Enhanced Interfacial Contact and Lithium-Ion Transport in Ionic Liquid Polymer Electrolyte via In-Situ Electrolyte-Cathode Integration
Abstract
:1. Introduction
2. Results and Discussion
2.1. Design and Preparation of Electrolytes
2.2. Physicochemical Characterization of CSEs
2.3. Electrochemical Behaviors of CSEs
2.4. Electrochemical Performance of CSE-Based Cells
3. Materials and Methods
3.1. Preparation of RTS-TH
3.2. Preparation of RTS-TH-IL CSE and RTS-TH CSE
3.3. Preparation of LiFePO4 Cathode
3.4. Preparation of CSEs with Electrolyte-Cathode Integrated Structure by In Situ UV Polymerization
3.5. Physical Characterization
3.6. Electrochemical Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tseng, Y.-C.; Hsiang, S.-H.; Lee, T.-Y.; Teng, H.-S.; Jan, J.-S.; Thein, K. In-situ Polymerized Electrolytes with Fully Cross-Linked Networks Boosting High Ionic Conductivity and Capacity Retention for Lithium Ion Batteries. ACS Appl. Energy Mater. 2021, 4, 14309–14322. [Google Scholar] [CrossRef]
- Lv, F.; Wang, Z.-Y.; Shi, L.-Y.; Zhu, J.-F.; Edstrom, K.; Mindemark, J.; Yuan, S. Challenges and development of composite solid-state electrolytes for high-performance lithium ion batteries. J. Power Sources 2019, 441, 227175. [Google Scholar] [CrossRef]
- Gao, X.-Z.; Yuan, W.; Yang, Y.; Wu, Y.-P.; Wang, C.; Wu, X.-Y.; Zhang, X.-Q.; Yuan, Y.-H.; Tang, Y.; Chen, Y.; et al. High-Performance and Highly Safe Solvate Ionic Liquid-Based Gel Polymer Electrolyte by Rapid UV-Curing for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2022, 14, 43397–43406. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Choi, Y.-G.; Ahn, Y.; Kim, D.; Park, J.-H. Optimized ion-conductive pathway in UV-cured solid polymer electrolytes for all-solid lithium/sodium ion batteries. J. Membr. Sci. 2021, 619, 118771. [Google Scholar] [CrossRef]
- Zeng, X.-X.; Yin, Y.-Y.; Li, N.-W.; Du, W.-C.; Guo, Y.-G.; Wan, L.-J. Reshaping Lithium Plating/Stripping Behavior via Bifunctional Polymer Electrolyte for Room-Temperature Solid Li Metal Batteries. J. Am. Chem. Soc. 2016, 138, 15825–15828. [Google Scholar] [CrossRef] [PubMed]
- He, L.-C.; Ye, H.-L.; Sun, Q.-M.; Tieu, A.-J.-K.; Lu, L.; Liu, Z.-S.; Adams, S. In-situ curing enables high performance all-solid-state lithium metal batteries based on ultrathin-layer solid electrolytes. Energy Storage Mater. 2023, 60, 102838. [Google Scholar] [CrossRef]
- Li, Z.; Xie, H.-X.; Zhang, X.-Y.; Guo, X. In-situ thermally polymerized solid composite electrolytes with a broad electrochemical window for all-solid-state lithium metal batteries. J. Mater. Chem. A 2020, 8, 3892–3900. [Google Scholar] [CrossRef]
- Thomas, C.; Hyun, W.-J.; Huang, H.-C.; Zeng, D.; Hersam, M. Blade-Coatable Hexagonal Boron Nitride Ionogel Electrolytes for Scalable Production of Lithium Metal Batteries. ACS Energy Lett. 2022, 7, 1558–1565. [Google Scholar] [CrossRef]
- Cha, J.H.; Didwal, P.N.; Kim, J.M.; Chang, D.R.; Park, C.-J.; Dauskardt, R.H.; Cui, Y. Poly(ethylene oxide)-based composite solid polymer electrolyte containing Li7La3Zr2O12 and poly(ethylene glycol) dimethyl ether. J. Membr. Sci. 2020, 595, 117538. [Google Scholar] [CrossRef]
- Kou, W.-J.; Lv, R.-X.; Zuo, S.-W.; Yang, Z.-H.; Huang, J.-J.; Wu, W.-J.; Wang, J.-T. Hybridizing polymer electrolyte with poly(ethylene glycol) grafted polymer-like quantum dots for all-solid-state lithium batteries. J. Membr. Sci. 2021, 618, 118702. [Google Scholar] [CrossRef]
- He, Y.-Y.; Li, Y.; Tong, Q.-S.; Zhang, J.-D.; Weng, J.-Z.; Zhu, M.-Q. Highly Conductive and Thermostable Grafted Polyrotaxane/Ceramic Hybrid Polymer Electrolyte for Solid-State Lithium-Metal Batteries. ACS Appl. Mater. Interfaces 2021, 13, 41593–41599. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, Q.-H.; Luu, V.-T.; Nguyen, H.-L.; Lee, Y.-W.; Cho, Y.-H.; Kim, S.-Y.; Jun, Y.-S.; Ahn, W. Li7La3Zr2O12 Garnet Solid Polymer Electrolyte for Highly Stable All-Solid-State Batteries. Front. Chem. 2020, 8, 619832. [Google Scholar] [CrossRef]
- Sun, J.-Q.; He, C.-H.; Yao, X.-M.; Song, A.-Q.; Li, Y.-G.; Zhang, Q.-H.; Hou, C.-Y.; Shi, Q.-W.; Wang, H.-Z. Hierarchical Composite-Solid-Electrolyte with High Electrochemical Stability and Interfacial Regulation for Boosting Ultra-Stable Lithium Batteries. Adv. Funct. Mater. 2020, 31, 2006381. [Google Scholar] [CrossRef]
- Lu, X.; Wang, Y.-M.; Xu, X.-Y.; Yan, B.-G.; Wu, T.; Lu, L. Polymer-Based Solid-State Electrolytes for High-Energy-Density Lithium-Ion Batteries-Review. Adv. Energy Mater. 2023, 13, 2301746. [Google Scholar] [CrossRef]
- He, K.-Q.; Cheng, S.-H.; Hu, J.-Y.; Zhang, Y.-Q.; Yang, H.-W.; Liu, Y.-Y.; Liao, W.-C.; Chen, D.-Z.; Liao, C.-Z.; Cheng, X.; et al. In-situ Intermolecular Interaction in Composite Polymer Electrolyte for Ultralong Life Quasi-Solid-State Lithium Metal Batteries. Angew. Chem. Int. Ed. 2021, 60, 12116–12123. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-H.; Li, X.-N.; Zeng, Q.-H.; Li, Z.-F.; Liu, Y.; Guan, J.-Z.; Jiang, Y.-C.; Chen, L.; Cao, Y.; Li, R.-Z.; et al. A novel hyperbranched polyurethane solid electrolyte for room temperature ultra-long cycling lithium-ion batteries. Energy Storage Mater. 2024, 66, 103188. [Google Scholar] [CrossRef]
- Zhai, Y.-F.; Hou, W.-S.; Tao, M.-M.; Wang, Z.-T.; Chen, Z.-Y.; Zeng, Z.; Liang, X.; Paoprasert, P.; Yang, Y.; Hu, N.; et al. Enabling High-Voltage “Superconcentrated Ionogel-in-Ceramic” Hybrid Electrolyte with Ultrahigh Ionic Conductivity and Single Li+-Ion Transference Number. Adv. Mater. 2022, 34, 2205560. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.-K.; Wu, Z.-J.; An, X.-W.; Yoshida, A.; Wang, Z.-D.; Hao, X.-G.; Abudula, A.; Guan, G.-Q. Bifunctional ionic liquid and conducting ceramic co-assisted solid polymer electrolyte membrane for quasi-solid-state lithium metal batteries. J. Membr. Sci. 2019, 586, 122–129. [Google Scholar] [CrossRef]
- Wu, Q.; Yang, Y.; Ma, C.-C.; Chen, Z.; Su, Q.-T.; Zhu, C.-Z.; Gao, Y.; Ma, R.; Li, C.-H. Flexible Nanocomposite Polymer Electrolyte Based on UV-Cured Polyurethane Acrylate for Lithium Metal Batteries. ACS Sustain. Chem. Eng. 2021, 9, 5631–5641. [Google Scholar] [CrossRef]
- Xi, G.; Xiao, M.; Wang, S.-J.; Han, D.-M.; Li, Y.-N.; Meng, Y.-Z. Polymer-Based Solid Electrolytes: Material Selection, Design, and Application. Adv. Funct. Mater. 2020, 31, 2007598. [Google Scholar] [CrossRef]
- Liang, J.-N.; Luo, J.; Sun, Q.; Yang, X.-F.; Li, R.-Y.; Sun, X.-L. Recent progress on solid-state hybrid electrolytes for solid-state lithium batteries. Energy Storage Mater. 2019, 21, 308–334. [Google Scholar] [CrossRef]
- Deng, C.-L.; Chen, N.; Hou, C.-Y.; Liu, H.-X.; Zhou, Z.-M.; Chen, R.-J. Enhancing Interfacial Contact in Solid-State Batteries with a Gradient Composite Solid Electrolyte. Small 2021, 17, e2006578. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.-D.; Wang, S.-F.; Li, Y.-T.; Sen, X.; Manthiram, A.; Goodenough, J. Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte. J. Am. Chem. Soc. 2016, 138, 9385–9388. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Yin, Y.-X.; Shi, Y.; Wang, P.-F.; Zhang, X.-D.; Yang, C.-P.; Shi, J.-L.; Wen, R.; Guo, Y.-G.; Wan, L.-J. Dendrite-Free Li-Metal Battery Enabled by a Thin Asymmetric Solid Electrolyte with Engineered Layers. J. Am. Chem. Soc. 2018, 140, 82–85. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-L.; Wang, Z.-L.; Zhao, Y.-Y.; Yang, X.-T.; Xu, J.; Ye, X.-K.; Jiang, X.-C.; Chen, Y.-Z.; Chen, L.; Ye, D.-Z. In-situ polymerization of a free-standing and tough gel polymer electrolyte for lithium metal batteries. J. Power Sources 2024, 593, 233881. [Google Scholar] [CrossRef]
- Qi, S.-G.; Li, S.-L.; Zou, W.-W.; Zhang, W.-F.; Wang, X.-J.; Du, L.; Liu, S.-M.; Zhao, J.-Q. Enabling Scalable Polymer Electrolyte with Synergetic Ion Conductive Channels via a Two Stage Rheology Tuning UV Polymerization Strategy. Small 2022, 18, e2202013. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Wei, Z.-Y.; Wang, J.; Shang, J.; Wang, M.; Chi, S.-S.; Wang, Q.-R.; Du, L.-L.; Zhang, T.; Zheng, Z.-J.; et al. Enabling high-energy flexible solid-state lithium ion batteries at room temperature. Chem. Eng. J. 2021, 424, 130335. [Google Scholar] [CrossRef]
- Tan, J.-W.; Ao, X.; Dai, A.; Yuan, Y.-F.; Zhuo, H.; Lu, H.; Zhuang, L.-B.; Ke, Y.-X.; Su, C.-L.; Peng, X.-W.; et al. Polycation ionic liquid tailored PEO-based solid polymer electrolytes for high temperature lithium metal batteries. Energy Storage Mater. 2020, 33, 173–180. [Google Scholar] [CrossRef]
- Wu, F.; Wen, Z.-Y.; Zhao, Z.-K.; Bi, J.-Y.; Shang, Y.-X.; Liang, Y.-H.; Li, L.; Chen, N.; Li, Y.-J.; Chen, R.-J. Double-network composite solid electrolyte with stable interface for dendrite-free Li metal anode. Energy Storage Mater. 2021, 38, 447–453. [Google Scholar] [CrossRef]
- Lin, X.-J.; Chu, C.-C.; Li, C.; Li, Z.; Zhang, T.-T.; Chen, J.-Y.; Liu, R.-Q.; Li, P.; Li, Y.; Zhao, J.; et al. A high-performance, solution-processable polymer/ceramic/ionic liquid electrolyte for room temperature solid-state Li metal batteries. Nano Energy 2019, 61, 119–125. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, Q.; Wang, D.; Ma, C.-C.; Chen, Z.; Su, Q.-T.; Zhu, C.-Z.; Li, C.-H. Ionic liquid enhanced composite solid electrolyte for high-temperature/long-life/dendrite-free lithium metal batteries. J. Membr. Sci. 2020, 612, 118424. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Li, M.; Qi, S.; Du, L. Enhanced Interfacial Contact and Lithium-Ion Transport in Ionic Liquid Polymer Electrolyte via In-Situ Electrolyte-Cathode Integration. Molecules 2025, 30, 395. https://doi.org/10.3390/molecules30020395
Chen Z, Li M, Qi S, Du L. Enhanced Interfacial Contact and Lithium-Ion Transport in Ionic Liquid Polymer Electrolyte via In-Situ Electrolyte-Cathode Integration. Molecules. 2025; 30(2):395. https://doi.org/10.3390/molecules30020395
Chicago/Turabian StyleChen, Zehua, Mianrui Li, Shengguang Qi, and Li Du. 2025. "Enhanced Interfacial Contact and Lithium-Ion Transport in Ionic Liquid Polymer Electrolyte via In-Situ Electrolyte-Cathode Integration" Molecules 30, no. 2: 395. https://doi.org/10.3390/molecules30020395
APA StyleChen, Z., Li, M., Qi, S., & Du, L. (2025). Enhanced Interfacial Contact and Lithium-Ion Transport in Ionic Liquid Polymer Electrolyte via In-Situ Electrolyte-Cathode Integration. Molecules, 30(2), 395. https://doi.org/10.3390/molecules30020395