolinic acid: A comprehensive review. J. Nanopart. Res. 2023, 25, 250. [Google Scholar] [CrossRef]
- Li, J.; Liang, Y.; Tian, C.; Zou, H.; Zhan, L.; Wang, L.; Huang, C.; Li, C. Determination of Dipicolinic Acid through the Antenna Effect of Eu(III) Coordination Polymer. Molecules 2024, 29, 4259. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Xu, T. Portable visual assay for anthrax biomarker based on lanthanide coordination polymer nanoparticles and smartphone-integrated mini-device. Environ. Sci. Nano 2024, 11, 1170–1178. [Google Scholar]
- Wang, Q.-X.; Xue, S.-F.; Chen, Z.-H.; Ma, S.-H.; Zhang, S.; Shi, G.; Zhang, M. Dual lanthanide-doped complexes: The development of a time-resolved ratiometric fluorescent probe for anthrax biomarker and a paper-based visual sensor. Biosens. Bioelectron. 2017, 94, 388–393. [Google Scholar] [CrossRef]
- Shen, P.; Tao, J.; Gu, Q.; Sun, J.; Er, X.; Jin, H. A novel core–Shell lanthanide coordination polymer ratiometric fluorescent probe for the ultrasensitive and visual detection of anthrax biomarker. Microchem. J. 2024, 201, 110615. [Google Scholar] [CrossRef]
- Huang, C.; Ma, R.; Luo, Y.; Shi, G.; Deng, J.; Zhou, T. Stimulus Response of TPE-TS@Eu/GMP ICPs: Toward Colorimetric Sensing of an Anthrax Biomarker with Double Ratiometric Fluorescence and Its Coffee Ring Test Kit for Point-of-Use Application. Anal. Chem. 2020, 92, 12934–12942. [Google Scholar] [CrossRef] [PubMed]
- Madikizela, L.M.; Nomngongo, P.N.; Pakade, V.E. Synthesis of molecularly imprinted polymers for extraction of fluoroquinolones in environmental, food and biological samples. J. Pharm. Biomed. Anal. 2022, 208, 114447. [Google Scholar] [CrossRef] [PubMed]
- Jouyban, A.; Rahimpour, E. Optical sensors based on silver nanoparticles for determination of pharmaceuticals: An overview of advances in the last decade. Talanta 2020, 217, 121071. [Google Scholar] [CrossRef] [PubMed]
- Azriouil, M.; Matrouf, M.; Ettadili, F.E.; Laghrib, F.; Farahi, A.; Saqrane, S.; Bakasse, M.; Lahrich, S.; El Mhammedi, M.A. Recent trends on electrochemical determination of antibiotic Ciprofloxacin in biological fluids, pharmaceutical formulations, environmental resources and foodstuffs: Direct and indirect approaches. Food Chem. Toxicol. 2022, 168, 113378. [Google Scholar] [CrossRef]
- An, X.; Zhu, X.; Liu, J.; Zou, L.; Li, G.; Ye, B. Ratiometric fluorescence detection of ciprofloxacin using the terbium-based coordination polymers. Spectrochim. Acta A 2022, 269, 120775. [Google Scholar] [CrossRef] [PubMed]
- Weng, P.; Li, C.; Liu, Q.; Tang, Z.; Zhou, Z.; Chen, S.; Hao, Y.; Xu, M. A ternary nucleotide–lanthanide coordination nanoprobe for ratiometric fluorescence detection of ciprofloxacin. Luminescence 2024, 39, e4667. [Google Scholar] [CrossRef]
- Li, M.; Jia, L.; Chen, X.; Li, Y.; Zhao, D.; Zhang, L.; Zhao, T.; Xu, J. Web system-assisted ratiometric fluorescent probe embedded with machine learning for intelligent detection of pefloxacin. Sens. Actuators B Chem. 2024, 407, 135491. [Google Scholar] [CrossRef]
- Raykova, M.R.; Corrigan, D.K.; Holdsworth, M.; Henriquez, F.L.; Ward, A.C. Emerging Electrochemical Sensors for Real-Time Detection of Tetracyclines in Milk. Biosensors 2021, 11, 232. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.-j.; Qi, W.-n.; Feng, Y.; Liu, Y.-w.; Ebrahim, S.; Long, J. Degradation mechanisms of oxytetracycline in the environment. J. Integr. Agric. 2019, 18, 1953–1960. [Google Scholar] [CrossRef]
- Liu, X.; Huang, D.; Lai, C.; Zeng, G.; Qin, L.; Zhang, C.; Yi, H.; Li, B.; Deng, R.; Liu, S.; et al. Recent advances in sensors for tetracycline antibiotics and their applications. TrAC Trends Anal. Chem. 2018, 109, 260–274. [Google Scholar] [CrossRef]
- González Fá, A.; Pignanelli, F.; López-Corral, I.; Faccio, R.; Juan, A.; Di Nezio, M.S. Detection of oxytetracycline in honey using SERS on silver nanoparticles. TrAC Trends Anal. Chem. 2019, 121, 115673. [Google Scholar] [CrossRef]
- Sun, Z.; Gao, Y.; Niu, Z.; Pan, H.; Xu, X.; Zhang, W.; Zou, X. Programmable-Printing Paper-Based Device with a MoS2 NP and Gmp/Eu-Cit Fluorescence Couple for Ratiometric Tetracycline Analysis in Various Natural Samples. ACS Sens. 2021, 6, 4038–4047. [Google Scholar] [CrossRef]
- Yin, S.; Tong, C. Lanthanide coordination polymer nanoparticles as a ratiometric fluorescence sensor for real-time and visual detection of tetracycline by a smartphone and test paper based on the analyte-triggered antenna effect and inner filter effect. Anal. Chim. Acta 2022, 1206, 339809. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Xu, H.; Wang, L.; Li, Y.; Tian, X. Portable ratiometric probe based on the use of europium(III) coordination polymers doped with carbon dots for visual fluorometric determination of oxytetracycline. Microchim. Acta 2020, 187, 125. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Luo, Y.; Li, J.; Liu, C.; Zhou, T.; Deng, J. pH-Regulated H4TCPE@Eu/AMP ICP Sensor Array and Its Fingerprinting on Test Papers: Toward Point-of-Use Systematic Analysis of Environmental Antibiotics. Anal. Chem. 2021, 93, 9183–9192. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Liang, R.; Chen, W.; Wang, C.; Xing, D. The development of biosensors for alkaline phosphatase activity detection based on a phosphorylated DNA probe. Talanta 2024, 270, 125622. [Google Scholar] [CrossRef]
- Wang, K.; Wang, W.; Zhang, X.-Y.; Jiang, A.-Q.; Yang, Y.-S.; Zhu, H.-L. Fluorescent probes for the detection of alkaline phosphatase in biological systems: Recent advances and future prospects. TrAC Trends Anal. Chem. 2021, 136, 116189. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, W.; Wang, C.; Xing, D. Assays for alkaline phosphatase that use L-ascorbic acid 2-phosphate as a substrate. Coord. Chem. Rev. 2023, 495, 215370. [Google Scholar] [CrossRef]
- Deng, J.; Yu, P.; Wang, Y.; Mao, L. Real-time Ratiometric Fluorescent Assay for Alkaline Phosphatase Activity with Stimulus Responsive Infinite Coordination Polymer Nanoparticles. Anal. Chem. 2015, 87, 3080–3086. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Gong, C.; Li, Z.; Yao, R.; Huo, P.; Deng, B.; Liu, G.; Pu, S. A self-assembly lanthanide nanoparticle for ratiometric fluorescence determination of alkaline phosphatase activity. J. Photochem. Photobiol. A 2022, 432, 114054. [Google Scholar] [CrossRef]
- Qu, F.; Wang, H.; You, J. Dual lanthanide-probe based on coordination polymer networks for ratiometric detection of glyphosate in food samples. Food Chem. 2020, 323, 126815. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Guo, W.; Wang, Y.; Hua, Q.; Tang, F.; Luan, F.; Tian, C.; Zhuang, X.; Zhao, L. Selective Detection of Alkaline Phosphatase Activity in Environmental Water Samples by Copper Nanoclusters Doped Lanthanide Coordination Polymer Nanocomposites as the Ratiometric Fluorescent Probe. Biosensors 2022, 12, 372. [Google Scholar] [CrossRef] [PubMed]
- Ling, Y.; He, L.Z.; Wan, C.C.; Han, L.; Wang, X.H.; Xu, Z.Y.; Li, X.L.; Li, N.B.; Luo, H.Q. ZIF-8@GMP-Tb nanocomplex for ratiometric fluorescent detection of alkaline phosphatase activity. Spectrochim. Acta A 2022, 264, 120230. [Google Scholar] [CrossRef]
- Cai, T.-T.; Tian, Y.; Huang, P.; Wu, F.-Y. Dual-product synergistically enhanced ratiometric fluorescence assay for alkaline phosphatase activity using core-shell lanthanide-based nanoprobe. Anal. Chim. Acta 2022, 1235, 340550. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Han, X.; Qu, F.; Kong, R.-M.; Zhao, Z. A carbon dot doped lanthanide coordination polymer nanocomposite as the ratiometric fluorescent probe for the sensitive detection of alkaline phosphatase activity. Analyst 2021, 146, 2862–2870. [Google Scholar] [CrossRef]
- Wu, H.; Ju, S.; Ling, Y.; Sun, H.; Tang, Y.; Tong, C. Gelatinous lanthanide coordination polymer with aggregation-enhanced antenna effect for ratiometric detection of endogenous alkaline phosphatase. J. Colloid Interface Sci. 2023, 645, 338–349. [Google Scholar] [CrossRef] [PubMed]
- Song, A.-M.; Tong, Y.-J.; Liang, R.-P.; Qiu, J.-D. A ratiometric lanthanide fluorescent probe for highly sensitive detection of alkaline phosphatase and arsenate. Microchem. J. 2021, 164, 106027. [Google Scholar] [CrossRef]
- Yu, H.R.; Qiang, Z.Q.; Sun, Y.L.; Sun, M.Y.; Zhang, L.; Yu, B.H.; Lei, W.; Zhang, W.B. A novel ratiometric fluorescent probe based on an internal reference of lanthanide/nucleotide for alkaline phosphatase detection. Analyst 2025, 150, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Liu, H.; Guo, K.; Chen, L.; Yang, M.; Chen, Q. Research Advances and Detection Methodologies for Microbe-Derived Acetylcholinesterase Inhibitors: A Systemic Review. Molecules 2017, 22, 176. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.-M.; Xu, B.; Dong, C. Recent advances in colorimetric strategies for acetylcholinesterase assay and their applications. TrAC Trends Anal. Chem. 2021, 142, 116320. [Google Scholar] [CrossRef]
- Rajagopalan, V.; Venkataraman, S.; Rajendran, D.S.; Vinoth Kumar, V.; Kumar, V.V.; Rangasamy, G. Acetylcholinesterase biosensors for electrochemical detection of neurotoxic pesticides and acetylcholine neurotransmitter: A literature review. Environ. Res. 2023, 227, 115724. [Google Scholar] [CrossRef]
- Ma, R.; Xu, M.; Liu, C.; Shi, G.; Deng, J.; Zhou, T. Stimulus Response of GQD-Sensitized Tb/GMP ICP Nanoparticles with Dual-Responsive Ratiometric Fluorescence: Toward Point-of-Use Analysis of Acetylcholinesterase and Organophosphorus Pesticide Poisoning with Acetylcholinesterase as a Biomarker. ACS Appl. Mater. Inter. 2020, 12, 42119–42128. [Google Scholar] [CrossRef] [PubMed]
- Chang, Z.; Zhu, B.; Liu, J.; Dong, H.; Hao, Y.; Zhou, Y.; Travas-Sejdic, J.; Xu, M. “Signal-on” electrochemical detection of BACE1 for early detection of Alzheimer’s disease. Cell Rep. Phys. Sci. 2024, 5, 101632. [Google Scholar] [CrossRef]
- Chiorcea-Paquim, A.-M.; Oliveira-Brett, A.M. Amyloid beta peptides electrochemistry: A review. Curr. Opin. Electrochem. 2022, 31, 100837. [Google Scholar] [CrossRef]
- Jamerlan, A.; An, S.S.A.; Hulme, J. Advances in amyloid beta oligomer detection applications in Alzheimer’s disease. TrAC Trends Anal. Chem. 2020, 129, 115919. [Google Scholar] [CrossRef]
- Wei, X.; Fan, J.; Hao, Y.; Dong, H.; Zhang, Y.; Zhou, Y.; Xu, M. Electrochemiluminescence and electrochemical dual-mode detection of BACE1 activity based on the assembly of peptide and luminol co-functionalized silver nanoparticles induced by cucurbit [8]uril. Talanta 2024, 266, 124904. [Google Scholar] [CrossRef]
- Liu, C.; Lu, D.; You, X.; Shi, G.; Deng, J.; Zhou, T. Carbon dots sensitized lanthanide infinite coordination polymer nanoparticles: Towards ratiometric fluorescent sensing of cerebrospinal Aβ monomer as a biomarker for Alzheimer’s disease. Anal. Chim. Acta 2020, 1105, 147–154. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Xu, S.; Guo, S.; Xue, Q.; Wang, H. Efficient ratiometric fluorescence probe based on dual-emission luminescent lanthanide coordination polymer for amyloid β-peptide detection. Sens. Actuators B Chem. 2022, 352, 131052. [Google Scholar] [CrossRef]
- Jung, H.S.; Verwilst, P.; Kim, W.Y.; Kim, J.S. Fluorescent and colorimetric sensors for the detection of humidity or water content. Chem. Soc. Rev. 2016, 45, 1242–1256. [Google Scholar] [CrossRef] [PubMed]
- Ge, H.; Sun, Z.; Jiang, Y.; Wu, X.; Jia, Z.; Cui, G.; Zhang, Y. Recent Advances in THz Detection of Water. Int. J. Mol. Sci. 2023, 24, 10936. [Google Scholar] [CrossRef]
- Deng, J.; Shi, G.; Zhou, T. Colorimetric assay for on-the-spot alcoholic strength sensing in spirit samples based on dual-responsive lanthanide coordination polymer particles with ratiometric fluorescence. Anal. Chim. Acta 2016, 942, 96–103. [Google Scholar] [CrossRef]
- Wang, P.; Wang, T.; Wang, X.; Zhao, M.; Zhou, X.; Wang, S.; Liu, Y. Ratiometric fluorescence nanoplatform integrated with smartphone as readout device for sensing trace water. Anal. Bioanal. Chem. 2021, 413, 4267–4275. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, Q.; Jiang, Z.; Shen, J.; Wu, W.; Liu, X.; Fan, Q.; Huang, W. Recent Progress of SERS Nanoprobe for pH Detecting and Its Application in Biological Imaging. Biosensors 2021, 11, 282. [Google Scholar] [CrossRef]
- Steinegger, A.; Wolfbeis, O.S.; Borisov, S.M. Optical Sensing and Imaging of pH Values: Spectroscopies, Materials, and Applications. Chem. Rev. 2020, 120, 12357–12489. [Google Scholar] [CrossRef] [PubMed]
- Munan, S.; Yadav, R.; Pareek, N.; Samanta, A. Ratiometric fluorescent probes for pH mapping in cellular organelles. Analyst 2023, 148, 4242–4262. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Gao, J.; Zhang, K.; Mai, Z.; Wang, Q. Effective and efficient detection of pH fluctuations based on ratiometric metallic-ciprofloxacin architectures. Opt. Mater. 2018, 81, 1–6. [Google Scholar] [CrossRef]
- Su, Y.; Ma, C.; Chen, J.; Wu, H.; Luo, W.; Peng, Y.; Luo, Z.; Li, L.; Tan, Y.; Omisore, O.M.; et al. Printable, Highly Sensitive Flexible Temperature Sensors for Human Body Temperature Monitoring: A Review. Nanoscale Res. Lett. 2020, 15, 200. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, L.-N.; Tao, X.-M.; Ding, X. Review of Flexible Temperature Sensing Networks for Wearable Physiological Monitoring. Adv. Healthc. Mater. 2017, 6, 1601371. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Wang, S.; Li, H.; Li, M.; Chen, T.; Xiao, X.; Wang, Y. Recent advances in MoS2-based nanomaterial sensors for room-temperature gas detection: A review. Sens. Diagn. 2023, 2, 361–381. [Google Scholar] [CrossRef]
- Sobrinho, J.A.; Brito Júnior, G.A.; Mazali, I.O.; Sigoli, F.A. Water-soluble poly(N-isopropylacrylamide) nanoparticles grafted to trivalent lanthanide complexes as highly sensitive ratiometric nanothermometers. New J. Chem. 2020, 44, 8068–8075. [Google Scholar] [CrossRef]
- Luan, K.; Meng, R.; Shan, C.; Cao, J.; Jia, J.; Liu, W.; Tang, Y. Terbium Functionalized Micelle Nanoprobe for Ratiometric Fluorescence Detection of Anthrax Spore Biomarker. Anal. Chem. 2018, 90, 3600–3607. [Google Scholar] [CrossRef] [PubMed]
Analyte | Ln-CPs Probe | Ratiometric Signal Moieties | Dynamic Range | Detection Limit | Ref. |
---|---|---|---|---|---|
Fe2+ | AMP/Tb/Phen/CDs | Tb/CDs | 2–500 nM, 0.5–130 μM | 2 nM | [61] |
Fe2+/Fe3+ | AMP/Tb/Phen/CDs | Tb/CDs | Fe2+: 0.05–130 μM Fe3+: 0.1–80 μM | Fe2+: 23 nM Fe3+: 88 nM | [62] |
Cu2+ | GMP/Tb/Luminol | Tb/Luminol | 0.01–80 μM | 4.2 nM | [65] |
Ag+ | GMP/Tb/Luminol | Tb/Luminol | 0.1–6 nM, 6–100 μM | 65 nM | [68] |
Hg2+ | GMP/Tb/Luminol | Tb/Luminol | 5 nM–130 μM | 1.3 nM | [73] |
Hg2+ | Phen/Tb/Luminol | Tb/Luminol | 0.1–30 μM | 3.6 nM | [75] |
Hg2+ | AMP/Ce/Tb/Coumarin | Tb/Coumarin | 0.08–1000 nM | 0.03 nM | [72] |
Hg2+ | IPA/Eu/Luminol | Eu/Luminol | 0.05–20 μM | 13.2 nM | [74] |
PO43− | AMP/Tb/Lys | Tb/Lys | 0.1–6 μM | 0.08 μM | [83] |
PO43− | Ade/Eu/DPA/Coumarin | Eu/Coumarin | 0.25–5 μM | 51 nM | [82] |
PO43− | DPA/Eu/Luminol | Eu/Luminol | 0.1–25 μM | 27 nM | [81] |
PO43− | BDC/Tb/GMP | Tb/GMP | 0.5–100 μM | 0.13 μM | [79] |
PO43− | DPA/Tb/BTB | Tb/BTB | 0.1–50 μM | 25.8 nM | [80] |
•OH | DPA/Eu/TA | Eu/TAOH | 0.8–200 μM | 0.5 μM | [92] |
H2O2 | GDP/Cu2+/Tb/TA | Tb/TAOH | 0.01–300 μM | 1.62 nM | [91] |
H2O2 | AMP/Tb/3-CPBA | Tb/HBA | 0.1–60 μM | 0.23 μM | [95] |
Glucose | @AMP/Tb/Ce/RhB/GOx | Tb/RhB | 0.4–80 μM | 74.3 nM | [94] |
Glucose | GDP/Tb/BDC/GOx | Tb/BDC | 0.005–20 μM and 120–500 μM | 3.42 nM | [93] |
Glucose | AMP/Tb/CPBA/GOx/CDs | Tb/CDs | 0.5–300 μM | 51 nM | [92] |
H2S | GMP/Tb/ZIF-8/CDs/Cu | Tb/CDs | 0.5–100 μM | 0.15 μM | [102] |
H2S | GDP/Tb/Coumarin/Fe | Tb/Coumarin | 0.1–45 μM | 73 nM | [103] |
Dopamine | GMP/Tb/Cu2+/BDC | Tb/BDC | 1–400 μM | 0.44 μM | [107] |
Histamine | HOF/Eu/FITC | Eu/FITC | 3.0–52.5 mg·L−1 | 1.6 mg·L−1 | [110] |
Tryptophan | HOF/Eu/COF | Eu/COF | 0.03–1 mM | 1.24 μM | [114] |
DPA | SiO2@HPST/Eu/GMP | Eu/HPST | 10–60 μM | 24.2 nM | [120] |
DPA | GMP/Eu/TPE | Eu/TPE | 0–40 μM | 27 nM | [121] |
DPA | Ligand/Tb/Naphthalene | Tb/Naphthalene | 0–7 μM | 87 nM | [171] |
DPA | SiO2@DPA@Tb/GMP/Eu | Tb/Eu | 0.05–2 μM | 7.3 nM | [119] |
DPA | AMP/Tb/Luminol | Tb/Luminol | 0.01–10 μM | 3.4 nM | [118] |
CIP | AMP/Tb/Luminol | Tb/Luminol | 5 nM–2.5 μM | 2 nM | [125] |
CIP | GMP/Tb/BDC | Tb/BDC | 0.1–10 μM | 23.8 nM | [126] |
Tc | GMP/Eu/Luminol | Eu/Luminol | 0.01–60 μM | 3.4 nM | [133] |
Tc | GMP/Eu/MoS2 | Eu/MoS2 | 12.7 nM–80 μM | 3 nM | [132] |
Antibiotics | AMP/Eu/H4TCPE | Eu/H4TCPE | 1–30 μM | -- | [135] |
OTc | AMP/Eu/CDs | Eu/CDs | 1–100 μM | 0.5 μM | [134] |
Pefloxacin | GMP/Tb/BSA-AuNCs | Tb/AuNCs | 0.01–60 μM | 5.37 nM | [127] |
ALP | AMP/Eu/CIP | Eu/CIP | 0.1–60 U·L−1 | 0.026 U·L−1 | [146] |
ALP | GMP/Ce/Tb | Ce/Tb | 0.2–60 U·L−1 | 0.12 U·L−1 | [140] |
ALP | GMP/Tb/Cu NCs | Tb/Cu NCs | 0.002–2 U·mL−1 | 0.002 U·mL−1 | [142] |
ALP | GMP/Eu/ThT/Luminol | ThT/Luminol | 0.005–60 U·L−1 | 1.7 mU·L−1 | [147] |
ALP | GMP/Tb/ZIF-8 | Tb/ZIF-8 | 0.25–20 U·L−1 | 0.12 U·L−1 | [143] |
ALP | GMP/Tb/CDs | Tb/CDs | 0.5–80 U·L−1 | 0.13 U·L−1 | [145] |
ALP | GMP/Tb@GMP/Eu/DPA | Tb/Eu | 0.1–300 U·L−1 | 0.08 U·L−1 | [141] |
ALP | GMP/Tb/Coumarin | Tb/Coumarin | 0.025–0.2 U·mL−1 | 0.01 U·mL−1 | [139] |
ALP | AAP/Tb/UiO-66-NH2 | Tb/UiO-66-NH2 | 0.05–0.6 U·mL−1 | 0.018 U·mL−1 | [144] |
ALP | CIP@SiO2/Ce/ATP/Tris | Ce/CIP | 0.1–20 U·L−1 | 2.5 mU·L−1 | [148] |
AChE | GMP/Tb/GQD | Tb/GQD | 0.1–100 U·L−1 | 0.037 U·L−1 | [152] |
Aβ | GMP/Tb/Luminol/Cu2+ | Tb/Luminol | 0.05–80 nM | 20 pM | [158] |
Aβ | GMP/Eu/CDs/Cu2+ | Eu/CDs | 0.5–100 nM | 0.17 nM | [157] |
HIV antigen | ATP/Ce/Fluorescein | Ce/Fluorescein | 4–28 pg·mL−1 | 1.1 pg·mL−1 | [96] |
Water content | GMP/Ce/DPA/Tb/DPA | Tb/Ce | 0.2–90% in ethanol | 0.16% | [162] |
Water content | TDA/Eu/Coumarin 343 | Eu/Coumarin | 10–100% in ethanol | 0.2% | [161] |
pH | CIP/Eu/Tb | CIP/Eu/Tb | 3–12 | -- | [166] |
Temperature | pNIPAM/Eu/Tb | Eu/Tb | 36–50 °C | -- | [170] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Z.; Hao, Y.; Long, Y.; Zhang, P.; Zeng, R.; Chen, S.; Chen, W. Luminescent Lanthanide Infinite Coordination Polymers for Ratiometric Sensing Applications. Molecules 2025, 30, 396. https://doi.org/10.3390/molecules30020396
Song Z, Hao Y, Long Y, Zhang P, Zeng R, Chen S, Chen W. Luminescent Lanthanide Infinite Coordination Polymers for Ratiometric Sensing Applications. Molecules. 2025; 30(2):396. https://doi.org/10.3390/molecules30020396
Chicago/Turabian StyleSong, Ziqin, Yuanqiang Hao, Yunfei Long, Peisheng Zhang, Rongjin Zeng, Shu Chen, and Wansong Chen. 2025. "Luminescent Lanthanide Infinite Coordination Polymers for Ratiometric Sensing Applications" Molecules 30, no. 2: 396. https://doi.org/10.3390/molecules30020396
APA StyleSong, Z., Hao, Y., Long, Y., Zhang, P., Zeng, R., Chen, S., & Chen, W. (2025). Luminescent Lanthanide Infinite Coordination Polymers for Ratiometric Sensing Applications. Molecules, 30(2), 396. https://doi.org/10.3390/molecules30020396