New Insights on Quality, Safety, Nutritional, and Nutraceutical Properties of Honeydew Honeys from Italy
Abstract
:1. Introduction
2. Results
2.1. Honeydew Elements, Antioxidant Properties, Conductivity, and Color
2.2. Minerals, Toxic Elements, and Rare Earth Elements
2.3. Pesticides Residues
2.4. Principal Component Analysis
3. Discussion
4. Materials and Methods
4.1. Sample Collection
4.2. Honey AI Analysis
4.3. Analysis of Total Polyphenols
4.4. Analysis of Antioxidant Properties
4.5. Analysis of Hydroxymethylfurfural
4.6. Elemental Analysis
4.7. Analysis of Pesticides
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bogdanov, S.; Jurendic, T.; Sieber, R.; Gallmann, P. Honey for Nutrition and Health: A Review. J. Am. Coll. Nutr. 2008, 27, 677–689. [Google Scholar] [CrossRef] [PubMed]
- Thrasyvoulou, A.; Tananaki, C.; Goras, G.; Karazafiris, E.; Dimou, M.; Liolios, V.; Kanelis, D.; Gounari, S. Legislation of Honey Criteria and Standards. J. Apic. Res. 2018, 57, 88–96. [Google Scholar] [CrossRef]
- European Commission EU Coordinated Action “From the Hives” (Honey 2021–2022). Available online: https://food.ec.europa.eu/safety/eu-agri-food-fraud-network/eu-coordinated-actions/honey-2021-2022_en#qapdf (accessed on 1 October 2024).
- Pita-Calvo, C.; Vázquez, M. Differences between Honeydew and Blossom Honeys: A Review. Trends Food Sci. Technol. 2017, 59, 79–87. [Google Scholar] [CrossRef]
- Nešović, M.; Gašić, U.; Tosti, T.; Trifković, J.; Baošić, R.; Blagojević, S.; Ignjatović, L.; Tešić, Ž. Physicochemical Analysis and Phenolic Profile of Polyfloral and Honeydew Honey from Montenegro. RSC Adv. 2020, 10, 2462–2471. [Google Scholar] [CrossRef] [PubMed]
- Solayman, M.; Islam, M.A.; Paul, S.; Ali, Y.; Khalil, M.I.; Alam, N.; Gan, S.H. Physicochemical Properties, Minerals, Trace Elements, and Heavy Metals in Honey of Different Origins: A Comprehensive Review. Comp. Rev. Food Sci. Food Safe 2016, 15, 219–233. [Google Scholar] [CrossRef]
- Recklies, K.; Peukert, C.; Kölling-Speer, I.; Speer, K. Differentiation of Honeydew Honeys from Blossom Honeys and According to Their Botanical Origin by Electrical Conductivity and Phenolic and Sugar Spectra. J. Agric. Food Chem. 2021, 69, 1329–1347. [Google Scholar] [CrossRef] [PubMed]
- Pita-Calvo, C.; Vázquez, M. Honeydew Honeys: A Review on the Characterization and Authentication of Botanical and Geographical Origins. J. Agric. Food Chem. 2018, 66, 2523–2537. [Google Scholar] [CrossRef] [PubMed]
- Bentabol Manzanares, A.; García, Z.H.; Galdón, B.R.; Rodríguez, E.R.; Romero, C.D. Differentiation of Blossom and Honeydew Honeys Using Multivariate Analysis on the Physicochemical Parameters and Sugar Composition. Food Chem. 2011, 126, 664–672. [Google Scholar] [CrossRef]
- Machado, A.M.; Miguel, M.G.; Vilas-Boas, M.; Figueiredo, A.C. Honey Volatiles as a Fingerprint for Botanical Origin—A Review on Their Occurrence on Monofloral Honeys. Molecules 2020, 25, 374. [Google Scholar] [CrossRef] [PubMed]
- Seraglio, S.K.T.; Silva, B.; Bergamo, G.; Brugnerotto, P.; Gonzaga, L.V.; Fett, R.; Costa, A.C.O. An Overview of Physicochemical Characteristics and Health-Promoting Properties of Honeydew Honey. Food Res. Int. 2019, 119, 44–66. [Google Scholar] [CrossRef] [PubMed]
- Alma, A.; Ferracini, C.; Burgio, G. Development of a Sequential Plan to Evaluate Neodryinus typhlocybae (Ashmead) (Hymenoptera: Dryinidae) Population Associated with Metcalfa pruinosa (Say) (Homoptera: Flatidae) Infestation in Northwestern Italy. Env. Entomol. 2005, 34, 819–824. [Google Scholar] [CrossRef]
- Balakhnina, I.V.; Pastarnak, I.N.; Gnezdilov, V.M. Monitoring and Control of Metcalfa Pruinosa (Say) (Hemiptera, Auchenorrhyncha: Flatidae) in Krasnodar Territory. Entmol. Rev. 2014, 94, 1067–1072. [Google Scholar] [CrossRef]
- Gounari, S.; Zotos, C.E.; Dafnis, S.D.; Moschidis, G.; Papadopoulos, G.K. On the Impact of Critical Factors to Honeydew Honey Production: The Case of Marchalina hellenica and Pine Honey. J. Apic. Res. 2023, 62, 383–393. [Google Scholar] [CrossRef]
- Tarapatskyy, M.; Sowa, P.; Zaguła, G.; Dżugan, M.; Puchalski, C. Assessment of the Botanical Origin of Polish Honeys Based on Physicochemical Properties and Bioactive Components with Chemometric Analysis. Molecules 2021, 26, 4801. [Google Scholar] [CrossRef]
- Bergamo, G.; Seraglio, S.K.T.; Gonzaga, L.V.; Fett, R.; Costa, A.C.O. Physicochemical Characteristics of Bracatinga Honeydew Honey and Blossom Honey Produced in the State of Santa Catarina: An Approach to Honey Differentiation. Food Res. Int. 2019, 116, 745–754. [Google Scholar] [CrossRef]
- García-Seval, V.; Martínez-Alfaro, C.; Saurina, J.; Núñez, O.; Sentellas, S. Characterization, Classification and Authentication of Spanish Blossom and Honeydew Honeys by Non-Targeted HPLC-UV and Off-Line SPE HPLC-UV Polyphenolic Fingerprinting Strategies. Foods 2022, 11, 2345. [Google Scholar] [CrossRef] [PubMed]
- Kaškonienė, V.; Venskutonis, P.R. Floral Markers in Honey of Various Botanical and Geographic Origins: A Review. Comp. Rev. Food Sci. Food Safe 2010, 9, 620–634. [Google Scholar] [CrossRef] [PubMed]
- Quirantes-Piné, R.; Sanna, G.; Mara, A.; Borrás-Linares, I.; Mainente, F.; Picó, Y.; Zoccatelli, G.; Lozano-Sánchez, J.; Ciulu, M. Mass Spectrometry Characterization of Honeydew Honey: A Critical Review. Foods 2024, 13, 2229. [Google Scholar] [CrossRef] [PubMed]
- Blaško, J.; Fulín, M.; Kubinec, R.; DUHAČKOVÁ, Ľ.; Kubincová, J.; Kukurová, K.; Blažková, M.; Kunštek, M.; GÁBRIŠOVA, Ľ.I.; Kafková, V. Fast Differentiation of Floral and Honeydew Honeys Using Gas Chromatography-Mass Spectrometry. J. Food Nutr. Res. 2023, 62, 254–269. [Google Scholar]
- Tedesco, R.; Barbaro, E.; Zangrando, R.; Rizzoli, A.; Malagnini, V.; Gambaro, A.; Fontana, P.; Capodaglio, G. Carbohydrate Determination in Honey Samples by Ion Chromatography–Mass Spectrometry (HPAEC-MS). Anal. Bioanal. Chem. 2020, 412, 5217–5227. [Google Scholar] [CrossRef] [PubMed]
- Erban, T.; Shcherbachenko, E.; Talacko, P.; Harant, K. A Single Honey Proteome Dataset for Identifying Adulteration by Foreign Amylases and Mining Various Protein Markers Natural to Honey. J. Proteom. 2021, 239, 104157. [Google Scholar] [CrossRef] [PubMed]
- Łozowicka, B.; Kaczyński, P.; Iwaniuk, P. Analysis of 22 Free Amino Acids in Honey from Eastern Europe and Central Asia Using LC-MS/MS Technique without Derivatization Step. J. Food Compos. Anal. 2021, 98, 103837. [Google Scholar] [CrossRef]
- Seraglio, S.K.T.; Valese, A.C.; Daguer, H.; Bergamo, G.; Azevedo, M.S.; Gonzaga, L.V.; Fett, R.; Costa, A.C.O. Development and Validation of a LC-ESI-MS/MS Method for the Determination of Phenolic Compounds in Honeydew Honeys with the Diluted-and-Shoot Approach. Food Res. Int. 2016, 87, 60–67. [Google Scholar] [CrossRef] [PubMed]
- García-Seval, V.; Saurina, J.; Sentellas, S.; Núñez, O. Off-Line SPE LC-LRMS Polyphenolic Fingerprinting and Chemometrics to Classify and Authenticate Spanish Honey. Molecules 2022, 27, 7812. [Google Scholar] [CrossRef] [PubMed]
- Drivelos, S.A.; Danezis, G.P.; Halagarda, M.; Popek, S.; Georgiou, C.A. Geographical Origin and Botanical Type Honey Authentication through Elemental Metabolomics via Chemometrics. Food Chem. 2021, 338, 127936. [Google Scholar] [CrossRef]
- Mara, A.; Deidda, S.; Caredda, M.; Ciulu, M.; Deroma, M.; Farinini, E.; Floris, I.; Langasco, I.; Leardi, R.; Pilo, M.I.; et al. Multi-Elemental Analysis as a Tool to Ascertain the Safety and the Origin of Beehive Products: Development, Validation, and Application of an ICP-MS Method on Four Unifloral Honeys Produced in Sardinia, Italy. Molecules 2022, 27, 2009. [Google Scholar] [CrossRef] [PubMed]
- Mara, A.; Migliorini, M.; Ciulu, M.; Chignola, R.; Egido, C.; Núñez, O.; Sentellas, S.; Saurina, J.; Caredda, M.; Deroma, M.A.; et al. Elemental Fingerprinting Combined with Machine Learning Techniques as a Powerful Tool for Geographical Discrimination of Honeys from Nearby Regions. Foods 2024, 13, 243. [Google Scholar] [CrossRef] [PubMed]
- Magdas, D.A.; Guyon, F.; Puscas, R.; Vigouroux, A.; Gaillard, L.; Dehelean, A.; Feher, I.; Cristea, G. Applications of Emerging Stable Isotopes and Elemental Markers for Geographical and Varietal Recognition of Romanian and French Honeys. Food Chem. 2021, 334, 127599. [Google Scholar] [CrossRef] [PubMed]
- Tsagkaris, A.S.; Koulis, G.A.; Danezis, G.P.; Martakos, I.; Dasenaki, M.; Georgiou, C.A.; Thomaidis, N.S. Honey Authenticity: Analytical Techniques, State of the Art and Challenges. RSC Adv. 2021, 11, 11273–11294. [Google Scholar] [CrossRef] [PubMed]
- Ciulu, M.; Oertel, E.; Serra, R.; Farre, R.; Spano, N.; Caredda, M.; Malfatti, L.; Sanna, G. Classification of Unifloral Honeys from SARDINIA (Italy) by ATR-FTIR Spectroscopy and Random Forest. Molecules 2020, 26, 88. [Google Scholar] [CrossRef] [PubMed]
- Caredda, M.; Mara, A.; Ciulu, M.; Floris, I.; Pilo, M.I.; Spano, N.; Sanna, G. Use of Genetic Algorithms in the Wavelength Selection of FT-MIR Spectra to Classify Unifloral Honeys from Sardinia. Food Control 2023, 146, 109559. [Google Scholar] [CrossRef]
- David, M.; Magdas, D.A. Authentication of Honey Origin and Harvesting Year Based on Raman Spectroscopy and Chemometrics. Talanta Open 2024, 10, 100342. [Google Scholar] [CrossRef]
- David, M.; Hategan, A.R.; Berghian-Grosan, C.; Magdas, D.A. The Development of Honey Recognition Models Based on the Association between ATR-IR Spectroscopy and Advanced Statistical Tools. IJMS 2022, 23, 9977. [Google Scholar] [CrossRef]
- Escuredo, O.; Rodríguez-Flores, M.S.; Meno, L.; Seijo, M.C. Prediction of Physicochemical Properties in Honeys with Portable Near-Infrared (microNIR) Spectroscopy Combined with Multivariate Data Processing. Foods 2021, 10, 317. [Google Scholar] [CrossRef] [PubMed]
- Pauliuc, D.; Ciursă, P.; Ropciuc, S.; Dranca, F.; Oroian, M. Physicochemical Parameters Prediction and Authentication of Different Monofloral Honeys Based on FTIR Spectra. J. Food Compos. Anal. 2021, 102, 104021. [Google Scholar] [CrossRef]
- Valinger, D.; Longin, L.; Grbeš, F.; Benković, M.; Jurina, T.; Gajdoš Kljusurić, J.; Jurinjak Tušek, A. Detection of Honey Adulteration—The Potential of UV-VIS and NIR Spectroscopy Coupled with Multivariate Analysis. LWT 2021, 145, 111316. [Google Scholar] [CrossRef]
- Cárdenas-Escudero, J.; Galán-Madruga, D.; Cáceres, J.O. Rapid, Reliable and Easy-to-Perform Chemometric-Less Method for Rice Syrup Adulterated Honey Detection Using FTIR-ATR. Talanta 2023, 253, 123961. [Google Scholar] [CrossRef]
- Caredda, M.; Ciulu, M.; Tilocca, F.; Langasco, I.; Núñez, O.; Sentellas, S.; Saurina, J.; Pilo, M.I.; Spano, N.; Sanna, G.; et al. Portable NIR Spectroscopy to Simultaneously Trace Honey Botanical and Geographical Origins and Detect Syrup Adulteration. Foods 2024, 13, 3062. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, M.S.; Seraglio, S.K.T.; Rocha, G.; Balderas, C.B.; Piovezan, M.; Gonzaga, L.V.; Falkenberg, D.D.B.; Fett, R.; De Oliveira, M.A.L.; Costa, A.C.O. Free Amino Acid Determination by GC-MS Combined with a Chemometric Approach for Geographical Classification of Bracatinga Honeydew Honey (Mimosa Scabrella Bentham). Food Control 2017, 78, 383–392. [Google Scholar] [CrossRef]
- Silva, B.; Gonzaga, L.V.; Maltez, H.F.; Samochvalov, K.B.; Fett, R.; Costa, A.C.O. Elemental Profiling by ICP-MS as a Tool for Geographical Discrimination: The Case of Bracatinga Honeydew Honey. J. Food Compos. Anal. 2021, 96, 103727. [Google Scholar] [CrossRef]
- Karabagias, I.K.; Vlasiou, M.; Kontakos, S.; Drouza, C.; Kontominas, M.G.; Keramidas, A.D. Geographical Discrimination of Pine and Fir Honeys Using Multivariate Analyses of Major and Minor Honey Components Identified by 1H NMR and HPLC along with Physicochemical Data. Eur. Food Res. Technol. 2018, 244, 1249–1259. [Google Scholar] [CrossRef]
- Lušić, D.; Koprivnjak, O.; Ćurić, D.; Sabatini, A. Volatile Profile of Croatian Lime Tree (Tilia sp.), Fir Honeydew (Abies alba) and Sage (Salvia officinalis) Honey. Food Technol. Biotechnol. 2007, 45, 156–165. [Google Scholar]
- Hernanz, D.; Jara-Palacios, M.J.; Santos, J.L.; Gómez Pajuelo, A.; Heredia, F.J.; Terrab, A. The Profile of Phenolic Compounds by HPLC-MS in Spanish Oak (Quercus) Honeydew Honey and Their Relationships with Color and Antioxidant Activity. LWT 2023, 180, 114724. [Google Scholar] [CrossRef]
- Jerković, I.; Marijanović, Z. Oak (Quercus Frainetto Ten.) Honeydew Honey—Approach to Screening of Volatile Organic Composition and Antioxidant Capacity (DPPH and FRAP Assay). Molecules 2010, 15, 3744–3756. [Google Scholar] [CrossRef] [PubMed]
- Karabagias, I.K.; Louppis, A.P.; Karabournioti, S.; Kontakos, S.; Papastephanou, C.; Kontominas, M.G. Characterization and Geographical Discrimination of Commercial Citrus Spp. Honeys Produced in Different Mediterranean Countries Based on Minerals, Volatile Compounds and Physicochemical Parameters, Using Chemometrics. Food Chem. 2017, 217, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Persano Oddo, L.; Piazza, M.G.; Sabatini, A.G.; Accorti, M. Characterization of Unifloral Honeys. Apidologie 1995, 26, 453–465. [Google Scholar] [CrossRef]
- Conti, M.E.; Stripeikis, J.; Campanella, L.; Cucina, D.; Tudino, M.B. Characterization of Italian Honeys (Marche Region) on the Basis of Their Mineral Content and Some Typical Quality Parameters. Chem. Cent. J. 2007, 1, 14. [Google Scholar] [CrossRef] [PubMed]
- Bontempo, L.; Camin, F.; Ziller, L.; Perini, M.; Nicolini, G.; Larcher, R. Isotopic and Elemental Composition of Selected Types of Italian Honey. Measurement 2017, 98, 283–289. [Google Scholar] [CrossRef]
- Fermo, P.; Beretta, G.; Maffei Facino, R.; Gelmini, F.; Piazzalunga, A. Ionic Profile of Honey as a Potential Indicator of Botanical Origin and Global Environmental Pollution. Environ. Pollut. 2013, 178, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Castiglioni, S.; Stefano, M.; Astolfi, P.; Carloni, P. Chemometric Approach to the Analysis of Antioxidant Properties and Colour of Typical Italian Monofloral Honeys. Int. J. Food Sci. Tech. 2017, 52, 1138–1146. [Google Scholar] [CrossRef]
- Di Marco, G.; Gismondi, A.; Panzanella, L.; Canuti, L.; Impei, S.; Leonardi, D.; Canini, A. Botanical Influence on Phenolic Profile and Antioxidant Level of Italian Honeys. J. Food Sci. Technol. 2018, 55, 4042–4050. [Google Scholar] [CrossRef] [PubMed]
- Preti, R.; Tarola, A.M. Chemometric Evaluation of the Antioxidant Properties and Phenolic Compounds in Italian Honeys as Markers of Floral Origin. Eur. Food Res. Technol. 2022, 248, 991–1002. [Google Scholar] [CrossRef]
- Tedesco, R.; Scalabrin, E.; Malagnini, V.; Strojnik, L.; Ogrinc, N.; Capodaglio, G. Characterization of Botanical Origin of Italian Honey by Carbohydrate Composition and Volatile Organic Compounds (VOCs). Foods 2022, 11, 2441. [Google Scholar] [CrossRef] [PubMed]
- Breschi, C.; Ieri, F.; Calamai, L.; Miele, A.; D’Agostino, S.; Melani, F.; Zanoni, B.; Mulinacci, N.; Cecchi, L. HS-SPME-GC-MS Analysis of the Volatile Composition of Italian Honey for Its Characterization and Authentication Using the Genetic Algorithm. Separations 2024, 11, 266. [Google Scholar] [CrossRef]
- Martinello, M.; Mutinelli, F. Antioxidant Activity in Bee Products: A Review. Antioxidants 2021, 10, 71. [Google Scholar] [CrossRef] [PubMed]
- Salis, S.; Spano, N.; Ciulu, M.; Floris, I.; Pilo, M.I.; Sanna, G. Electrochemical Determination of the “Furanic Index” in Honey. Molecules 2021, 26, 4115. [Google Scholar] [CrossRef] [PubMed]
- Louveaux, J.; Maurizio, A.; Vorwohl, G. Methods of Melissopalynology. Bee World 1978, 59, 139–157. [Google Scholar] [CrossRef]
- Carmen Seijo, M.; Escuredo, O.; Fernández-González, M. Fungal Diversity in Honeys from Northwest Spain and Their Relationship to the Ecological Origin of the Product. Grana 2011, 50, 55–62. [Google Scholar] [CrossRef]
- Olga, E.; María, F.-G.; Carmen, S.M. Differentiation of Blossom Honey and Honeydew Honey from Northwest Spain. Agriculture 2012, 2, 25–37. [Google Scholar] [CrossRef]
- Rodríguez-Flores, M.S.; Escuredo, O.; Míguez, M.; Seijo, M.C. Differentiation of Oak Honeydew and Chestnut Honeys from the Same Geographical Origin Using Chemometric Methods. Food Chem. 2019, 297, 124979. [Google Scholar] [CrossRef]
- Dimou, M.; Katsaros, J.; Klonari, K.T.; Thrasyvoulou, A. Discriminating Pine and Fir Honeydew Honeys by Microscopic Characteristics. J. Apic. Res. 2006, 45, 16–21. [Google Scholar] [CrossRef]
- European Community COUNCIL DIRECTIVE 2001/110/EC of 20 December 2001 Relating to Honey. Available online: https://eur-lex.europa.eu/eli/dir/2001/110/oj/eng (accessed on 1 December 2024).
- Bodó, A.; Radványi, L.; Kőszegi, T.; Csepregi, R.; Nagy, D.U.; Farkas, Á.; Kocsis, M. Quality Evaluation of Light- and Dark-Colored Hungarian Honeys, Focusing on Botanical Origin, Antioxidant Capacity and Mineral Content. Molecules 2021, 26, 2825. [Google Scholar] [CrossRef]
- Bargańska, Ż.; Ślebioda, M.; Namieśnik, J. Honey Bees and Their Products: Bioindicators of Environmental Contamination. Crit. Rev. Environ. Sci. Technol. 2016, 46, 235–248. [Google Scholar] [CrossRef]
- Calatayud-Vernich, P.; Calatayud, F.; Simó, E.; Picó, Y. Efficiency of QuEChERS Approach for Determining 52 Pesticide Residues in Honey and Honey Bees. MethodsX 2016, 3, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Calatayud-Vernich, P.; Calatayud, F.; Simó, E.; Picó, Y. Pesticide Residues in Honey Bees, Pollen and Beeswax: Assessing Beehive Exposure. Environ. Pollut. 2018, 241, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Apriceno, A.; Girelli, A.M.; Scuto, F.R.; Tarola, A.M. Determination of Furanic Compounds and Acidity for Italian Honey Quality. Flavour. Fragr. J. 2018, 33, 411–419. [Google Scholar] [CrossRef]
- Shantal Rodríguez Flores, M.; Escuredo, O.; Carmen Seijo, M. Assessment of Physicochemical and Antioxidant Characteristics of Quercus Pyrenaica Honeydew Honeys. Food Chem. 2015, 166, 101–106. [Google Scholar] [CrossRef]
- Silva, B.; Brugnerotto, P.; Seraglio, S.K.T.; Bergamo, G.; Biluca, F.C.; Santos, A.C.D.; Braghini, F.; Schulz, M.; Colombo, C.H.; Samochvalov, K.B.; et al. Physicochemical, Phenolic, and Mineral Characterization of Mimosa Scabrella Bentham Honeydew Honey: A Trial for Obtaining the Geographical Identification. J. Food Compos. Anal. 2022, 114, 104851. [Google Scholar] [CrossRef]
- Pohl, P.; Bielawska-Pohl, A.; Dzimitrowicz, A.; Jamroz, P.; Welna, M.; Lesniewicz, A.; Szymczycha-Madeja, A. Recent Achievements in Element Analysis of Bee Honeys by Atomic and Mass Spectrometry Methods. TrAC Trends Anal. Chem. 2017, 93, 67–77. [Google Scholar] [CrossRef]
- Floris, I.; Satta, A.; Ruiu, L. Honeys of Sardinia (Italy). J. Apic. Res. 2007, 46, 198–209. [Google Scholar] [CrossRef]
- Squadrone, S.; Brizio, P.; Stella, C.; Pederiva, S.; Brusa, F.; Mogliotti, P.; Garrone, A.; Abete, M.C. Trace and Rare Earth Elements in Monofloral and Multifloral Honeys from Northwestern Italy; A First Attempt of Characterization by a Multi-Elemental Profile. J. Trace Elem. Med. Biol. 2020, 61, 126556. [Google Scholar] [CrossRef] [PubMed]
- Phogat, A.; Singh, J.; Kumar, V.; Malik, V. Toxicity of the Acetamiprid Insecticide for Mammals: A Review. Env. Chem. Lett. 2022, 20, 1453–1478. [Google Scholar] [CrossRef]
- Kędzierska-Matysek, M.; Teter, A.; Skałecki, P.; Topyła, B.; Domaradzki, P.; Poleszak, E.; Florek, M. Residues of Pesticides and Heavy Metals in Polish Varietal Honey. Foods 2022, 11, 2362. [Google Scholar] [CrossRef] [PubMed]
- EFSA (European Food Safety Authority); Bellisai, G.; Bernasconi, G.; Brancato, A.; Cabrera, L.C.; Castellan, I.; Ferreira, L.; Giner, G.; Greco, L.; Jarrah, S.; et al. Modification of the Existing Maximum Residue Levels for Acetamiprid in Honey and Various Oilseed Crops. EFS2 2022, 20, e07535. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Setting of Maximum Residue Levels for Amitraz, Coumaphos, Flumequine, Oxytetracycline, Permethrin and Streptomycin in Certain Products of Animal Origin. EFS2 2016, 14, e04570. [Google Scholar] [CrossRef]
- Triassi, M.; Montuori, P.; Provvisiero, D.P.; De Rosa, E.; Di Duca, F.; Sarnacchiaro, P.; Díez, S. Occurrence and Spatial-Temporal Distribution of Atrazine and Its Metabolites in the Aquatic Environment of the Volturno River Estuary, Southern Italy. Sci. Total Environ. 2022, 803, 149972. [Google Scholar] [CrossRef]
- Brugnerotto, P.; Costa, A.C.O.; Fuente-Ballesteros, A.; Ares, A.M.; Gonzaga, L.V.; Fett, R.; Bernal, J. Determination of Seven Pesticide Residues in Mimosa Scabrella Honeydew Honey from Brazil by GC-MS. J. Food Compos. Anal. 2023, 122, 105433. [Google Scholar] [CrossRef]
- Microfy.AI. Honey.AI Microscope. Available online: https://microfy.ai/en/our-technology/honey-ai (accessed on 1 December 2024).
- De Marchi, L.; Salemi, L.; Bellumori, M.; Chignola, R.; Mainente, F.; Santisteban Soto, D.V.; Fierri, I.; Ciulu, M.; Zoccatelli, G. Thermal Degradation of Red Cabbage (Brassica oleracea L. Var. Capitata f. Rubra) Anthocyanins in a Water Model Extract under Accelerated Shelf-Life Testing. Food Chem. 2024, 440, 138272. [Google Scholar] [CrossRef] [PubMed]
- Kalábová, L.; Večerek, V. Hydroxymethylfurfural Contents in Foodstuffs Determined by HPLC Method. J. Food Nutr. Res. 2006, 45, 34–38. [Google Scholar]
- Leardi, R.; Melzi, C.; Polotti, G. CAT (Chemometric Agile Tool). Available online: http://gruppochemiometria.it/index.php/software (accessed on 6 February 2024).
Forest (n = 25) | Fir (n = 8) | Oak (n = 6) | Eucalyptus (n = 12) | Citrus (n = 6) | Hazelnut (n = 2) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean ± sd | (Min–Median–Max) | Mean ± sd | (Min–Median–Max) | Mean ± sd | (Min–Median–Max) | Mean ± sd | (Min–Median–Max) | Mean ± sd | (Min–Median–Max) | Mean ± sd | (Min–Median–Max) | |
Acetamiprid | 2 ± 2 | (0.1–1–8) | 2 ± 3 | (0.3–2–4) | 4 ± 6 | (0.2–0–11) | 0.3 ± 0.3 | (0.04–0.3–0.7) | 5 ± 4 | (1–4–10) | 0.1 ± 0.1 | (0.04–0.1–0.2) |
Atrazine | nd | nd | nd | nd | nd | 0.125 ± 0.006 | (0.125–0.125–0.125) | |||||
Atrazine-deisopropyl | 7 ± 9 | (2–2–17) | nd | 1 ± 1 | (0.1–0–2) | nd | nd | nd | ||||
Azoxyxtrobin | nd | nd | nd | 22 ± 1 | (22–22–22) | nd | nd | |||||
Bensulfuron methyl | nd | nd | nd | 17.4 ± 0.9 | (17.4–17.4–17.4) | nd | nd | |||||
Bentazone | 16.8 ± 0.8 | (16.8–16.8–16.8) | nd | nd | nd | nd | nd | |||||
Carbendazime | 7 ± 1 | (6-7-7) | nd | nd | nd | nd | 0.58 ± 0.03 | (0.58–0.58–0.58) | ||||
Carbofuran-3-hydroxy | 13 ± 6 | (0.4–15–16) | nd | nd | 7 ± 6 | (0.2–11–12) | nd | nd | ||||
Chlorfenvinphos | nd | nd | nd | nd | 2 ± 2 | (0.1–1–4) | 0.24 ± 0.01 | (0.24–0.24–0.24) | ||||
Coumaphos | 0.4 ± 0.3 | (0.1–0.3–1.1) | 0.3 ± 0.02 | (0.3–0.3–0.3) | 4.6 ± 0.2 | (4.6–4.6–4.6) | 1.09 ± 0.05 | (1.04–1.09–1.14) | nd | ± | ||
Cyhalothrin | nd | nd | nd | 41 ± 2 | (41–41–41) | nd | ± | |||||
Difenoconzole | nd | nd | nd | 15.5 ± 0.8 | (15.5–15.5–15.5) | nd | ± | |||||
DMPF | 3 ± 2 | (1–3–5) | nd | nd | 40 ± 50 | (0.1–20–90) | 5 ± 6 | (1–5–10) | ± | |||
Fluvalinate | nd | nd | nd | 36 ± 2 | (36–36–36) | nd | ± | |||||
Imazamox | nd | nd | nd | 19 ± 1 | (19–19–19) | nd | ± | |||||
Imidacloprid | 2 ± 2 | (0.3–1–7) | 0.2 ± 0.1 | (0.1–0.2–0.3) | nd | nd | 0.8 ± 0.5 | (0.3–0.7–1.5) | 0.19 ± 0.04 | (0.16–0.19–0.21) | ||
Omethoate | nd | nd | nd | 20 ± 1 | (20–20–20) | nd | nd | |||||
Propazine | nd | nd | nd | 0.092 ± 0.005 | (0.092–0.092–0.092) | nd | 0.127 ± 0.006 | (0.127–0.127–0.127) | ||||
Pyriproxifen | 1.59 ± 0.08 | (1.59–1.59–1.59) | nd | nd | nd | nd | 2.8 ± 0.1 | (2.8–2.8–2.8) | ||||
Tebuconazole | 1.29 ± 0.06 | (1.29–1.29–1.29) | nd | nd | nd | nd | nd | |||||
Terbuthylazine | 1.11 ± 0.06 | (1.11–1.11–1.11) | nd | nd | nd | 1.16 ± 0.06 | (1.16–1.16–1.16) | nd | ||||
Tricyclazol | nd | nd | nd | 22 ± 1 | (22–22–22) | nd | nd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mara, A.; Mainente, F.; Soursou, V.; Picó, Y.; Perales, I.; Ghorab, A.; Sanna, G.; Borrás-Linares, I.; Zoccatelli, G.; Ciulu, M. New Insights on Quality, Safety, Nutritional, and Nutraceutical Properties of Honeydew Honeys from Italy. Molecules 2025, 30, 410. https://doi.org/10.3390/molecules30020410
Mara A, Mainente F, Soursou V, Picó Y, Perales I, Ghorab A, Sanna G, Borrás-Linares I, Zoccatelli G, Ciulu M. New Insights on Quality, Safety, Nutritional, and Nutraceutical Properties of Honeydew Honeys from Italy. Molecules. 2025; 30(2):410. https://doi.org/10.3390/molecules30020410
Chicago/Turabian StyleMara, Andrea, Federica Mainente, Vasiliki Soursou, Yolanda Picó, Iratxe Perales, Asma Ghorab, Gavino Sanna, Isabel Borrás-Linares, Gianni Zoccatelli, and Marco Ciulu. 2025. "New Insights on Quality, Safety, Nutritional, and Nutraceutical Properties of Honeydew Honeys from Italy" Molecules 30, no. 2: 410. https://doi.org/10.3390/molecules30020410
APA StyleMara, A., Mainente, F., Soursou, V., Picó, Y., Perales, I., Ghorab, A., Sanna, G., Borrás-Linares, I., Zoccatelli, G., & Ciulu, M. (2025). New Insights on Quality, Safety, Nutritional, and Nutraceutical Properties of Honeydew Honeys from Italy. Molecules, 30(2), 410. https://doi.org/10.3390/molecules30020410