Colorimetric Detection of Dopamine Based on Peroxidase-like Activity of β-CD Functionalized AuNPs
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of β-CD-AuNPs
2.2. Characterization of β-CD at the Surface of AuNPs
2.3. Investigation of Peroxidase-Mimicking Activity of β-CD-AuNPs Using TMB as a Substrate
2.4. Applicability of β-CD-AuNPs as Peroxidase Mimetics—OPD as a Substrate
2.5. Applicability of β-CD-AuNPs as Peroxidase Mimetics—DA as a Substrate
2.6. Detection of Dopamine
2.7. Calibration Curve for the Detection of Dopamine
2.8. Specificity of the Assay for the Detection of Dopamine
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Synthesis of β-CD-AuNPs
3.3. Purification and Concentration of β-CD-AuNPs
3.4. Characterization of β-CD-AuNPs
3.4.1. UV–Vis Spectroscopy
3.4.2. Transmission Electron Microscopy (TEM)
3.4.3. X-Ray Photoelectron Spectroscopy (XPS)
3.4.4. Fourier-Transform Infrared Spectroscopy (FTIR)
3.5. Assessment of Peroxidase-like Activity of β-CD-AuNPs
3.6. Dopamine Oxidation Studies
3.7. Dopamine Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, Y.; Ren, J.; Qu, X. Catalytically active nanomaterials: A promising candidate for artificial enzymes. Acc. Chem. Res. 2014, 47, 1097–1105. [Google Scholar] [CrossRef]
- Zandieh, M.; Liu, J. Nanozymes: Definition, Activity, and Mechanisms. Adv. Mater. 2024, 36, 2211041. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Ren, J.; Qu, X. Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications. Am. Chem. Soc. 2019, 119, 4357–4412. [Google Scholar] [CrossRef]
- Kosman, J.; Juskowiak, B. Peroxidase-mimicking DNAzymes for biosensing applications: A review. Anal. Chim. Acta 2011, 707, 7–17. [Google Scholar] [CrossRef]
- de Oliveira, F.K.; Santos, L.O.; Buffon, J.G. Mechanism of action, sources, and application of peroxidases. Food Res. Int. 2021, 143, 110266. [Google Scholar] [CrossRef] [PubMed]
- Phan-Xuan, T.; Breitung, B.; Dailey, L.A. Nanozymes for biomedical applications: Multi-metallic systems may improve activity but at the cost of higher toxicity? Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2024, 16, e1981. [Google Scholar] [CrossRef]
- Lou-Franco, J.; Das, B.; Elliott, C.; Cao, C. Gold Nanozymes: From Concept to Biomedical Applications; Springer Science and Business Media B.V.: Berlin/Heidelberg, Germany, 2021. [Google Scholar] [CrossRef]
- Wang, P.Y.; Wang, W.J.; Li, W.P. Serine-Modified Au@Cu2O Core-Shell Nanoparticles for Catalysis-Mediated Colorimetric Detection of Small Molecules. ACS Appl. Nano Mater. 2023, 6, 15651–15662. [Google Scholar] [CrossRef]
- Sun, L.; Fu, Z.; Ma, E.; Guo, J.; Zhang, Z.; Li, W.; Li, L.; Liu, Z.; Guo, X. Ultrasmall Pt Nanozymes Immobilized on Spherical Polyelectrolyte Brushes with Robust Peroxidase-like Activity for Highly Sensitive Detection of Cysteine. Langmuir 2022, 38, 12915–12923. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Li, Y.; Wu, Q.; Wang, D.M.; Li, C.M.; Huang, C.Z.; Li, Y.F. Ru(III)-Based Metal-Organic Gels: Intrinsic Horseradish and NADH Peroxidase-Mimicking Nanozyme. ACS Appl. Mater. Interfaces 2019, 11, 29158–29166. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Cazelles, R.; Liao, W.-C.; Vázquez-González, M.; Zoabi, A.; Abu-Reziq, R.; Willner, I. Mimicking Horseradish Peroxidase and NADH Peroxidase by Heterogeneous Cu2+-Modified Graphene Oxide Nanoparticles. Nano Lett. 2017, 17, 2043–2048. [Google Scholar] [CrossRef]
- Vázquez-González, M.; Liao, W.-C.; Cazelles, R.; Wang, S.; Yu, X.; Gutkin, V.; Willner, I. Mimicking Horseradish Peroxidase Functions Using Cu2+-Modified Carbon Nitride Nanoparticles or Cu2+-Modified Carbon Dots as Heterogeneous Catalysts. ACS Nano 2017, 11, 3247–3253. [Google Scholar] [CrossRef]
- Comotti, M.; Della Pina, C.; Matarrese, R.; Rossi, M. The catalytic activity of ‘naked’ gold particles. Angew. Chem. Int. Ed. 2004, 43, 5812–5815. [Google Scholar] [CrossRef]
- Lin, Y.; Ren, J.; Qu, X. Nano-gold as artificial enzymes: Hidden talents. Adv. Mater. 2014, 26, 4200–4217. [Google Scholar] [CrossRef]
- Luo, W.; Zhu, C.; Su, S.; Li, D.; He, Y.; Huang, Q.; Fan, C. Self-catalyzed, self-limiting growth of glucose oxidase-mimicking gold nanoparticles. ACS Nano 2010, 4, 7451–7458. [Google Scholar] [CrossRef]
- Jv, Y.; Li, B.; Cao, R. Positively-charged gold nanoparticles as peroxidiase mimic and their application in hydrogen peroxide and glucose detection. Chem. Commun. 2010, 46, 8017–8019. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.P.; Chen, K.C.; Su, C.F.; Yu, P.Y.; Lee, P.W. Revealing the active site of gold nanoparticles for the peroxidase-like activity: The determination of surface accessibility. Catalysts 2019, 9, 517. [Google Scholar] [CrossRef]
- Wang, S.; Chen, W.; Liu, A.L.; Hong, L.; Deng, H.H.; Lin, X.H. Comparison of the peroxidase-like activity of unmodified, amino-modified, and citrate-capped gold nanoparticles. ChemPhysChem 2012, 13, 1199–1204. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.C.; Hsu, T.L.; Chen, C.P.; Chen, C.Y. Enhancement of the Peroxidase-Like Activity of Iodine-Capped Gold Nanoparticles for the Colorimetric Detection of Biothiols. Biosensors 2020, 10, 113. [Google Scholar] [CrossRef]
- Fan, X.; Bao, Y.; Chen, Y.; Wang, X.; On, S.L.W.; Wang, J. Synthesis of β-Cyclodextrin@gold Nanoparticles and Its Application on Colorimetric Assays for Ascorbic Acid and Salmonella Based on Peroxidase-like Activities. Biosensors 2024, 14, 169. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Ma, J.; Xiu, F.R.; Gao, X. Determination of Cr(VI) based on the peroxidase mimetic catalytic activity of citrate-capped gold nanoparticles. Microchim. Acta 2021, 188, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Das, B.; Lou-Franco, J.; Gilbride, B.; Ellis, M.G.; Stewart, L.D.; Grant, I.R.; Balasubramanian, P.; Cao, C. Peroxidase-Mimicking Activity of Biogenic Gold Nanoparticles Produced from Prunus nepalensis Fruit Extract: Characterizations and Application for the Detection of Mycobacterium bovis. ACS Appl. Bio Mater. 2022, 5, 2712–2725. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Huang, Y.; Zhu, H.; Zhu, Q.; Xia, Y. Three-in-One: Sensing, Self-Assembly, and Cascade Catalysis of Cyclodextrin Modified Gold Nanoparticles. J. Am. Chem. Soc. 2016, 138, 16645–16654. [Google Scholar] [CrossRef]
- Franco, R.; Reyes-Resina, I.; Navarro, G. Dopamine in health and disease: Much more than a neurotransmitter. Biomedicines 2021, 9, 109. [Google Scholar] [CrossRef]
- Tsunoda, M. Recent advances in methods for the analysis of catecholamines and their metabolites. Anal. Bioanal. Chem. 2006, 386, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Wen, D.; Liu, W.; Herrmann, A.-K.; Haubold, D.; Holzschuh, M.; Simon, F.; Eychmüller, A. Simple and Sensitive Colorimetric Detection of Dopamine Based on Assembly of Cyclodextrin-Modified Au Nanoparticles. Small 2016, 12, 2439–2442. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Sun, B.; Chen, L.; Xu, Z.; Ai, S. Colorimetric sensing of dopamine based on the aggregation of gold nanoparticles induced by copper ions. Anal. Methods 2012, 4, 3981–3986. [Google Scholar] [CrossRef]
- Wang, H.; Fu, W.; Chen, Y.; Xue, F.; Shan, G. ZIF-67-derived Co3O4 hollow nanocage with efficient peroxidase mimicking characteristic for sensitive colorimetric biosensing of dopamine. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 246, 119006. [Google Scholar] [CrossRef]
- Zhu, J.; Peng, X.; Nie, W.; Wang, Y.; Gao, J.; Wen, W.; Selvaraj, J.N.; Zhang, X.; Wang, S. Hollow copper sulfide nanocubes as multifunctional nanozymes for colorimetric detection of dopamine and electrochemical detection of glucose. Biosens. Bioelectron. 2019, 141, 111450. [Google Scholar] [CrossRef]
- JYue, Y.; Song, L.P.; Wang, Y.T.; Yang, P.; Ma, Y.; Tang, B. Fluorescence/Colorimetry/Smartphone Triple-Mode Sensing of Dopamine by a COF-Based Peroxidase-Mimic Platform. Anal. Chem. 2022, 94, 14419–14425. [Google Scholar] [CrossRef]
- Wu, F.N.; Zhu, J.; Weng, G.J.; Li, J.J.; Zhao, J.W. Tyrosine-Decorated Gold Nanoclusters Chelated Cerium(III) for Fluorescence Detection of Dopamine. ACS Appl. Nano Mater. 2021, 4, 13501–13509. [Google Scholar] [CrossRef]
- Haiss, W.; Thanh, N.T.K.; Aveyard, J.; Fernig, D.G. Determination of size and concentration of gold nanoparticles from UV-Vis spectra. Anal. Chem. 2007, 79, 4215–4221. [Google Scholar] [CrossRef]
- Hu, S.; Trinchi, A.; Atkin, P.; Cole, I. Tunable photoluminescence across the entire visible spectrum from carbon dots excited by white light. Angew. Chem. Int. Ed. 2015, 54, 2970–2974. [Google Scholar] [CrossRef]
- Mazzaglia, A.; Scolaro, L.M.; Mezzi, A.; Kaciulis, S.; De Caro, T.; Ingo, G.M.; Padeletti, G. Supramolecular colloidal systems of gold nanoparticles/amphiphilic cyclodextrin: A FE-SEM and XPS investigation of nanostructures assembled onto solid surface. J. Phys. Chem. C 2009, 113, 12772–12777. [Google Scholar] [CrossRef]
- Chandra, V.; Park, J.; Chun, Y.; Lee, J.W.; Hwang, I.C.; Kim, K.S. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 2010, 4, 3979–3986. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, Q.; Lang, Y.; Jiang, X.; Wu, P. Rationale of 3,3′,5,5′-Tetramethylbenzidine as the Chromogenic Substrate in Colorimetric Analysis. Anal. Chem. 2020, 92, 12400–12406. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Gao, L.; Fan, K.; Liu, J.; He, J.; Qu, X.; Dong, S.; Wang, E.; Yan, X. Nanozymes: A clear definition with fuzzy edges. Nano Today 2021, 40, 101269. [Google Scholar] [CrossRef]
- Tarasek, D.; Gąsowska-Bajger, B.; Frąckowiak-Wojtasek, B.; Kersten, C.; Jewgiński, M.; Kołodziej, Ł.; Latajka, R.; Wojtasek, H. Oxidation of dobutamine and dopamine by horseradish peroxidase. J. Mol. Struct. 2022, 1252, 132169. [Google Scholar] [CrossRef]
- Frey, A.; Meckelein, B.; Externest, D.; Schmidt, M.A. A stable and highly sensitive 3,3′,5,5′-tetramethylbenzidine-based substrate reagent for enzyme-linked immunosorbent assays. J. Immunol. Methods 2000, 233, 47–56. [Google Scholar] [CrossRef]
- Slivka, A.; Cohen, G. Hydroxyl radical attack on dopamine. J. Biol. Chem. 1985, 260, 15466–15472. [Google Scholar] [CrossRef]
- Ohlweiler, O.A.; Meditsch, J.O. The decomposition of hydrogen peroxide in alkaline solution. Anal. Chim. Acta 1974, 69, 228–230. [Google Scholar] [CrossRef]
- Sudha, V.; Duraisamy, V.; Arumugam, N.; Almansour, A.I.; Liu, T.X.; Dharuman, V.; Kumar, S.M.S. Ultrasensitive Dopamine Detection at Co3O4-Anchored N-Doped Hollow Mesoporous Carbon Nanospheres. ACS Appl. Nano Mater. 2023, 6, 13013–13026. [Google Scholar] [CrossRef]
- Wang, J.; Hu, Y.; Zhou, Q.; Hu, L.; Fu, W.; Wang, Y. Peroxidase-like Activity of Metal-Organic Framework [Cu(PDA)(DMF)] and Its Application for Colorimetric Detection of Dopamine. ACS Appl. Mater. Interfaces 2019, 11, 44466–44473. [Google Scholar] [CrossRef] [PubMed]
- Wickstrom, L.; He, P.; Gallicchio, E.; Levy, R.M. Large scale affinity calculations of cyclodextrin host-guest complexes: Understanding the role of reorganization in the molecular recognition process. J. Chem. Theory Comput. 2013, 9, 3136–3150. [Google Scholar] [CrossRef]
- Dutta, S.; Ray, C.; Mallick, S.; Sarkar, S.; Sahoo, R.; Negishi, Y.; Pal, T. A Gel-Based Approach to Design Hierarchical CuS Decorated Reduced Graphene Oxide Nanosheets for Enhanced Peroxidase-like Activity Leading to Colorimetric Detection of Dopamine. J. Phys. Chem. C 2015, 119, 23790–23800. [Google Scholar] [CrossRef]
- Liu, H.; Ding, Y.N.; Bian, B.; Li, L.; Li, R.; Zhang, X.; Fan, G.; Liu, Q. Rapid colorimetric determination of dopamine based on the inhibition of the peroxidase mimicking activity of platinum loaded CoSn(OH)6 nanocubes. Microchimica Acta 2019, 186. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Ma, F.; Zhu, Y.; Chen, S.; Wang, C.; Lu, X. A facile synthesis of CuFe2O4/Cu9S8/PPy ternary nanotubes as peroxidase mimics for the sensitive colorimetric detection of H2O2 and dopamine. Dalton Trans. 2017, 46, 11171–11179. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, Z.; Chi, M.; Li, M.; Wang, C.; Lu, X. Synthesis of hierarchical Co3O4@NiO core-shell nanotubes with a synergistic catalytic activity for peroxidase mimicking and colorimetric detection of dopamine. Talanta 2018, 181, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Lian, J.; Liu, P.; Li, X.; Bian, B.; Zhang, X.; Liu, Z.; Zhang, X.; Fan, G.; Gao, L.; Liu, Q. Multi-layer CeO2-wrapped Ag2S microspheres with enhanced peroxidase-like activity for sensitive detection of dopamine. Colloids Surf. A Physicochem. Eng. Asp. 2019, 565, 1–7. [Google Scholar] [CrossRef]
- Ivanova, M.N.; Grayfer, E.D.; Plotnikova, E.E.; Kibis, L.S.; Darabdhara, G.; Boruah, P.K.; Das, M.R.; Fedorov, V.E. Pt-Decorated Boron Nitride Nanosheets as Artificial Nanozyme for Detection of Dopamine. ACS Appl. Mater Interfaces 2019, 11, 22102–22112. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Li, W.; Zhao, F.; Zhu, X.; Liu, Q.; Liu, Z.; Zhang, X.; Zhang, X. Pt deposited on magnetic CoFe2O4 nanoparticles: Double enzyme-like activity, catalytic mechanism and fast colorimetric sensing of dopamine. Microchem. J. 2020, 158, 105264. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anderson, S.; Shepherd, H.; Boggavarapu, K.; Paudyal, J. Colorimetric Detection of Dopamine Based on Peroxidase-like Activity of β-CD Functionalized AuNPs. Molecules 2025, 30, 423. https://doi.org/10.3390/molecules30020423
Anderson S, Shepherd H, Boggavarapu K, Paudyal J. Colorimetric Detection of Dopamine Based on Peroxidase-like Activity of β-CD Functionalized AuNPs. Molecules. 2025; 30(2):423. https://doi.org/10.3390/molecules30020423
Chicago/Turabian StyleAnderson, Sara, Hamish Shepherd, Kiran Boggavarapu, and Janak Paudyal. 2025. "Colorimetric Detection of Dopamine Based on Peroxidase-like Activity of β-CD Functionalized AuNPs" Molecules 30, no. 2: 423. https://doi.org/10.3390/molecules30020423
APA StyleAnderson, S., Shepherd, H., Boggavarapu, K., & Paudyal, J. (2025). Colorimetric Detection of Dopamine Based on Peroxidase-like Activity of β-CD Functionalized AuNPs. Molecules, 30(2), 423. https://doi.org/10.3390/molecules30020423