Ultrasound-Assisted Enzymatic Extraction of the Active Components from Acanthopanax sessiliflorus Stem and Bioactivity Comparison with Acanthopanax senticosus
Abstract
:1. Introduction
2. Results and Discussion
2.1. Determination of the Optimal Compound Enzyme Ratio
2.1.1. Single-Factor Experiment Results for Enzymes
2.1.2. Orthogonal Result
2.2. Study on the Optimization of Active Component Extraction from ASF Stems Using Response Surface Methodology
2.2.1. Analysis of Single-Factor Test Results
2.2.2. Model Fitting
2.2.3. Analysis of Response Surface Curves
2.3. Model Validation
2.4. Comparison of UAEE and UAE
2.5. Evaluation of Active Components in ASF and ASC
3. Materials and Methods
3.1. Sample Preparation
3.2. Reagents and Chemicals
3.3. HPLC for Detecting Five Compounds
3.4. Analytic Hierarchy Process-Entropy Weight Method (AHP-EWM) of Composite Score Establishment
3.4.1. Analytic Hierarchy Process (AHP)
3.4.2. Entropy Weight Method (EWM)
3.4.3. AHP-EWM
3.4.4. Calculation of Comprehensive Score
3.5. UAEE
3.6. Compound Enzyme Ratio
3.6.1. Single-Factor Experiment of Enzyme Amounts
3.6.2. Orthogonal Experiment of the Three Enzymes ()
3.7. Optimization of Active Components Extraction from ASF Stems Using UAEE
3.7.1. Single-Factor Experiments
3.7.2. Response Surface Methodology
3.7.3. Comparison of Active Component Contents in ASC Stems and ASF
3.8. Evaluation of Active Components in Extracts from ASC Stems and ASF Stems
3.8.1. Antibacterial Activity
3.8.2. Antioxidant Activity
DPPH Assay
ABTS Assay
3.9. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jang, H.-J.; Kim, W.J.; Lee, S.U.; Kim, M.-O.; Park, M.H.; Song, S.; Kim, D.-Y.; Lee, S.M.; Yuk, H.J.; Lee, D.Y.; et al. Optimization of chiisanoside and chiisanogenin isolation from Eleutherococcus sessiliflorus (Rupr. & Maxim.) leaves for industrial application: A pilot study. Ind. Crops Prod. 2022, 185, 115099. [Google Scholar]
- Zhao, S.-Y.; An, N.-N.; Zhang, K.-Y.; Li, D.; Wang, L.-J.; Wang, Y. Evaluation of drying kinetics, physical properties, bioactive compounds, antioxidant activity and microstructure of Acanthopanax sessiliflorus fruits dried by microwave-assisted hot air drying method. J. Food Eng. 2023, 357, 111642. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, L.; Li, Q.; Xue, T.; Qin, F.; Xiong, Z. Discovery of bioactive-chemical Q-markers of Acanthopanax sessiliflorus leaves: An integrated strategy of plant metabolomics, fingerprint and spectrum-efficacy relationship research. J. Chromatogr. B 2024, 1233, 124009. [Google Scholar] [CrossRef] [PubMed]
- Jia, N.; Shen, Z.; Zhao, S.; Wang, Y.; Pei, C.; Huang, D.; Wang, X.; Wu, Y.; Shi, S.; He, Y.; et al. Eleutheroside E from pre-treatment of Acanthopanax senticosus (Rupr.etMaxim.) Harms ameliorates high-altitude-induced heart injury by regulating NLRP3 inflammasome-mediated pyroptosis via NLRP3/caspase-1 pathway. Int. Immunopharmacol. 2023, 121, 110423. [Google Scholar] [CrossRef]
- Kim, Y.; Jung, Y.-J.; Yoon, H.-J.; Kwon, H.-J.; Hong, S.-P. Simultaneous quantification method for eleutheroside B, eleutheroside E, chiisanoside, and sesamin using reverse-phase high-performance liquid chromatography coupled with ultraviolet detection and integrated pulsed amperometric detection. Heliyon 2023, 9, e12684. [Google Scholar] [CrossRef]
- Park, S.-K.; Park, J.-K.; Kim, C.-K.; Kong, S.-K.; Yu, A.R.; Lee, M.-Y. Acanthopanax sessiliflorus stem confers increased resistance to environmental stresses and lifespan extension in Caenorhabditis elegans. New Biotechnol. 2014, 31, S203–S204. [Google Scholar] [CrossRef]
- Song, Y.; Yang, C.-J.; Yu, K.; Li, F.-M. In vivo Antithrombotic and Antiplatelet Activities of a Quantified Acanthopanax sessiliflorus Fruit Extract. Chin. J. Nat. Med. 2011, 9, 141–145. [Google Scholar]
- Li, X.; Tang, S.; Luo, J.; Zhang, X.; Yook, C.; Huang, H.; Liu, X. Botany, traditional usages, phytochemistry, pharmaceutical analysis, and pharmacology of Eleutherococcus nodiflorus (Dunn) S.Y.Hu: A systematic review. J. Ethnopharmacol. 2023, 306, 116152. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, Z.; Pei, C.; Zhao, S.; Jia, N.; Huang, D.; Wang, X.; Wu, Y.; Shi, S.; He, Y.; et al. Eleutheroside B ameliorated high altitude pulmonary edema by attenuating ferroptosis and necroptosis through Nrf2-antioxidant response signaling. Biomed. Pharmacother. 2022, 156, 113982. [Google Scholar] [CrossRef]
- Yang, A.; Zhang, Z.; Jiang, K.; Xu, K.; Meng, F.; Wu, W.; Li, Z.; Wang, B. Study on ultrasound-assisted extraction of cold brew coffee using physicochemical, flavor, and sensory evaluation. Food Biosci. 2024, 61, 104455. [Google Scholar] [CrossRef]
- Wang, F.; Guo, X.; Wei, Y.; Liu, P.; Deng, X.; Lei, Y.; Zhao, Y.; Zhang, J. Ultrasound-assisted acid extraction of Coregonus peled protamine: Extraction, physicochemical and functional properties. LWT 2024, 201, 116256. [Google Scholar] [CrossRef]
- De Laet, E.; Bernaerts, T.; Mikhalski, M.; Van Loey, A.M. Kinetic study of a conventional and ultrasound-assisted extraction of pectin from different plant-based side streams: Impact on pectin extraction yield, purity and molecular pectin structure. LWT 2024, 205, 116522. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, C.; Su, J.; Liang, G.; Tan, S.; Bi, Y.; Kong, F.; Wang, Z. Extraction of Pithecellobium clypearia Benth polysaccharides by dual-frequency ultrasound-assisted extraction: Structural characterization, antioxidant, hypoglycemic and anti-hyperlipidemic activities. Ultrason. Sonochem. 2024, 107, 106918. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, B.K. Ultrasound: A clean, green extraction technology. TrAC Trends Anal. Chem. 2015, 71, 100–109. [Google Scholar] [CrossRef]
- Siemińska-Kuczer, A.; Szymańska-Chargot, M.; Zdunek, A. Recent advances in interactions between polyphenols and plant cell wall polysaccharides as studied using an adsorption technique. Food Chem. 2022, 373, 131487. [Google Scholar] [CrossRef]
- Jin, G.; He, L.; Yu, X.; Zhang, J.; Ma, M. Antioxidant enzyme activities are affected by salt content and temperature and influence muscle lipid oxidation during dry-salted bacon processing. Food Chem. 2013, 141, 2751–2756. [Google Scholar] [CrossRef]
- Akyüz, A.; Ersus, S. Optimization of enzyme assisted extraction of protein from the sugar beet (Beta vulgaris L.) leaves for alternative plant protein concentrate production. Food Chem. 2021, 335, 127673. [Google Scholar] [CrossRef]
- Wei, Q.; Zhang, Y.-H. Ultrasound-assisted polysaccharide extraction from Cercis chinensis and properites, antioxidant activity of polysaccharide. Ultrason. Sonochem. 2023, 96, 106422. [Google Scholar] [CrossRef]
- Nam, S.-N.; Cho, H.; Han, J.; Her, N.; Yoon, J. Photocatalytic degradation of acesulfame K: Optimization using the Box–Behnken design (BBD). Process Saf. Environ. Prot. 2018, 113, 10–21. [Google Scholar] [CrossRef]
- Olalere, O.A.; Gan, C.-Y. Process optimisation of defatted wheat germ protein extraction in a novel alkaline-based deep eutectic solvent (DES) via Box–Behnken experimental design (BBD). Food Chem. 2023, 409, 135224. [Google Scholar] [CrossRef]
- Chu, Q.; Xie, S.; Wei, H.; Tian, X.; Tang, Z.; Li, D.; Liu, Y. Enzyme-assisted ultrasonic extraction of total flavonoids and extraction polysaccharides in residue from Abelmoschus manihot (L). Ultrason. Sonochem. 2024, 104, 106815. [Google Scholar] [CrossRef]
- Hao, Y.-J.; Zhang, K.-X.; Jin, M.-Y.; Piao, X.-C.; Lian, M.-L.; Jiang, J. Improving fed-batch culture efficiency of Rhodiola sachalinensis cells and optimizing flash extraction process of polysaccharides from the cultured cells by BBD–RSM. Ind. Crops Prod. 2023, 196, 116513. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, Q.; Zeng, Y.; Cheng, C.; Coldea, T.E.; Zhao, H. Differences in structure, stability and antioxidant activity of melanoidins from lager and ale beers. LWT 2024, 205, 116517. [Google Scholar] [CrossRef]
- Pu, H.; Luo, K.; Zhang, S. Risk assessment model for different foodstuff drying methods via AHP-FCE method: A case study of “coal-burning” fluorosis area of Yunan and Guizhou Province, China. Food Chem. 2018, 263, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lu, C.; Liu, G.; Chen, Y.; Zhang, Y.; Wu, C.; Liu, B.; Shu, L. Risk assessment of wetland degradation in the Xiong’an New Area based on AHP-EWM-ICT method. Ecol. Indic. 2023, 153, 110443. [Google Scholar] [CrossRef]
- Wang, S.-Y.; Yu, S.-X.; Yang, X.; Cui, D.-Z.; Fu, X.-S.; Wang, Q.-Z.; Liu, Z.-L.; Zheng, Z.-A. Evaluation of quality attributes of different parts of Poria cocos during stress sweating process based on AHP-EWM and RSM. Ind. Crops Prod. 2024, 210, 118047. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, Y.; Sun, K.; Liu, S.; Li, Q.; Zhang, Y.; Godspower, B.-O.; Xu, T.; Zhang, Z.; Li, Y.; et al. Enzymatic and ultrasound assisted β-cyclodextrin extraction of active ingredients from Forsythia suspensa and their antioxidant and anti-inflammatory activities. Ultrason. Sonochem. 2024, 108, 106944. [Google Scholar] [CrossRef]
- Jiao, X.; Zhang, M.; Zhang, M.; Hao, L.; Wu, C. Ultrasound-assisted enzymatic extraction, structural characterization, and anticancer activity of polysaccharides from Rosa roxburghii Tratt fruit. Int. J. Biol. Macromol. 2024, 259, 127926. [Google Scholar] [CrossRef]
- Zhou, C.; Hu, J.; Ma, H.; Yagoub, A.E.A.; Yu, X.; Owusu, J.; Ma, H.; Qin, X. Antioxidant peptides from corn gluten meal: Orthogonal design evaluation. Food Chem. 2015, 187, 270–278. [Google Scholar] [CrossRef]
- Yu, P.; Pan, X.; Chen, M.; Ma, J.; Xu, B.; Zhao, Y. Ultrasound-assisted enzymatic extraction of soluble dietary fiber from Hericium erinaceus and its in vitro lipid-lowering effect. Food Chem. X 2024, 23, 101657. [Google Scholar] [CrossRef]
- Nicolescu, A.; Babotă, M.; Aranda Cañada, E.; Inês Dias, M.; Añibarro-Ortega, M.; Cornea-Cipcigan, M.; Tanase, C.; Radu Sisea, C.; Mocan, A.; Barros, L.; et al. Association of enzymatic and optimized ultrasound-assisted aqueous extraction of flavonoid glycosides from dried Hippophae rhamnoides L. (Sea Buckthorn) berries. Ultrason. Sonochem. 2024, 108, 106955. [Google Scholar] [CrossRef] [PubMed]
- Patil, N.; Yadav, P.; Gogate, P.R. Ultrasound assisted intensified enzymatic extraction of total phenolic compounds from pomegranate peels. Sep. Purif. Technol. 2024, 350, 127967. [Google Scholar] [CrossRef]
- Fu, X.; Wang, D.; Belwal, T.; Xu, Y.; Li, L.; Luo, Z. Sonication-synergistic natural deep eutectic solvent as a green and efficient approach for extraction of phenolic compounds from peels of Carya cathayensis Sarg. Food Chem. 2021, 355, 129577. [Google Scholar] [CrossRef] [PubMed]
- Suo, A.; Fan, G.; Wu, C.; Li, T.; Cong, K. Green extraction of carotenoids from apricot flesh by ultrasound assisted corn oil extraction: Optimization, identification, and application. Food Chem. 2023, 420, 136096. [Google Scholar] [CrossRef]
- Maj, W.; Pertile, G.; Różalska, S.; Skic, K.; Frąc, M. The role of food preservatives in shaping metabolic profile and chemical sensitivity of fungi—An extensive study on crucial mycological food contaminants from the genus Neosartorya (Aspergillus spp.). Food Chem. 2024, 453, 139583. [Google Scholar] [CrossRef]
- Mohammadi, P.; Taghavi, E.; Foong, S.Y.; Rajaei, A.; Amiri, H.; de Tender, C.; Peng, W.; Lam, S.S.; Aghbashlo, M.; Rastegari, H.; et al. Comparison of shrimp waste-derived chitosan produced through conventional and microwave-assisted extraction processes: Physicochemical properties and antibacterial activity assessment. Int. J. Biol. Macromol. 2023, 242, 124841. [Google Scholar] [CrossRef]
- Sridhar, K.; Charles, A.L. In vitro antioxidant activity of Kyoho grape extracts in DPPH and ABTS assays: Estimation methods for EC50 using advanced statistical programs. Food Chem. 2019, 275, 41–49. [Google Scholar] [CrossRef]
- Garcia, S.R.; Orellana-Palacios, J.C.; McClements, D.J.; Moreno, A.; Hadidi, M. Sustainable proteins from wine industrial by-product: Ultrasound-assisted extraction, fractionation, and characterization. Food Chem. 2024, 455, 139743. [Google Scholar] [CrossRef]
Levels | A Cellulase (%) | B Pectinase (%) | C Papain (%) |
---|---|---|---|
1 | 5 | 3 | 3 |
0 | 6 | 4 | 4 |
−1 | 7 | 5 | 5 |
Factor | Cellulase | Pectinase | Papain | Blank | Result | |
---|---|---|---|---|---|---|
No. | ||||||
1 | 1 | 1 | 1 | 1 | 82.01 | |
2 | 1 | 2 | 2 | 2 | 84.58 | |
3 | 1 | 3 | 3 | 3 | 85.77 | |
4 | 2 | 1 | 2 | 3 | 90.02 | |
5 | 2 | 2 | 3 | 1 | 91.30 | |
6 | 2 | 3 | 1 | 2 | 89.87 | |
7 | 3 | 1 | 3 | 2 | 97.95 | |
8 | 3 | 2 | 1 | 3 | 96.11 | |
9 | 3 | 3 | 2 | 1 | 99.85 | |
K1 | 252.36 | 269.98 | 267.99 | 273.15 | ||
K2 | 271.19 | 271.98 | 274.45 | 272.40 | ||
K3 | 293.91 | 275.49 | 275.02 | 271.91 | ||
k1 | 84.12 | 89.99 | 89.33 | 91.05 | ||
k2 | 90.40 | 90.66 | 91.48 | 90.80 | ||
k3 | 97.97 | 91.83 | 91.67 | 90.64 | ||
R | 13.85 | 1.17 | 2.34 | 0.25 |
Source | Sum of Squared Deviations | df | Mean Square | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|
A | 288.66 | 2 | 144.33 | 1106.07 | 0.001 | ** |
B | 5.19 | 2 | 2.59 | 19.88 | 0.048 | * |
C | 10.16 | 2 | 5.08 | 38.93 | 0.025 | * |
Error | 0.26 | 2 | 0.13 |
Run | Temperature (A) | Time (B) | Ethanol Concentration (C) | Solid-to-Liquid Ratio (D) | Comprehensive Score |
---|---|---|---|---|---|
1 | 50 | 80 | 60 | 50 | 79.02 |
2 | 50 | 60 | 60 | 40 | 98.26 |
3 | 50 | 40 | 70 | 40 | 81.88 |
4 | 40 | 60 | 50 | 40 | 80.23 |
5 | 50 | 60 | 70 | 30 | 82.57 |
6 | 50 | 60 | 50 | 50 | 80.49 |
7 | 50 | 80 | 70 | 40 | 79.64 |
8 | 50 | 80 | 50 | 40 | 81.75 |
9 | 60 | 80 | 60 | 40 | 80.51 |
10 | 50 | 60 | 70 | 50 | 81.20 |
11 | 60 | 60 | 60 | 50 | 83.64 |
12 | 50 | 60 | 60 | 40 | 97.59 |
13 | 50 | 40 | 50 | 40 | 81.99 |
14 | 40 | 60 | 60 | 50 | 75.02 |
15 | 50 | 40 | 60 | 50 | 76.74 |
16 | 50 | 60 | 50 | 30 | 85.13 |
17 | 50 | 80 | 60 | 30 | 78.69 |
18 | 50 | 60 | 60 | 40 | 97.76 |
19 | 60 | 40 | 60 | 40 | 86.01 |
20 | 50 | 40 | 60 | 30 | 83.25 |
21 | 40 | 40 | 60 | 40 | 73.30 |
22 | 60 | 60 | 50 | 40 | 85.02 |
23 | 60 | 60 | 60 | 30 | 85.68 |
24 | 50 | 60 | 60 | 40 | 97.58 |
25 | 50 | 60 | 60 | 40 | 98.24 |
26 | 40 | 60 | 70 | 40 | 76.20 |
27 | 40 | 80 | 60 | 40 | 76.12 |
28 | 60 | 60 | 70 | 40 | 87.54 |
29 | 40 | 60 | 60 | 30 | 77.51 |
Source | Sum of Squares | df | Mean Squares | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|
Model | 1530.63 | 14 | 109.33 | 1184.20 | <0.0001 | *** |
A-temperature | 208.58 | 1 | 208.58 | 2259.15 | <0.0001 | *** |
B-time | 4.61 | 1 | 4.61 | 49.88 | <0.0001 | *** |
C-ethanol concentration | 2.61 | 1 | 2.61 | 28.27 | 0.0001 | ** |
D-solid-to-liquid ratio | 23.26 | 1 | 23.26 | 251.94 | <0.0001 | *** |
AB | 17.33 | 1 | 17.33 | 187.67 | <0.0001 | *** |
AC | 10.75 | 1 | 10.75 | 116.39 | <0.0001 | *** |
AD | 0.05 | 1 | 0.05 | 0.5581 | 0.4674 | |
BC | 0.99 | 1 | 0.99 | 10.77 | 0.0055 | ** |
BD | 11.71 | 1 | 11.71 | 126.80 | <0.0001 | *** |
CD | 2.69 | 1 | 2.69 | 29.10 | <0.0001 | *** |
A2 | 512.76 | 1 | 512.76 | 5553.87 | <0.0001 | *** |
B2 | 632.65 | 1 | 632.65 | 6852.44 | <0.0001 | *** |
C2 | 298.58 | 1 | 298.58 | 3234.05 | <0.0001 | *** |
D2 | 482.20 | 1 | 482.20 | 5222.88 | <0.0001 | *** |
Residual | 1.29 | 14 | 0.09 | |||
Lack of fit | 0.84 | 10 | 0.08 | 0.73 | 0.69 | |
Pure error | 0.46 | 4 | 0.11 | |||
Cor total | 1531.92 | 28 |
Importance Score | Definition |
---|---|
1 | Indicating that two factors are equally important |
3 | Indicating that one factor is slightly more important than the other |
5 | Indicating that one factor is clearly more important than the other |
7 | Indicating that one factor is strongly more important than the other |
9 | Indicating that one factor is extremely more important than the other |
2, 4, 6, 8 | The intermediate value between the two adjacent judgments above |
Weight Index | Chlorogenic Acid | Eleutheroside B | Eleutheroside E | Hyperoside | Isofraxidin |
---|---|---|---|---|---|
Chlorogenic acid | 1 | 1/7 | 1/7 | 1/5 | 3 |
Eleutheroside B | 7 | 1 | 1 | 3 | 9 |
Eleutheroside E | 7 | 1 | 1 | 3 | 9 |
Hyperoside | 5 | 1/3 | 1/3 | 1 | 7 |
Isofraxidin | 1/3 | 1/9 | 1/9 | 1/7 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
You, Q.; Ren, Y.; Li, J.; Zeng, G.; Luo, X.; Zheng, C.; Tang, Z. Ultrasound-Assisted Enzymatic Extraction of the Active Components from Acanthopanax sessiliflorus Stem and Bioactivity Comparison with Acanthopanax senticosus. Molecules 2025, 30, 397. https://doi.org/10.3390/molecules30020397
You Q, Ren Y, Li J, Zeng G, Luo X, Zheng C, Tang Z. Ultrasound-Assisted Enzymatic Extraction of the Active Components from Acanthopanax sessiliflorus Stem and Bioactivity Comparison with Acanthopanax senticosus. Molecules. 2025; 30(2):397. https://doi.org/10.3390/molecules30020397
Chicago/Turabian StyleYou, Qiaomu, Yanjun Ren, Jiaotong Li, Guangnian Zeng, Xiongfei Luo, Chunying Zheng, and Zhonghua Tang. 2025. "Ultrasound-Assisted Enzymatic Extraction of the Active Components from Acanthopanax sessiliflorus Stem and Bioactivity Comparison with Acanthopanax senticosus" Molecules 30, no. 2: 397. https://doi.org/10.3390/molecules30020397
APA StyleYou, Q., Ren, Y., Li, J., Zeng, G., Luo, X., Zheng, C., & Tang, Z. (2025). Ultrasound-Assisted Enzymatic Extraction of the Active Components from Acanthopanax sessiliflorus Stem and Bioactivity Comparison with Acanthopanax senticosus. Molecules, 30(2), 397. https://doi.org/10.3390/molecules30020397