Screening of Solvent Systems for Countercurrent Chromatography Separation of Polar Constituents from Ginkgo biloba L. Seeds
Abstract
:1. Introduction
2. Results and Discussion
2.1. HPLC Analysis and CCC Solvent System Selection
2.2. CCCS Using an ATPS
2.3. DEHPA-Modified Solvent System for the CCCS
2.4. Identification of the Isolated Compounds
3. Materials and Methods
3.1. Chemicals and Samples
3.2. CCC System
3.3. Sample Preparation
3.4. Solvent System Selection and CCC Separation
3.4.1. Solvent System Selection
3.4.2. CCCS
3.4.3. MS and NMR Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, D.-T.; Pan, Y.-J. Recent development in counter-current chromatography. Chin. J. Anal. Chem. 2016, 44, 319–324. [Google Scholar] [CrossRef]
- Foucault, A.P.; Chevolot, L. Counter-current chromatography: Instrumentation, solvent selection and some recent applications to natural product purification. J. Chromatogr. A 1998, 808, 3–22. [Google Scholar] [CrossRef]
- Gong, Y.; Huang, X.-Y.; Pei, D.; Duan, W.-D.; Zhang, X.; Sun, X.; Di, D.-L. The applicability of high-speed counter current chromatography to the separation of natural antioxidants. J. Chromatogr. A 2020, 1623. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Zhou, Y.; Wang, J.; Yang, Z. Countercurrent chromatography separation of vitamin E isomers in a co-current mode. J. Sep. Sci. 2023, 46, e2300285. [Google Scholar] [CrossRef]
- Ito, Y. Golden rules and pitfalls in selecting optimum conditions for high-speed counter-current chromatography. J. Chromatogr. A 2005, 1065, 145–168. [Google Scholar] [CrossRef]
- Bojczuk, M.; Zyzelewicz, D.; Hodurek, P. Centrifugal partition chromatography—A review of recent applications and some classic references. J. Sep. Sci. 2017, 40, 1597–1609. [Google Scholar] [CrossRef] [PubMed]
- Hammerschick, T.; Vetter, W. Online hyphenation of centrifugal partition chromatography with countercurrent chromatography (CPC-CCC) and its application to the separation of saturated alkylresorcinols. Anal. Bioanal. Chem. 2022, 414, 5043–5051. [Google Scholar] [CrossRef]
- Wade, K.L.; Ito, Y.; Ramarathnam, A.; Holtzclaw, W.D.; Fahey, J.W. Purification of active myrosinase from plants by aqueous two-phase counter-current chromatography. Phytochem Analysis 2015, 26, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Lin, S.; Zhang, J.; Huang, L.; Yao, H.; Li, S. Purification of polysaccharide from artificially cultivated Anoectochilus roxburghii (wall.) Lindl. by high-speed counter current chromatography and its antitumor activity. J. Sep. Sci. 2017, 40, 4338–4346. [Google Scholar] [CrossRef]
- Jiang, Z.; Wang, Y.; Xiang, D.; Zhang, Z. Structural properties, antioxidant and hypoglycemic activities of polysaccharides purified from pepper leaves by high-speed counter-current chromatography. J. Funct. Foods 2022, 89, 104916. [Google Scholar] [CrossRef]
- Wang, N.; Pei, D.; Yu, P.; Huang, X.; Zhao, L.; Wei, J.; Liu, J.; Di, D. Strategy for the separation of strongly polar antioxidant compounds from Lycium barbarum L. via high-speed counter-current chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2020, 1153, 122268. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Zou, X.; Gao, M.; Gu, M.; Xiao, H. Hydrophilic organic/salt-containing aqueous two-phase solvent system for counter-current chromatography: A novel technique for separation of polar compounds. J. Chromatogr. A 2014, 1356, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Li, R.; Zhao, Y.; Liu, Y. Separation of polysaccharides from Spirulina platensis by HSCCC with ethanol-ammonium sulfate ATPS and their antioxidant activities. Carbohydr. Polym. 2017, 173, 465–472. [Google Scholar] [CrossRef]
- Pereira, J.F.B.; Lima, A.S.; Freire, M.G.; Coutinho, J.A.P. Ionic liquids as adjuvants for the tailored extraction of biomolecules in aqueous biphasic systems. Green Chem. 2010, 12, 1661–1669. [Google Scholar] [CrossRef]
- Bezold, F.; Goll, J.; Minceva, M. Study of the applicability of non-conventional aqueous two-phase systems in counter-current and centrifugal partition chromatography. J. Chromatogr. A 2015, 1388, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Sokoloski, E.; Ito, Y. pH-zone refining counter-current chromatography of polar catecholamines using di-(2-ethylhexyl)phosphoric acid as a ligand. J. Chromatogr. A 1996, 724, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.H.; Tian, Y.; He, F.L.; Zhou, H.Y. Endophytes from Ginkgo biloba and their secondary metabolites. Chin. Med. 2019, 14, 51. [Google Scholar] [CrossRef] [PubMed]
- Mahadevan, S.; Park, Y. Multifaceted therapeutic benefits of Ginkgo biloba L.: Chemistry, efficacy, safety, and uses. J. Food Sci. 2008, 73, R14–R19. [Google Scholar] [CrossRef]
- Liu, Y.; Xin, H.; Zhang, Y.; Che, F.; Shen, N.; Cui, Y. Leaves, seeds and exocarp of Ginkgo biloba L. (Ginkgoaceae): A comprehensive review of traditional uses, phytochemistry, pharmacology, resource utilization and toxicity. J. Ethnopharmacol. 2022, 298, 115645. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Dong, Q.; Che, Z.; Wang, H.; Cao, J.; Cao, F.; Su, E. Green and efficient simultaneous enrichment and separation of multiple valuable bioactive compounds from agricultural waste Ginkgo biloba exocarp using a two-phase deep eutectic solvent system. ACS Sustain. Chem. Eng. 2022, 10, 16958–16968. [Google Scholar] [CrossRef]
- Wu, R.; Song, Y.; Shi, M.; Dong, Q.; Cao, J.; Yu, P.; Cao, F.; Su, E. Simultaneous extraction and deglycosylation for flavonoid analysis in Ginkgo biloba products using a two-phase deep eutectic solvent system. Microchem. J. 2024, 207, 112039. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Zhou, M.; Zheng, M.; Cui, J.; Liu, Z.; Liu, C.; Liu, S. Rapid screening and evaluation of XOD inhibitors and O2•− scavenger from total flavonoids of Ginkgo biloba leaves by LC-MS and multimode microplate reader. Biomed. Chromatogr. 2020, 34, e4852. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Sun, Y.; Wang, M.; He, Z.; Chen, S.; Qi, D.; Ge, Z.; Fan, L.; Chen, J.; Wei, Y. Simultaneous determination of ginkgolide A, B, C, bilobalide and rutin in rat plasma by LC-MS/MS and its application to a pharmacokinetic study. Acta Chromatogr. 2022, 34, 386–393. [Google Scholar] [CrossRef]
- Li, W.; Chen, X.; Yao, M.; Sun, B.; Zhu, K.; Wang, W.; Zhang, A. LC-MS based untargeted metabolomics studies of the metabolic response of Ginkgo biloba extract on arsenism patients. Ecotox. Environ. Saf. 2024, 274, 116183. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Fei, Q.; Huang, X.; Yu, S.; Qiu, R.; Guan, L.; Wu, B.; Shan, M. LC-MS based strategy for chemical profiling and quantification of dispensing granules of Ginkgo biloba seeds. Heliyon 2024, 10, e36909. [Google Scholar] [CrossRef] [PubMed]
- Qiu, F.; Friesen, J.B.; McAlpine, J.B.; Pauli, G.F. Design of countercurrent separation of Ginkgo biloba terpene lactones by nuclear magnetic resonance. J. Chromatogr. A 2012, 1242, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhu, H.; Li, M.; Song, X.; Yan, H.; Yu, J.; Wang, X. An efficient method for the preparative separation and isolation of ginkgolic acids from the sarcotesta of Ginkgo biloba L by pH-zone-refining countercurrent chromatography coupled with inner-recycling mode. Ind. Crop. Prod. 2018, 126, 69–75. [Google Scholar] [CrossRef]
- Liu, Z.; Tian, P.; Li, L.; Guo, J.; Zhou, Y.; Liu, S.; Yang, Z. Preparative separation of the constituents from Ginkgo biloba L. leaves by a combination of multi-stage solvent extraction and countercurrent chromatography. J. Sep. Sci. 2024, 47, 2400234. [Google Scholar] [CrossRef]
- Boateng, I.D.; Yang, X.-M. Ginkgo biloba L. seed; A comprehensive review of bioactives, toxicants, and processing effects. Ind. Crop. Prod. 2022, 176, 114281. [Google Scholar] [CrossRef]
- Wang, H.-Y.; Zhang, Y.-Q. The main active constituents and detoxification process of Ginkgo biloba seeds and their potential use in functional health foods. J. Food Compos. Anal. 2019, 83, 103247. [Google Scholar] [CrossRef]
- Cheng, J.-T.; Guo, C.; Cui, W.-J.; Zhang, Q.; Wang, S.-H.; Zhao, Q.-H.; Liu, D.-W.; Zhang, J.; Chen, S.; Chen, C.; et al. Isolation of two rare N-glycosides from Ginkgo biloba and their anti-inflammatory activities. Sci. Rep. 2020, 10, 5994. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.J.; Alishir, A.; Jang, T.; Kang, K.S.; Lee, S.; Kim, K.H. Antiskin aging effects of indole alkaloid N-glycoside from ginkgo fruit (Ginkgo biloba fruit) on TNF-α-exposed human dermal fibroblasts. J. Agri. Food Chem. 2022, 70, 13651–13660. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Yang, X.; Chen, Y.; Yan, X.; Liu, H.; Lu, F.; Li, D. GUESS—A simple approach to accelerate optimization countercurrent separation. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2023, 1215, 123573. [Google Scholar] [CrossRef] [PubMed]
- Creed, S.M.; Gutridge, A.M.; Argade, M.D.; Hennessy, M.R.; Friesen, J.B.; Pauli, G.F.; van Rijn, R.M.; Riley, A.P. Isolation and pharmacological characterization of six opioidergic picralima nitida alkaloids. J. Nat. Prod. 2021, 84, 71–80. [Google Scholar] [CrossRef]
- Zhu, H.; Geng, Y.; Ding, S.; Li, E.; Li, L.; Wang, X.; Yu, J. Separation and purification of alkaloids and phenolic acids from Phellodendron chinense by pH-zone refining and online-storage inner-recycling counter-current chromatography. J. Sep. Sci. 2023, 46, e2300497. [Google Scholar] [CrossRef] [PubMed]
- Mekaoui, N.; Faure, K.; Berthod, A. Advances in countercurrent chromatography for protein separations. Bioanalysis 2012, 4, 833–844. [Google Scholar] [CrossRef] [PubMed]
- Shibusawa, Y.; Yamaguchi, M.; Ito, Y. Polyethylene glycol-potassium phosphate aqueous two-phase systems for countercurrent chromatography of proteins. J. Liq. Chromatogr. Relat. Technol. 1998, 21, 121–133. [Google Scholar] [CrossRef]
- Cao, Y.; Kou, R.; Huang, X.; Wang, N.; Di, D.; Wang, H.; Liu, J. Separation of polysaccharides from Lycium barbarum L. by high-speed countercurrent chromatography with aqueous two-phase system. Int. J. Biol. Macromol. 2023, 256 Pt 2, 128282. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jiang, Z. Rapid large-scale preparation of polysaccharides from jackfruit peel waste by high-speed countercurrent chromatography and their antioxidant and hypoglycemic activities. J. Sep. Sci. 2022, 45, 771–779. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.-Y.; Sun, X.-M.; Pei, D.; Di, D.-L. Spiral counter-current chromatography: Design, development, application, and challenges. J. Sep. Sci. 2017, 40, 336–345. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Li, S.; Zhao, Y.; Guan, Y.H.; Deng, L.; Deng, Q. Properties of hydrodynamic J-type countercurrent chromatography for protein separation using aqueous two-phase systems: With special reference to constructing conical columns. J. Chromatogr. A 2017, 1499, 101–110. [Google Scholar] [CrossRef]
- Sutherland, I.A.; Du, Q.; Wood, P. The relationship between retention, linear flow, and density difference in countercurrent chromatography. J. Liq. Chromatogr. Relat. Technol. 2001, 24, 1669–1683. [Google Scholar] [CrossRef]
- Menet, J.M.; Rolet, M.C.; Thiebaut, D.; Rosset, R.; Ito, Y. Fundamental chromatographic parameters in countercurrent chromatography—Influence of the volume of stationary phase and the flow-rate. J. Liq. Chromatogr. 1992, 15, 2883–2908. [Google Scholar] [CrossRef]
- Ma, Y.; Ito, Y. Affinity countercurrent chromatography using a ligand in the stationary phase. Anal. Chem. 1996, 68, 1207–1211. [Google Scholar] [CrossRef] [PubMed]
- Kitazume, E.; Sato, N.; Saito, Y.; Ito, Y. Separation of heavy-metals by high-speed countercurrent chromatography. Anal. Chem. 1993, 65, 2225–2228. [Google Scholar] [CrossRef]
- Friesen, J.B.; Pauli, G.F. GUESSmix-guided optimization of elution-extrusion counter-current separations. J. Chromatogr. A 2009, 1216, 4225–4231. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Cao, X.; Wu, S. Overlapping elution-extrusion counter-current chromatography: A novel method for efficient purification of natural cytotoxic andrographolides from Andrographis paniculata. J. Chromatogr. A 2012, 1223, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Li, K.; Cui, L.; Yu, J.; Ali, I.; Zhu, H.; Wang, Q.; Wang, X.; Wang, D. A simple and efficient linear gradient coupled with inner-recycling high-speed counter-current chromatography mode for the preparative separation of flavonoid glycosides from leaves of custard apple. J. Chromatogr. A 2020, 1615, 460719. [Google Scholar] [CrossRef] [PubMed]
- Wada, K.; Ishigaki, S.; Ueda, K.; Sakata, M.; Haga, M. An antivitamin B6, 4′-methoxypyridoxine, from the seed of Ginkgo biloba L. Chem. Pharm. Bull. 1985, 33, 3555–3557. [Google Scholar] [CrossRef]
- Tovar-Gijón, C.E.; Hernández-Carlos, B.; Burgueño-Tapia, E.; Cedillo-Portugal, E.; Joseph-Nathan, P. A new C-glycosylflavone from Encyclia michuacana. J. Mol. Struct. 2006, 783, 96–100. [Google Scholar] [CrossRef]
- He, K.; Cao, T.; Wang, H.; Geng, C.; Zhang, X.; Chen, J. Chemical constituents of Swertia angustifolia. China J. Chin. Mat. Med. 2015, 40, 3603–3607. [Google Scholar]
- Yang, Z.; Guo, P.; Han, R.; Wu, D.; Gao, J.M.; Wu, S. Methanol linear gradient counter-current chromatography for the separation of natural products: Sinopodophyllum hexandrum as samples. J. Chromatogr. A 2019, 1603, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Li, L.; Liu, Z.; Zhou, Y.; Wang, J.; Yang, Z. Multi-dimensional preparation of Thymus quinquecostatus Celak. by normal-phase flash chromatography coupled to counter-current chromatography. J. Chromatogr. A 2023, 1706, 464238. [Google Scholar] [CrossRef]
Compounds | Solvent Systems | ||||||
---|---|---|---|---|---|---|---|
n-BuOH/H2O | n-BuOH/H2O (10 mM HCl) | n-BuOH/H2O (10 mM TEA) | ACN/Aqueous Saturated NaCl | IPA/Aqueous Saturated NaCl | 15% PEG-1000/15% (NH4)2SO4 | 18% PEG-1000/15% (NH4)2SO4 | |
1 | 1.20 | 1.30 | 0.31 | 0.27 | 5.50 | 1.29 | 1.47 |
2 | \ | \ | \ | \ | \ | 1.62 | 1.90 |
3 | \ | \ | \ | \ | \ | 1.94 | 2.56 |
4 | \ | \ | \ | \ | \ | 1.98 | 2.66 |
5 | / | / | / | / | 6.05 | 5.96 | 13.37 |
Compounds | ACN/THF/D2EHPA/Aqueous Saturated NaCl (2:2:x:3, v/v) | |||||
---|---|---|---|---|---|---|
0 | 0.4 (58.6 s) * | 0.6 (51.1 s) | 0.8 (43.9 s) | 1 (43.2 s) | 1.2 (42.7 s) | |
1 | 1.35 | 1.94 | 2.13 | 2.37 | 2.63 | 2.49 |
2 | \ | 0.93 | 0.84 | 0.73 | 0.64 | 0.51 |
3 | \ | 1.26 | 1.13 | 0.99 | 0.87 | 0.74 |
4 | 0.34 | 3.88 | 5.51 | 4.8 | 4.43 | 3.6 |
5 | / | 7.02 | 9.99 | 8.84 | 8.8 | 7.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, R.; Liu, Z.; Zhou, Y.; Tian, P.; Li, L.; Yang, Z.; Ma, Y. Screening of Solvent Systems for Countercurrent Chromatography Separation of Polar Constituents from Ginkgo biloba L. Seeds. Molecules 2025, 30, 409. https://doi.org/10.3390/molecules30020409
Hu R, Liu Z, Zhou Y, Tian P, Li L, Yang Z, Ma Y. Screening of Solvent Systems for Countercurrent Chromatography Separation of Polar Constituents from Ginkgo biloba L. Seeds. Molecules. 2025; 30(2):409. https://doi.org/10.3390/molecules30020409
Chicago/Turabian StyleHu, Ruxi, Zhuo Liu, Yi Zhou, Peng Tian, Luqi Li, Zhi Yang, and Yatuan Ma. 2025. "Screening of Solvent Systems for Countercurrent Chromatography Separation of Polar Constituents from Ginkgo biloba L. Seeds" Molecules 30, no. 2: 409. https://doi.org/10.3390/molecules30020409
APA StyleHu, R., Liu, Z., Zhou, Y., Tian, P., Li, L., Yang, Z., & Ma, Y. (2025). Screening of Solvent Systems for Countercurrent Chromatography Separation of Polar Constituents from Ginkgo biloba L. Seeds. Molecules, 30(2), 409. https://doi.org/10.3390/molecules30020409