Water-Resistant Poly(ethylene oxide) Electrospun Membranes Enabled by In Situ UV-Cross-Linking for Efficient Daytime Radiative Cooling
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. Materials
3.2. Preparation of Acrylate-Terminated PEO (PEO-ISA)
3.3. Preparation of Electrospinning Solutions
3.4. Preparation of Electrospun Membranes
3.5. Characterizations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, M.; Pang, D.; Chen, X.; Yan, H.; Yang, Y. Passive daytime radiative cooling: Fundamentals, material designs, and applications. Ecomat 2021, 4, 12153. [Google Scholar] [CrossRef]
- Kecebas, M.A.; Menguc, M.P.; Kosar, A.; Sendur, K. Passive radiative cooling design with broadband optical thin-film filters. J. Quant. Spectrosc. Radiat. Transf. 2017, 198, 179–186. [Google Scholar] [CrossRef]
- Yu, X.; Chan, J.; Chen, C. Review of radiative cooling materials: Performance evaluation and design approaches. Nano Energy 2021, 88, 106259. [Google Scholar] [CrossRef]
- Meng, S.; Long, L.; Wu, Z.; Denisuk, N.; Yang, Y.; Wang, L.; Cao, F.; Zhu, Y. Scalable dual-layer film with broadband infrared emission for sub-ambient daytime radiative cooling. Sol. Energy Mater. Sol. Cells 2020, 208, 110393. [Google Scholar] [CrossRef]
- Wang, X.; Liu, X.; Li, Z.; Zhang, H.; Yang, Z.; Zhou, H.; Fan, T. Scalable flexible hybrid membranes with photonic structures for daytime radiative cooling. Adv. Funct. Mater. 2019, 30, 1907562. [Google Scholar] [CrossRef]
- Zhai, Y.; Ma, Y.; David, S.N.; Zhao, D.; Luo, R.; Tan, G.; Yang, R.; Yin, X. Scalable-manufactured randomizedglass-polymer hybrid metamaterialfor daytime radiative cooling. Science 2017, 355, 1062–1066. [Google Scholar] [CrossRef]
- Huang, Y.; Pu, M.; Zhao, Z.; Li, X.; Ma, X.; Luo, X. Broadband metamaterial as an “invisible” radiative cooling coat. Opt. Commun. 2018, 407, 204–207. [Google Scholar] [CrossRef]
- Li, W.; Shi, Y.; Chen, K.; Zhu, L.; Fan, S. A comprehensive photonic approach for solar cell cooling. ACS Photonics 2017, 4, 774–782. [Google Scholar] [CrossRef]
- Zhan, Z.; ElKabbash, M.; Li, Z.; Li, X.; Zhang, J.; Rutledge, J.; Singh, S.; Guo, C. Enhancing thermoelectric output power via radiative cooling with nanoporous alumina. Nano Energy 2019, 65, 104060. [Google Scholar] [CrossRef]
- He, J.; Zhang, Q.; Zhou, Y.; Chen, Y.; Ge, H.; Tang, S. Bioinspired polymer films with surface ordered pyramid arrays and 3D hierarchical pores for enhanced passive radiative cooling. ACS Nano 2024, 18, 11120–11129. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Peoples, J.; Huang, Z.; Zhao, Z.; Qiu, J.; Ruan, X. Full daytime sub-ambient radiative cooling in commercial-like paints with high figure of merit. Cell Rep. Phys. Sci. 2020, 1, 100221. [Google Scholar] [CrossRef]
- Zhang, S.; Cui, C.; Zhang, F.; Lu, J.; Su, J.; Han, J. Flexible coated textile with remarkable passive daytime radiative cooling, UV resistance and hydrophobicity performance. Prog. Org. Coat. 2024, 186, 108005. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, S.; Cai, Y.; Yi, L. Colorfully coated cotton fabric for passive daytime radiative cooling. Prog. Org. Coat. 2023, 182, 107678. [Google Scholar] [CrossRef]
- Banik, U.; Agrawal, A.; Meddeb, H.; Sergeev, O.; Reininghaus, N.; Gotz-Kohler, M.; Gehrke, K.; Stuhrenberg, J.; Vehse, M.; Sznajder, M.; et al. Efficient thin polymer coating as a selective thermal emitter for passive daytime radiative cooling. ACS Appl. Mater. Interfaces 2021, 13, 24130–24137. [Google Scholar] [CrossRef]
- Luo, H.; Yang, M.; Guo, J.; Zou, W.; Xu, J.; Zhao, N. Hierarchical Porous Polymer Coatings Based on UV-Curing for Highly Efficient Passive All-Day Radiative Cooling. ACS Appl. Polym. Mater. 2022, 4, 5746–5755. [Google Scholar] [CrossRef]
- An, S.; Shi, B.; Jiang, M.; Fu, B.; Song, C.; Tao, P.; Shang, W.; Deng, T. Biological and bioinspired thermal energy regulation and utilization. Chem. Rev. 2023, 123, 7081–7118. [Google Scholar] [CrossRef]
- Zhang, H.; Ly, K.C.S.; Liu, X.; Chen, Z.; Yan, M.; Wu, Z.; Wang, X.; Zheng, Y.; Zhou, H.; Fan, T. Biologically inspired flexible photonic films for efficient passive radiative cooling. Proc. Natl. Acad. Sci. USA 2020, 117, 14657–14666. [Google Scholar] [CrossRef]
- Xie, D.; Yang, Z.; Liu, X.; Cui, S.; Zhou, H.; Fan, T. Broadband omnidirectional light reflection and radiative heat dissipation in white beetles Goliathus goliatus. Soft Matter 2019, 15, 4294–4300. [Google Scholar] [CrossRef]
- Greiner, A.; Wendorff, J.H. Electrospinning: A fascinating method for the preparation of ultrathin fibers. Angew. Chem.-Int. Ed. 2007, 46, 5670–5703. [Google Scholar] [CrossRef] [PubMed]
- Miao, D.; Cheng, N.; Wang, X.; Yu, J.; Ding, B. Integration of Janus wettability and heat conduction in hierarchically designed textiles for all-day personal radiative cooling. Nano Lett. 2022, 22, 680–687. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.E.; Wang, Y.; Liang, X.; Zhang, Y.; Bi, P.; Zhang, M.; Li, S.; Liang, H.; Wang, S.; Wang, H.; et al. Durable radiative cooling multilayer silk textile with excellent comprehensive performance. Adv. Funct. Mater. 2023, 34, 2313539. [Google Scholar] [CrossRef]
- He, J.; Zhang, Q.; Wu, Y.; Ju, Y.; Wang, Y.; Tang, S. Scalable nanofibrous silk fibroin textile with excellent Mie scattering and high sweat evaporation ability for highly efficient passive personal thermal management. Chem. Eng. J. 2023, 466, 143127. [Google Scholar] [CrossRef]
- Cheng, N.; Miao, D.; Wang, C.; Lin, Y.; Babar, A.A.; Wang, X.; Wang, Z.; Yu, J.; Ding, B. Nanosphere-structured hierarchically porous PVDF-HFP fabric for passive daytime radiative cooling via one-step water vapor-induced phase separation. Chem. Eng. J. 2023, 460, 141581. [Google Scholar] [CrossRef]
- Jaramillo-Fernandez, J.; Yang, H.; Schertel, L.; Whitworth, G.L.; Garcia, P.D.; Vignolini, S.; Sotomayor-Torres, C.M. Highly-scattering cellulose-based films for radiative cooling. Adv. Sci. 2022, 9, 2104758. [Google Scholar] [CrossRef] [PubMed]
- Zeng, S.; Pian, S.; Su, M.; Wang, Z.; Wu, M.; Liu, X.; Chen, M.; Xiang, Y.; Wu, J.; Zhang, M.; et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 2021, 373, 692–696. [Google Scholar] [CrossRef]
- Li, D.; Liu, X.; Li, W.; Lin, Z.; Zhu, B.; Li, Z.; Li, J.; Li, B.; Fan, S.; Xie, J.; et al. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling. Nat. Nanotechnol. 2021, 16, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Cheng, Z.; Yang, D.; Dong, Y.; Shi, X.; Liang, H.; Wang, F.; Han, H.; Meng, W.; Shuai, Y.; et al. Scalable bio-skin-inspired radiative cooling metafabric for breaking trade-off between optical properties and application requirements. ACS Photonics 2023, 10, 1624–1632. [Google Scholar] [CrossRef]
- Hsu, P.C.; Song, A.Y.; Catrysse, P.B.; Liu, C.; Peng, Y.; Xie, J.; Fan, S.; Cui, Y. Radiative human body cooling by nanoporous polyethylene textile. Science 2016, 353, 1019–1023. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Da, B.; Peng, F.; Hu, B.; Gao, C.; Dai, K.; Zheng, G.; Liu, C.; Shen, C. Facilely fabricated polyethylene film composed of directional microfibrils for passive radiative cooling. Polymer 2024, 299, 126979. [Google Scholar] [CrossRef]
- Yao, P.; Chen, Z.; Liu, T.; Liao, X.; Yang, Z.; Li, J.; Jiang, Y.; Xu, N.; Li, W.; Zhu, B.; et al. Spider-Silk-Inspired Nanocomposite Polymers for Durable Daytime Radiative Cooling. Adv. Mater. 2022, 34, 2208236. [Google Scholar] [CrossRef]
- Yoshii, F.; Zhanshan, Y.; Isobe, K.; Shinozaki, K.; Makuuchi, K. Electron beam crosslinked PEO and PEO/PVA hydrogels for wound dressing. Radiat. Phys. Chem. 1999, 55, 133–138. [Google Scholar] [CrossRef]
- Jurkin, T.; Pucić, I. Irradiation effects in poly(ethylene oxide)/silica nanocomposite films and gels. Polym. Eng. Sci. 2013, 53, 2318–2327. [Google Scholar] [CrossRef]
- Kianfar, P.; Vitale, A.; Dalle Vacche, S.; Bongiovanni, R. Enhancing properties and water resistance of PEO based electrospun nanofibrous membranes by photocrosslinking. J. Mater. Sci. 2021, 56, 1879–1896. [Google Scholar] [CrossRef]
- Emami, S.H.; Salovey, R. Crosslinked poly(ethylene oxide) hydrogels. J. Appl. Polym. Sci. 2003, 88, 1451–1455. [Google Scholar] [CrossRef]
- Shekunov, B.Y.; Chattopadhyay, P.; Tong, H.H.; Chow, A.H.; Grossmann, J.G. Structure and drug release in a crosslinked poly(ethylene oxide) hydrogel. J. Pharm. Sci. 2007, 96, 1320–1330. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Gough, I.; Dorogin, J.; Sheardown, H.; Hoare, T. Nanostructured degradable macroporous hydrogel scaffolds with controllable internal morphologies via reactive electrospinning. Acta Biomater. 2020, 104, 135–146. [Google Scholar] [CrossRef]
- Xue, C.; Wilson, L.D. Preparation and characterization of salicylic acid grafted chitosan electrospun fibers. Carbohydr. Polym. 2022, 275, 118751. [Google Scholar] [CrossRef]
- Gao, J.; Guo, H.; Zhao, L.; Zhao, X.; Wang, L. Water-stability and biological behavior of electrospun collagen/PEO fibers by environmental friendly crosslinking. Fibers Polym. 2017, 18, 1496–1503. [Google Scholar] [CrossRef]
- Bonino, C.A.; Krebs, M.D.; Saquing, C.D.; Jeong, S.I.; Shearer, K.L.; Alsberg, E.; Khan, S.A. Electrospinning alginate-based nanofibers: From blends to crosslinked low molecular weight alginate-only systems. Carbohydr. Polym. 2011, 85, 111–119. [Google Scholar] [CrossRef]
- McAvoy, K.; Jones, D.; Thakur, R.R.S. Synthesis and Characterisation ofPhotocrosslinked poly(ethylene glycol) diacrylate Implants for Sustained Ocular Drug Delivery. Pharm. Res. 2018, 35, 36. [Google Scholar] [CrossRef]
- Lio, G.E.; Werlé, J.; Arduini, M.; Wiersma, D.S.; Manara, J.; Pattelli, L. Radiative Cooling Potential of a Water-Based Paint Formulation under Realistic Application Conditions. ACS Appl. Opt. Mater. 2024, 2, 2459–2468. [Google Scholar] [CrossRef]
- Li, X.; Pattelli, L.; Ding, Z.; Chen, M.; Zhao, T.; Li, Y.; Xu, H.; Pan, L.; Zhao, J. A Novel BST@TPU Membrane with Superior UV Durability for Highly Efficient Daytime Radiative Cooling. Adv. Funct. Mater. 2024, 34, 2315315. [Google Scholar] [CrossRef]
- Xu, F.; Zhang, T.; Xu, Z.; Zhao, Y. Solid-solid phase change fibers with enhanced energy storage density for temperature management. J. Energy Storage 2024, 79, 110190. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, B.; Xu, Z.; Zhang, T.; Zhao, Y. Emulsion-based monoliths with a solid-gel phase-transition and a solid–solid phase-transition for latent heat storage. J. Polymer Sci. 2023, 62, 2027–2035. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Wang, Q.; Xu, Z.; Zhao, Y. Water-Resistant Poly(ethylene oxide) Electrospun Membranes Enabled by In Situ UV-Cross-Linking for Efficient Daytime Radiative Cooling. Molecules 2025, 30, 421. https://doi.org/10.3390/molecules30020421
Zhang H, Wang Q, Xu Z, Zhao Y. Water-Resistant Poly(ethylene oxide) Electrospun Membranes Enabled by In Situ UV-Cross-Linking for Efficient Daytime Radiative Cooling. Molecules. 2025; 30(2):421. https://doi.org/10.3390/molecules30020421
Chicago/Turabian StyleZhang, Haiyan, Qingpeng Wang, Zhiguang Xu, and Yan Zhao. 2025. "Water-Resistant Poly(ethylene oxide) Electrospun Membranes Enabled by In Situ UV-Cross-Linking for Efficient Daytime Radiative Cooling" Molecules 30, no. 2: 421. https://doi.org/10.3390/molecules30020421
APA StyleZhang, H., Wang, Q., Xu, Z., & Zhao, Y. (2025). Water-Resistant Poly(ethylene oxide) Electrospun Membranes Enabled by In Situ UV-Cross-Linking for Efficient Daytime Radiative Cooling. Molecules, 30(2), 421. https://doi.org/10.3390/molecules30020421