An Environmental Engineering Study Case: Constructing Cataluminescence Sensors Based on Octahedral Nanocomposites for Isovaleraldehyde Detection
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Material
2.2. CTL Performance Study of NiCo2O4/MIL-Fe53
2.3. Possible CTL Mechanisms
3. Materials and Methods
3.1. Chemical Reagents
3.2. Instrumentation
3.3. Synthesis of NiCo2O4/MIL-Fe53
3.4. CTL Sensing Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, R.; Wu, H.; Shi, J.; Xu, X.; Zhao, D.; Ng, Y.H.; Zhang, M.; Liu, S.; Ding, H. Recent progress on catalysts for catalytic oxidation of volatile organic compounds: A review. Catal. Sci. Technol. 2022, 12, 6945–6991. [Google Scholar] [CrossRef]
- Shellaiah, M.; Sun, K.W. Inorganic-Diverse Nanostructured Materials for Volatile Organic Compound Sensing. Sensors 2021, 21, 633. [Google Scholar] [CrossRef]
- Ohrmann, E.; Chandrasekaran, V.; Hölscher, B.; Kraft, P. On the Structure–Odor Correlation of Muguet Aldehydes: Synthesis of 3-(4’-Isobutyl-2’-methylphenyl)propanal (Nympheal) and Four Novel Derivatives from a Hagemann’s Ester. Helv. Chim. Acta 2023, 106, e202300040. [Google Scholar] [CrossRef]
- Wang, B.; Ma, M. Research on heating temperature control method of VOC gas sensor and development of new sensor module. Eng. Res. Express 2025, 7, 015410. [Google Scholar] [CrossRef]
- Takahashi, M.; Akamatsu, F.; Isogai, A.; Lin, C.-C.; Kamimoto, M.; Fujita, A. Rapid quantification of isovaleraldehyde in sake by HPLC with post-column fluorescent derivatisation. J. Inst. Brew. 2024, 130, 264–273. [Google Scholar] [CrossRef]
- Osafune, Y.; Toshida, K.; Han, J.; Isogai, A.; Mukai, N. Characterisation and threshold measurement of aroma compounds contributing to the quality of Honkaku shochu and Awamori. J. Inst. Brew. 2020, 126, 131–135. [Google Scholar] [CrossRef]
- Shen, Y.; Tissot, A.; Serre, C. Recent progress on MOF-based optical sensors for VOC sensing. Chem. Sci. 2022, 13, 13978–14007. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.; Shi, J.; Zhang, M.; Dalapati, R.; Tian, Q.; Chen, S.; Wang, C.; Zang, L. Optical chemosensors for the gas phase detection of aldehydes: Mechanism, material design, and application. Mater. Adv. 2021, 2, 6213–6245. [Google Scholar] [CrossRef]
- Breysse, M.; Claudel, B.; Faure, L.; Guenin, M.; Williams, R.J.J.; Wolkenstein, T. Chemiluminescence during the catalysis of carbon monoxide oxidation on a thoria surface. J. Catal. 1976, 45, 137–144. [Google Scholar] [CrossRef]
- Nakagawa, M. A new chemiluminescence-based sensor for discriminating and determining constituents in mixed gases. Sens. Actuators B Chem. 1995, 29, 94–100. [Google Scholar] [CrossRef]
- Nakagawa, M.; Kawabata, S.; Nishiyama, K.; Utsonomiya, K.; Yamamoto, I.; Wada, T.; Yamashita, Y.; Yamashita, N. Analytical detection system of mixed odor vapors using chemiluminescence-based gas sensor. Sens. Actuators B Chem. 1996, 34, 334–338. [Google Scholar] [CrossRef]
- Meng, F.; Lu, Z.; Zhang, R.; Li, G. Cataluminescence sensor for highly sensitive and selective detection of iso-butanol. Talanta 2019, 194, 910–918. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhao, Y.; Ban, Z.; Jiang, L.; Tang, S. Synthesis of Mesoporous SiO2 Nanomicrospheres for the Efficient Cataluminescence Sensing of Isobutyraldehyde. ACS Appl. Nano Mater. 2024, 7, 19056–19064. [Google Scholar] [CrossRef]
- Xiong, S.; Song, H.; Hu, J.; Xie, X.; Zhang, L.; Su, Y.; Lv, Y. Heterothermic Cataluminescence Sensor System for Efficient Determination of Aldehyde Molecules. Anal. Chem. 2024, 96, 11239–11246. [Google Scholar] [CrossRef]
- Liu, J.; Li, K.; Tang, J.; Chen, Y.; Chen, Q.; Gong, Q.; An, T.; Zhang, R. Morphology-dependent gas-sensing sensitivity of γ-Al2O3 for methacrolein. Sens. Actuators B Chem. 2024, 418, 136323. [Google Scholar] [CrossRef]
- Shi, G.; He, Y.; Luo, Q.; Li, B.; Zhang, C. Portable device for acetone detection based on cataluminescence sensor utilizing wireless communication technique. Sens. Actuators B Chem. 2018, 257, 451–459. [Google Scholar] [CrossRef]
- Cai, P.; Song, H.; Lv, Y. Hierarchical spheres In2S3-based cataluminescence sensor for ammonium sulfide. Microchem. J. 2018, 138, 116–121. [Google Scholar] [CrossRef]
- Zhang, Z.; Lou, Y.; Guo, C.; Jia, Q.; Song, Y.; Tian, J.-Y.; Zhang, S.; Wang, M.; He, L.; Du, M. Metal–organic frameworks (MOFs) based chemosensors/biosensors for analysis of food contaminants. Trends Food Sci. Technol. 2021, 118, 569–588. [Google Scholar] [CrossRef]
- Shellaiah, M.; Sun, K.-W. Progress in Metal-Organic Frameworks Facilitated Mercury Detection and Removal. Chemosensors 2021, 9, 101. [Google Scholar] [CrossRef]
- Pal, T.K. Metal–organic framework (MOF)-based fluorescence “turn-on” sensors. Mater. Chem. Front. 2023, 7, 405–441. [Google Scholar] [CrossRef]
- Mohanty, B.; Kumari, S.; Yadav, P.; Kanoo, P.; Chakraborty, A. Metal-organic frameworks (MOFs) and MOF composites based biosensors. Coord. Chem. Rev. 2024, 519, 216102. [Google Scholar] [CrossRef]
- Zhang, X.; Qiao, J.; Jiang, Y.; Wang, F.; Tian, X.; Wang, Z.; Wu, L.; Liu, W.; Liu, J. Carbon-Based MOF Derivatives: Emerging Efficient Electromagnetic Wave Absorption Agents. Nano-Micro Lett. 2021, 13, 135. [Google Scholar] [CrossRef]
- Zhang, B.; Cao, X.; Wen, J.; Guo, S.; Duan, X.; Zhang, X.-M. Integration of Plasmonic materials with MOFs/MOF-derived materials for Photocatalysis. Coord. Chem. Rev. 2024, 518, 216113. [Google Scholar] [CrossRef]
- Li, L.; Wang, X.-S.; Liu, T.-F.; Ye, J. Titanium-Based MOF Materials: From Crystal Engineering to Photocatalysis. Small Methods 2020, 4, 2000486. [Google Scholar] [CrossRef]
- Li, X.; Wu, D.; Hua, T.; Lan, X.; Han, S.; Cheng, J.; Du, K.-S.; Hu, Y.; Chen, Y. Micro/macrostructure and multicomponent design of catalysts by MOF-derived strategy: Opportunities for the application of nanomaterials-based advanced oxidation processes in wastewater treatment. Sci. Total Environ. 2022, 804, 150096. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Sun, B.; Su, Z.; Hong, G.; Li, X.; Liu, Y.; Pan, Q.; Sun, J. Lanthanide-MOFs as multifunctional luminescent sensors. Inorg. Chem. Front. 2022, 9, 3259–3266. [Google Scholar] [CrossRef]
- Su, Y.; Pu, S.; Zhang, L.; Lv, Y. A novel Ln-MOF-based cataluminescence sensor for detection of propionaldehyde. Microchem. J. 2024, 201, 110564. [Google Scholar] [CrossRef]
- Huang, X.; Huang, Z.; Zhang, L.; Liu, R.; Lv, Y. Highly efficient cataluminescence gas sensor for acetone vapor based on UIO-66 metal-organic frameworks as preconcentrator. Sens. Actuators B Chem. 2020, 312, 127952. [Google Scholar] [CrossRef]
- Li, Q.; Sun, M.; Zhang, L.; Song, H.; Lv, Y. A novel Ce(IV)-MOF-based cataluminescence sensor for detection of hydrogen sulfide. Sens. Actuators B Chem. 2022, 362, 131746. [Google Scholar] [CrossRef]
- Tran, H.V.; Dang, H.T.M.; Tran, L.T.; Van Tran, C.; Huynh, C.D. Metal-Organic Framework MIL-53(Fe): Synthesis, Electrochemical Characterization, and Application in Development of a Novel and Sensitive Electrochemical Sensor for Detection of Cadmium Ions in Aqueous Solutions. Adv. Polym. Technol. 2020, 2020, 6279278. [Google Scholar] [CrossRef]
- Sun, Y.-H.; Yang, L.; Ji, X.-X.; Wang, Y.-Z.; Liu, Y.-L.; Fu, Y.; Ye, F. Efficient detection of flusilazole by an electrochemical sensor derived from MOF MIL-53(Fe) for food safety. Food Chem. 2024, 440, 138244. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Yang, Y.; Yu, H.; Dong, X.; Wang, T. Ultra-efficient room-temperature H2S gas sensor based on NiCo2O4/r-GO nanocomposites. New J. Chem. 2019, 43, 10501–10508. [Google Scholar] [CrossRef]
- Kim, S.-H.; Yun, K.-S. Room-temperature hydrogen gas sensor composed of palladium thin film deposited on NiCo2O4 nanoneedle forest. Sens. Actuators B Chem. 2023, 376, 132958. [Google Scholar] [CrossRef]
- Ghanbarian, M.; Zeinali, S.; Mostafavi, A. A novel MIL-53(Cr-Fe)/Ag/CNT nanocomposite based resistive sensor for sensing of volatile organic compounds. Sens. Actuators B Chem. 2018, 267, 381–391. [Google Scholar] [CrossRef]
- Yılmaz, E.; Sert, E.; Atalay, F.S. Synthesis, characterization of a metal organic framework: MIL-53 (Fe) and adsorption mechanisms of methyl red onto MIL-53 (Fe). J. Taiwan Inst. Chem. Eng. 2016, 65, 323–330. [Google Scholar] [CrossRef]
- Liu, N.; Wang, J.; Wu, J.; Li, Z.; Huang, W.; Zheng, Y.; Lei, J.; Zhang, X.; Tang, L. Magnetic Fe3O4@MIL-53(Fe) nanocomposites derived from MIL-53(Fe) for the photocatalytic degradation of ibuprofen under visible light irradiation. Mater. Res. Bull. 2020, 132, 111000. [Google Scholar] [CrossRef]
- Araya, T.; Jia, M.; Yang, J.; Zhao, P.; Cai, K.; Ma, W.; Huang, Y. Resin modified MIL-53 (Fe) MOF for improvement of photocatalytic performance. Appl. Catal. B Environ. 2017, 203, 768–777. [Google Scholar] [CrossRef]
- Panda, R.; Rahut, S.; Basu, J.K. Preparation of a Fe2O3/MIL-53(Fe) composite by partial thermal decomposition of MIL-53(Fe) nanorods and their photocatalytic activity. RSC Adv. 2016, 6, 80981–80985. [Google Scholar] [CrossRef]
- Rani, B.J.; Yuvakkumar, R.; Ravi, G.; Hong, S.I.; Velauthapillai, D.; Guduru, R.K.; Thambidurai, M.; Dang, C.; Al-onazi, W.A.; Al-Mohaimeed, A.M. Electrochemical water splitting exploration of MnCo2O4, NiCo2O4 cobaltites. New J. Chem. 2020, 44, 17679–17692. [Google Scholar] [CrossRef]
- Janfaza, S.; Banan Nojavani, M.; Nikkhah, M.; Alizadeh, T.; Esfandiar, A.; Ganjali, M.R. A selective chemiresistive sensor for the cancer-related volatile organic compound hexanal by using molecularly imprinted polymers and multiwalled carbon nanotubes. Microchim. Acta 2019, 186, 137. [Google Scholar] [CrossRef]
- Yao, Y.; Li, Z.; Han, Y.; Xie, L.; Zhao, X.; Zhu, Z. Fabrication and Characterization of a MnO2/Ti3C2Tx Based Gas Sensor for Highly Sensitive and Selective Detection of Lung Cancer Marker Hexanal. Chem. Eng. J. 2023, 451, 139029. [Google Scholar] [CrossRef]
- Sinsermsuksakul, P.; Sun, L.; Lee, S.W.; Park, H.H.; Kim, S.B.; Yang, C.; Gordon, R.G. Overcoming Efficiency Limitations of SnS-Based Solar Cells. Adv. Energy Mater. 2014, 4, 1400496. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Y.; Zhen, Y.; Ma, Y.; Zuo, W. A 1,2-propylene oxide sensor utilizing cataluminescence on CeO2 nanoparticles. Luminescence 2014, 29, 1183–1187. [Google Scholar] [CrossRef]
- Ramakrishna Reddy, K.T.; Koteswara Reddy, N.; Miles, R.W. Photovoltaic properties of SnS based solar cells. Sol. Energy Mater. Sol. Cells 2006, 90, 3041–3046. [Google Scholar] [CrossRef]
- Feng, J.; Li, X.; Zhu, G.; Wang, Q.J. Emerging High-Performance SnS/CdS Nanoflower Heterojunction for Ultrafast Photonics. ACS Appl. Mater. Interfaces 2020, 12, 43098–43105. [Google Scholar] [CrossRef] [PubMed]
- Arulanantham, A.M.S.; Valanarasu, S.; Kathalingam, A.; Shkir, M.; Kim, H.-S. Influence of substrate temperature on the SnS absorber thin films and SnS/CdS heterostructure prepared through aerosol assisted nebulizer spray pyrolysis. Mater. Res. Express 2018, 6, 026412. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, F.; Wang, X.; Wang, X.; Flahaut, E.; Liu, X.; Li, Y.; Wang, X.; Xu, Y.; Shi, Y.; et al. Planar carbon nanotube–graphene hybrid films for high-performance broadband photodetectors. Nat. Commun. 2015, 6, 8589. [Google Scholar] [CrossRef]
- Lim, D.; Suh, H.; Suryawanshi, M.; Song, G.Y.; Cho, J.Y.; Kim, J.H.; Jang, J.H.; Jeon, C.-W.; Cho, A.; Ahn, S.; et al. Kinetically Controlled Growth of Phase-Pure SnS Absorbers for Thin Film Solar Cells: Achieving Efficiency Near 3% with Long-Term Stability Using an SnS/CdS Heterojunction. Adv. Energy Mater. 2018, 8, 1702605. [Google Scholar] [CrossRef]
- Ai, J.; Lei, Y.; Yang, S.; Lai, C.; Xu, Q. SnS nanoparticles anchored on Ti3C2 nanosheets matrix via electrostatic attraction method as novel anode for lithium ion batteries. Chem. Eng. J. 2019, 357, 150–158. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, B.; Hu, L.; Xu, Q.; Li, Y.; Liu, D.; Xu, M. Synthesis of SnS nanoparticle-modified MXene (Ti3C2Tx) composites for enhanced sodium storage. J. Alloys Compd. 2018, 732, 448–453. [Google Scholar] [CrossRef]
- Yuan, F.; Huang, Y.; Qian, J.; Rahman, M.M.; Ajayan, P.M.; Sun, D. Free-standing SnS/carbonized cellulose film as durable anode for lithium-ion batteries. Carbohydr. Polym. 2021, 255, 117400. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, B.; Cai, M.; Shi, G.; Wang, Y.; Bao, L.; Zhao, Q.; Yi, M.; Zhu, S. An Environmental Engineering Study Case: Constructing Cataluminescence Sensors Based on Octahedral Nanocomposites for Isovaleraldehyde Detection. Molecules 2025, 30, 646. https://doi.org/10.3390/molecules30030646
Sun B, Cai M, Shi G, Wang Y, Bao L, Zhao Q, Yi M, Zhu S. An Environmental Engineering Study Case: Constructing Cataluminescence Sensors Based on Octahedral Nanocomposites for Isovaleraldehyde Detection. Molecules. 2025; 30(3):646. https://doi.org/10.3390/molecules30030646
Chicago/Turabian StyleSun, Bai, Mao Cai, Guoji Shi, Yun Wang, Lining Bao, Qiang Zhao, Mingjian Yi, and Shuguang Zhu. 2025. "An Environmental Engineering Study Case: Constructing Cataluminescence Sensors Based on Octahedral Nanocomposites for Isovaleraldehyde Detection" Molecules 30, no. 3: 646. https://doi.org/10.3390/molecules30030646
APA StyleSun, B., Cai, M., Shi, G., Wang, Y., Bao, L., Zhao, Q., Yi, M., & Zhu, S. (2025). An Environmental Engineering Study Case: Constructing Cataluminescence Sensors Based on Octahedral Nanocomposites for Isovaleraldehyde Detection. Molecules, 30(3), 646. https://doi.org/10.3390/molecules30030646