The Impact of Organic Micropollutants on the Biochemical Composition and Stress Markers in Wolffia arrhiza
Abstract
:1. Introduction
2. Results and Discussion
2.1. Plant Growth
2.2. Proteins
2.3. Monosaccharides
2.4. Chlorophylls
2.5. Carotenoids
2.6. Oxidative Stress Markers
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Plant Material and Growth Conditions
3.3. Plant Growth Determination
3.4. Determination of Monosaccharide and Water-Soluble Protein Contents
3.5. Determination of Photosynthetic Pigments
3.6. Malondialdehyde and Hydrogen Peroxide Determination
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stamm, C.; Räsänen, K.; Burdon, F.J.; Altermatt, F.; Jokela, J.; Joss, A.; Ackermann, M.; Eggen, R.I.L. Unravelling the Impacts of Micropollutants in Aquatic Ecosystems. In Advances in Ecological Research; Elsevier: Amsterdam, The Netherlands, 2016; Volume 55, pp. 183–223. ISBN 978-0-08-100935-2. [Google Scholar]
- Bolívar-Subirats, G.; Rivetti, C.; Cortina-Puig, M.; Barata, C.; Lacorte, S. Occurrence, Toxicity and Risk Assessment of Plastic Additives in Besos River, Spain. Chemosphere 2021, 263, 128022. [Google Scholar] [CrossRef] [PubMed]
- Ślósarczyk, K.; Jakóbczyk-Karpierz, S.; Różkowski, J.; Witkowski, A.J. Occurrence of Pharmaceuticals and Personal Care Products in the Water Environment of Poland: A Review. Water 2021, 13, 2283. [Google Scholar] [CrossRef]
- Quinete, N.; Castro, J.; Fernandez, A.; Zamora-Ley, I.M.; Rand, G.M.; Gardinali, P.R. Occurrence and Distribution of Endosulfan in Water, Sediment, and Fish Tissue: An Ecological Assessment of Protected Lands in South Florida. J. Agric. Food Chem. 2013, 61, 11881–11892. [Google Scholar] [CrossRef] [PubMed]
- Kapelewska, J.; Kotowska, U.; Karpińska, J.; Kowalczuk, D.; Arciszewska, A.; Świrydo, A. Occurrence, Removal, Mass Loading and Environmental Risk Assessment of Emerging Organic Contaminants in Leachates, Groundwaters and Wastewaters. Microchem. J. 2018, 137, 292–301. [Google Scholar] [CrossRef]
- Yadav, D.; Rangabhashiyam, S.; Verma, P.; Singh, P.; Devi, P.; Kumar, P.; Hussain, C.M.; Gaurav, G.K.; Kumar, K.S. Environmental and Health Impacts of Contaminants of Emerging Concerns: Recent Treatment Challenges and Approaches. Chemosphere 2021, 272, 129492. [Google Scholar] [CrossRef]
- Ratchnashree, S.R.; Karmegam, N.; Selvam, M.; Manikandan, S.; Deena, S.R.; Subbaiya, R.; Vickram, A.S.; Kim, W.; Govarthanan, M. Advanced Technologies for the Determination of Quantitative Structure-Activity Relationships and Degradation Efficiency of Micropollutants and Their Removal in Water—A Review. Sci. Total Environ. 2023, 904, 166563. [Google Scholar] [CrossRef] [PubMed]
- Kodešová, R.; Švecová, H.; Klement, A.; Fér, M.; Nikodem, A.; Fedorova, G.; Rieznyk, O.; Kočárek, M.; Sadchenko, A.; Chroňáková, A.; et al. Contamination of Water, Soil, and Plants by Micropollutants from Reclaimed Wastewater and Sludge from a Wastewater Treatment Plant. Sci. Total Environ. 2024, 907, 167965. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Bains, A.; Sridhar, K.; Chawla, P.; Sharma, M. Environmental Impact and Source-Controlled Approaches for Emerging Micropollutants: Current Status and Future Prospects. Food Chem. Toxicol. 2024, 193, 115038. [Google Scholar] [CrossRef]
- EUR-lex, European Union Proposal for a DIRECTIVE OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL Concerning Urban Wastewater Treatment (Recast). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52022PC0541 (accessed on 1 October 2024).
- Pistocchi, A.; Andersen, H.R.; Bertanza, G.; Brander, A.; Choubert, J.M.; Cimbritz, M.; Drewes, J.E.; Koehler, C.; Krampe, J.; Launay, M.; et al. Treatment of Micropollutants in Wastewater: Balancing Effectiveness, Costs and Implications. Sci. Total Environ. 2022, 850, 157593. [Google Scholar] [CrossRef] [PubMed]
- Piekutin, J.; Kotowska, U.; Puchlik, M.; Polińska, W.; Dobkowska, A. Application of an Integrated Process for the Removal of Organic Compounds of the Phenols Group from Water. Desalination Water Treat. 2023, 301, 63–70. [Google Scholar] [CrossRef]
- Kotowska, U.; Karpińska, J.; Kiejza, D.; Ratkiewicz, A.; Piekutin, J.; Makarova, K.; Olchowik-Grabarek, E. Oxidation of Contaminants of Emerging Concern by Combination of Peracetic Acid with Iron Ions and Various Types of Light Radiation—Optimization, Kinetics, Removal Efficiency and Mechanism Investigation. J. Mol. Liq. 2023, 369, 120859. [Google Scholar] [CrossRef]
- Karpińska, J.; Kotowska, U. New Aspects of Occurrence and Removal of Emerging Pollutants. Water 2021, 13, 2418. [Google Scholar] [CrossRef]
- Kanaujiya, D.K.; Paul, T.; Sinharoy, A.; Pakshirajan, K. Biological Treatment Processes for the Removal of Organic Micropollutants from Wastewater: A Review. Curr. Pollut. Rep. 2019, 5, 112–128. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, P.; Yang, Y.; Chen, W. Phytoremediation of Urban Wastewater by Model Wetlands with Ornamental Hydrophytes. J. Environ. Sci. 2007, 19, 902–909. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Stepanenko, A.; Kishchenko, O.; Xu, J.; Borisjuk, N. Duckweeds for Phytoremediation of Polluted Water. Plants 2023, 12, 589. [Google Scholar] [CrossRef] [PubMed]
- Coughlan, N.E.; Walsh, É.; Bolger, P.; Burnell, G.; O’Leary, N.; O’Mahoney, M.; Paolacci, S.; Wall, D.; Jansen, M.A.K. Duckweed Bioreactors: Challenges and Opportunities for Large-Scale Indoor Cultivation of Lemnaceae. J. Clean. Prod. 2022, 336, 130285. [Google Scholar] [CrossRef]
- Baek, G.; Saeed, M.; Choi, H.-K. Duckweeds: Their Utilization, Metabolites and Cultivation. Appl Biol Chem 2021, 64, 73. [Google Scholar] [CrossRef] [PubMed]
- Verma, R.; Suthar, S. Utility of Duckweeds as Source of Biomass Energy: A Review. Bioenerg. Res. 2015, 8, 1589–1597. [Google Scholar] [CrossRef]
- Gusain, R.; Suthar, S. Vermicomposting of Duckweed (Spirodela polyrhiza) by Employing Eisenia Fetida: Changes in Nutrient Contents, Microbial Enzyme Activities and Earthworm Biodynamics. Bioresour. Technol. 2020, 311, 123585. [Google Scholar] [CrossRef] [PubMed]
- Fourounjian, P.; Fakhoorian, T.; Cao, X.H. Importance of Duckweeds in Basic Research and Their Industrial Applications. In The Duckweed Genomes; Cao, X.H., Fourounjian, P., Wang, W., Eds.; Compendium of Plant Genomes; Springer International Publishing: Cham, The Netherlands, 2020; pp. 1–17. ISBN 978-3-030-11044-4. [Google Scholar]
- Ritchie, R.J.; Mekjinda, N. Arsenic Toxicity in the Water Weed Wolffia arrhiza Measured Using Pulse Amplitude Modulation Fluorometry (PAM) Measurements of Photosynthesis. Ecotoxicol. Environ. Saf. 2016, 132, 178–185. [Google Scholar] [CrossRef]
- Xie, W.-Y.; Huang, Q.; Li, G.; Rensing, C.; Zhu, Y.-G. Cadmium Accumulation in the Rootless Macrophyte Wolffia Globosa and its Potential for Phytoremediation. Int. J. Phytoremediat. 2013, 15, 385–397. [Google Scholar] [CrossRef] [PubMed]
- Ansari, A.A. Eutrophication: Causes, Consequences and Control; Springer: Dordrecht, The Netherlands, 2011; ISBN 978-90-481-9625-8. [Google Scholar]
- Suppadit, T. Nutrient Removal of Effluent from Quail Farm through Cultivation of Wolffia arrhiza. Bioresour. Technol. 2011, 102, 7388–7392. [Google Scholar] [CrossRef]
- Kotowska, U.; Karpinska, J.; Kapelewska, J.; Kowejsza, E.M.; Piotrowska-Niczyporuk, A.; Piekutin, J.; Kotowski, A. Removal of Phthalates and Other Contaminants from Municipal Wastewater during Cultivation of Wolffia arrhiza. Process Saf. Environ. Prot. 2018, 120, 268–277. [Google Scholar] [CrossRef]
- Polińska, W.; Kotowska, U.; Karpińska, J. The Problem with Benzotriazole Ultraviolet Stabilizers in the Environment—Are the Aquatic Plants the Solution for Them? Ind. Crops Prod. 2024, 210, 118050. [Google Scholar] [CrossRef]
- Polińska, W.; Piotrowska-Niczyporuk, A.; Karpińska, J.; Struk-Sokołowska, J.; Kotowska, U. Mechanisms, Toxicity and Optimal Conditions—Research on the Removal of Benzotriazoles from Water Using Wolffia arrhiza. Sci. Total Environ. 2022, 847, 157571. [Google Scholar] [CrossRef] [PubMed]
- Kotowska, U.; Piekutin, J.; Polińska, W.; Kotowski, A. Removal of Contaminants of Emerging Concern by Wolffia arrhiza and Lemna minor Depending on the Process Conditions, Pollutants Concentration, and Matrix Type. Sci. Rep. 2024, 14, 15898. [Google Scholar] [CrossRef] [PubMed]
- Prosridee, K.; Oonsivilai, R.; Tira-Aumphon, A.; Singthong, J.; Oonmetta-Aree, J.; Oonsivilai, A. Optimum Aquaculture and Drying Conditions for Wolffia arrhiza (L.) Wimn. Heliyon 2023, 9, e19730. [Google Scholar] [CrossRef]
- Park, H.; Park, J.H.; Kang, Y.J. Characterization of the Complete Chloroplast Genome of Wolffia arrhiza and Comparative Genomic Analysis with Relative Wolffia Species. Sci. Rep. 2024, 14, 5873. [Google Scholar] [CrossRef]
- Han, H.; Wu, H.; Zhi, Y.; Zhou, J.; Li, W.; Yuan, L.; Cao, Y. Impacts of Bisphenol A on Growth and Reproductive Traits of Submerged Macrophyte Vallisneria Natans. Environ. Sci. Pollut. Res. 2023, 30, 46383–46393. [Google Scholar] [CrossRef] [PubMed]
- Tarafdar, A.; Sirohi, R.; Balakumaran, P.A.; Reshmy, R.; Madhavan, A.; Sindhu, R.; Binod, P.; Kumar, Y.; Kumar, D.; Sim, S.J. The Hazardous Threat of Bisphenol A: Toxicity, Detection and Remediation. J. Hazard. Mater. 2022, 423, 127097. [Google Scholar] [CrossRef] [PubMed]
- García-Galán, M.J.; Matamoros, V.; Uggetti, E.; Díez-Montero, R.; García, J. Removal and Environmental Risk Assessment of Contaminants of Emerging Concern from Irrigation Waters in a Semi-Closed Microalgae Photobioreactor. Environ. Res. 2021, 194, 110278. [Google Scholar] [CrossRef] [PubMed]
- Dar, O.I.; Aslam, R.; Pan, D.; Sharma, S.; Andotra, M.; Kaur, A.; Jia, A.-Q.; Faggio, C. Source, Bioaccumulation, Degradability and Toxicity of Triclosan in Aquatic Environments: A Review. Environ. Technol. Innov. 2022, 25, 102122. [Google Scholar] [CrossRef]
- Ma, J.; Wang, Z.; Qin, C.; Wang, T.; Hu, X.; Ling, W. Safety of Benzophenone-Type UV Filters: A Mini Review Focusing on Carcinogenicity, Reproductive and Developmental Toxicity. Chemosphere 2023, 326, 138455. [Google Scholar] [CrossRef] [PubMed]
- Sathishkumar, P.; Mohan, K.; Ganesan, A.R.; Govarthanan, M.; Yusoff, A.R.M.; Gu, F.L. Persistence, Toxicological Effect and Ecological Issues of Endosulfan—A Review. J. Hazard. Mater. 2021, 416, 125779. [Google Scholar] [CrossRef]
- Landa-Faz, A.; González-Orenga, S.; Boscaiu, M.; Rodríguez-Vázquez, R.; Vicente, O. Effect of the Pesticide Endosulfan and Two Different Biostimulants on the Stress Responses of Phaseolus Leptostachyus Plants Grown in a Saline Soil. Agronomy 2021, 11, 1208. [Google Scholar] [CrossRef]
- Mitton, F.M.; Gonzalez, M.; Monserrat, J.M.; Miglioranza, K.S.B. Potential Use of Edible Crops in the Phytoremediation of Endosulfan Residues in Soil. Chemosphere 2016, 148, 300–306. [Google Scholar] [CrossRef]
- Fatiha, C.; Fouad, S. Endosulfan Induced Alterations in Physiological Responses in Lycopersicum Esculentum Seeds during Germination. Afr. J. Agric. Res. 2011, 6, 6563–6571. [Google Scholar] [CrossRef]
- Pereira, J.L.; Picanço, M.C.; Silva, A.A.; Santos, E.A.; Tomé, H.V.V.; Olarte, J.B. Effects of Glyphosate and Endosulfan on Soil Microorganisms in Soybean Crop. Planta Daninha 2008, 26, 825–830. [Google Scholar] [CrossRef]
- Sun, X.; Zhu, L.; Wang, J.; Wang, J.; Su, B.; Du, Z.; Guo, P. Effects of Endosulfan on the Populations of Cultivable Microorganisms and the Diversity of Bacterial Community Structure in Brunisolic Soil. Water Air Soil Pollut 2017, 228, 169. [Google Scholar] [CrossRef]
- Kapeleka, J.A.; Sauli, E.; Ndakidemi, P.A. Pesticide Exposure and Genotoxic Effects as Measured by DNA Damage and Human Monitoring Biomarkers. Int. J. Environ. Health Res. 2021, 31, 805–822. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Kaninathan, A.; Dahal, S.; Kumari, S.; Choudhary, B.; Raghavan, S.C. Exposure to Endosulfan Can Cause Long Term Effects on General Biology, Including the Reproductive System of Mice. Front. Genet. 2022, 13, 1047746. [Google Scholar] [CrossRef] [PubMed]
- Nie, E.; Chen, Y.; Gao, X.; Chen, Y.; Ye, Q.; Wang, H. Uptake, Translocation and Accumulation of 14C-Triclosan in Soil-Peanut Plant System. Sci. Total Environ. 2020, 724, 138165. [Google Scholar] [CrossRef] [PubMed]
- Prosser, R.S.; Lissemore, L.; Topp, E.; Sibley, P.K. Bioaccumulation of Triclosan and Triclocarban in Plants Grown in Soils Amended with Municipal Dewatered Biosolids. Environ. Toxicol. Chem. 2014, 33, 975–984. [Google Scholar] [CrossRef] [PubMed]
- Stevens, K.J.; Kim, S.; Adhikari, S.; Vadapalli, V.; Venables, B.J. Effects of Triclosan on Seed Germination and Seedling Development of Three Wetland Plants: Sesbania herbacea, Eclipta prostrata, and Bidens frondosa. Environ. Toxicol. Chem. 2009, 28, 2598–2609. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Hu, F.; An, J.; Yin, Y.; Zhang, L.; Wei, S. Enrichment and Toxic Effects of Triclosan on Aquatic Macrophytes Eichhornia Crassipes and Hydrilla Verticillata Exposed to Triclosan in Sediments. Ecol. Process. 2023, 12, 61. [Google Scholar] [CrossRef]
- Kunz, P.Y.; Galicia, H.F.; Fent, K. Comparison of In Vitro and In Vivo Estrogenic Activity of UV Filters in Fish. Toxicol. Sci. 2006, 90, 349–361. [Google Scholar] [CrossRef]
- Mao, F.; He, Y.; Gin, K. Evaluating the Joint Toxicity of Two Benzophenone-Type UV Filters on the Green Alga Chlamydomonas reinhardtii with Response Surface Methodology. Toxics 2018, 6, 8. [Google Scholar] [CrossRef]
- Xiao, C.; Wang, L.; Zhou, Q.; Huang, X. Hazards of Bisphenol A (BPA) Exposure: A Systematic Review of Plant Toxicology Studies. J. Hazard. Mater. 2020, 384, 121488. [Google Scholar] [CrossRef] [PubMed]
- Ali, I.; Liu, B.; Farooq, M.A.; Islam, F.; Azizullah, A.; Yu, C.; Su, W.; Gan, Y. Toxicological Effects of Bisphenol A on Growth and Antioxidant Defense System in Oryza Sativa as Revealed by Ultrastructure Analysis. Ecotoxicol. Environ. Saf. 2016, 124, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Xi, C.; Zacharia, J.T. The Effect of N,N-Diethyl-3-Methylbenzamide (DEET) on the Germination of Raphanus sativus (Radish Plants). Am. J. Agric. Res. 2018, 3, 18. [Google Scholar] [CrossRef]
- Chouychai, W.; Lee, H. Phytotoxicity Assay of Crop Plants to Lindane and Alpha-Endosulfan Contaminants in Alkaline Thai soil. Int. J. Agric. Biol. 2012, 5, 734–738. [Google Scholar]
- Polińska, W.; Kotowska, U.; Karpińska, J.; Piotrowska-Niczyporuk, A. Removal of Benzotriazole Micropollutants Using Spirodela polyrhiza (L.) Schleid. and Azolla caroliniana Willd. Environ. Pollut. 2023, 332, 121982. [Google Scholar] [CrossRef] [PubMed]
- Mkandawire, M.; Dudel, E. Are Lemna Spp. Effective Phytoremediation Agents. Bioremediation Biodivers. Bioavailab. 2007, 1, 56–71. [Google Scholar]
- Ullah, H.; Gul, B.; Khan, H.; Ur Rehman, K.; Hameed, I.; Zeb, U.; Roomi, S. Zill-E-Huma. Impact of pH on the Growth and Nutritional Profile of Lemna minor L. as a Sustainable Alternative for Pakistan’s Feed Sector. Aquacult. Int. 2023, 31, 1879–1891. [Google Scholar] [CrossRef]
- An, J.; Zhou, Q.; Sun, Y.; Xu, Z. Ecotoxicological Effects of Typical Personal Care Products on Seed Germination and Seedling Development of Wheat (Triticum aestivum L.). Chemosphere 2009, 76, 1428–1434. [Google Scholar] [CrossRef] [PubMed]
- Xin, X.; Huang, G.; An, C.; Raina-Fulton, R.; Weger, H. Insights into Long-Term Toxicity of Triclosan to Freshwater Green Algae in Lake Erie. Environ. Sci. Technol. 2019, 53, 2189–2198. [Google Scholar] [CrossRef] [PubMed]
- Perozzo, R.; Kuo, M.; Sidhu, A.B.S.; Valiyaveettil, J.T.; Bittman, R.; Jacobs, W.R.; Fidock, D.A.; Sacchettini, J.C. Structural Elucidation of the Specificity of the Antibacterial Agent Triclosan for Malarial Enoyl Acyl Carrier Protein Reductase. J. Biol. Chem. 2002, 277, 13106–13114. [Google Scholar] [CrossRef]
- Sun, H.; Wang, L.; Zhou, Q. Effects of Bisphenol A on Growth and Nitrogen Nutrition of Roots of Soybean Seedlings. Environ. Toxicol. Chem. 2013, 32, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Li, Y.; Xie, P.; Liu, C.; Yu, L.; Ma, X. Dualistic Effects of Bisphenol A on Growth, Photosynthetic and Oxidative Stress of Duckweed (Lemna minor). Environ. Sci. Pollut. Res. 2022, 29, 87717–87729. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Grajeda, B.; Ellis, C.C.; Estevao, I.L.; Lee, W.-Y. A Comparative Proteomics Study of Arabidopsis Thaliana Responding to the Coexistence of BPA and TiO2-NPs at Environmentally Relevant Concentrations. Ecotoxicol. Environ. Saf. 2022, 241, 113800. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Ran, S.; Downs, C.A.; Xu, R.; Li, Q.; Zhong, X.; Zhong, F. A Combined Proteomics and Metabolomics Analysis Reveals the Invisible Regulation of Plant Root Responses to Oxybenzone (Benzophenone-3) Stress. Sci. Total Environ. 2023, 893, 164951. [Google Scholar] [CrossRef]
- Abdel Raouf, N.; El Shafey, N.M. Harmful Effects of Endosulfan Treatment on Cyanobacterial Distribution and Some Macromolecules of Soybean Plant. Afr. J. Biotechnol. 2009, 8, 6277–6281. [Google Scholar] [CrossRef]
- Kaźmierczak, A.; Kornaś, A.; Mościpan, M.; Łęcka, J. Influence of Bisphenol A on Growth and Metabolism of Vicia Faba Ssp. Minor Seedlings Depending on Lighting Conditions. Sci. Rep. 2022, 12, 20259. [Google Scholar] [CrossRef]
- Kumar, N.; Bora, A.; Kumar, R.; Amb, M.K. Differential Effects of Agricultural Pesticides Endosulfan and Tebuconazole on Photosynthetic Pigments, Metabolism and Assimilating Enzymes of Three Heterotrophic, Filamentous Cyanobacteria. J. Biol. Environ. Sci. 2012, 6, 67–75. [Google Scholar]
- Sami, F.; Yusuf, M.; Faizan, M.; Faraz, A.; Hayat, S. Role of Sugars under Abiotic Stress. Plant Physiol. Biochem. 2016, 109, 54–61. [Google Scholar] [CrossRef]
- Prasad, S.M.; Kumar, D.; Zeeshan, M. Growth, Photosynthesis, Active Oxygen Species and Antioxidants Responses of Paddy Field Cyanobacterium Plectonema boryanum to Endosulfan Stress. J. Gen. Appl. Microbiol. 2005, 51, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Raja, W.; Rathaur, P.; John, S.A.; Ramteke, P.W. Endosulfan Induced Changes in Growth Rate, Pigment Composition and Photosynthetic Activity of Mosquito Fern Azolla microphylla. J. Stress Physiol. Biochem. 2012, 8, 98–109. [Google Scholar]
- Rąpała, M.; Pluciński, B.; Jedynak, P. The Effect of Bisphenol A on Growth, Pigment Composition and Photosystem II Activity of Arabidopsis Thaliana. Acta Biochim. Pol. 2017, 64, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Jiao, L.; Ding, H.; Wang, L.; Zhou, Q.; Huang, X. Bisphenol A Effects on the Chlorophyll Contents in Soybean at Different Growth Stages. Environ. Pollut. 2017, 223, 426–434. [Google Scholar] [CrossRef]
- Mao, F.; He, Y.; Kushmaro, A.; Gin, K.Y.-H. Effects of Benzophenone-3 on the Green Alga Chlamydomonas reinhardtii and the Cyanobacterium Microcystis Aeruginosa. Aquat. Toxicol. 2017, 193, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Tiyagi, S.A.; Ajaz, S.; Azam, M.F. Effect of Some Pesticides on Plant Growth, Root Nodulation and Chlorophyll Content of Chickpea. Arch. Agron. Soil Sci. 2004, 50, 529–533. [Google Scholar] [CrossRef]
- Maoka, T. Carotenoids as Natural Functional Pigments. J. Nat. Med. 2020, 74, 1–16. [Google Scholar] [CrossRef]
- Kiejza, D.; Piotrowska-Niczyporuk, A.; Regulska, E.; Kotowska, U. Peracetic Acid Activated by Nickel Cobaltite as Effective Oxidizing Agent for BPA and Its Analogues Degradation. Chemosphere 2024, 354, 141684. [Google Scholar] [CrossRef] [PubMed]
- Vuković, S. Insecticide-Induced Changes of Photosynthetic Pigments Content in Peach Leaves. PAKJAS 2021, 58, 1705–1710. [Google Scholar] [CrossRef]
- Rouchaud, J.; Moons, C.; Meyer, J.A. Effects of Pesticide Treatments on the Carotenoid Pigments of Lettuce. J. Agric. Food Chem. 1984, 32, 1241–1245. [Google Scholar] [CrossRef]
- Duarte, B.; Feijão, E.; Cruz De Carvalho, R.; Matos, A.R.; Cabrita, M.T.; Novais, S.C.; Moutinho, A.; Lemos, M.F.L.; Marques, J.C.; Caçador, I.; et al. Effect Biomarkers of the Widespread Antimicrobial Triclosan in a Marine Model Diatom. Antioxidants 2022, 11, 1442. [Google Scholar] [CrossRef] [PubMed]
- Cvetković, D.; Marković, D. Beta-Carotene Suppression of Benzophenone-Sensitized Lipid Peroxidation in Hexane through Additional Chain-Breaking Activities. Radiat. Phys. Chem. 2011, 80, 76–84. [Google Scholar] [CrossRef]
- Nie, X.; Wang, L. Plant Species Compositions Alleviate Toxicological Effects of Bisphenol A by Enhancing Growth, Antioxidant Defense System, and Detoxification. Environ. Sci. Pollut. Res. 2022, 29, 65755–65770. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Jin, H.; Shao, B.; Xu, H.; Xu, X. Physiological and Biochemical Effects of Triclocarban Stress on Freshwater Algae. SN Appl. Sci. 2019, 1, 1685. [Google Scholar] [CrossRef]
- Dai, Z.; Luo, X.; Yang, A.; Wang, J.; Fu, H.; Wu, Y. The Effects of Triclosan on Physiological and Photosynthetic Characteristics of Chlorella Vulgaris. Water 2021, 13, 1355. [Google Scholar] [CrossRef]
- Mao, F.; He, Y.; Gin, K.Y.-H. Antioxidant Responses in Cyanobacterium Microcystis Aeruginosa Caused by Two Commonly Used UV Filters, Benzophenone-1 and Benzophenone-3, at Environmentally Relevant Concentrations. J. Hazard. Mater. 2020, 396, 122587. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.L.; Zhang, F.; Ahmed, Z.I.; Rasheed, M.; Naeem, M.S.; Ye, Q.F.; Zhou, W.J. Differential Morphological and Physiological Responses of Two Oilseed Brassica Species to a New Herbicide ZJ0273 Used in Rapeseed Fields. Pestic. Biochem. Physiol. 2010, 98, 1–8. [Google Scholar] [CrossRef]
- Adamakis, I.-D.S.; Sperdouli, I.; Eleftheriou, E.P.; Moustakas, M. Hydrogen Peroxide Production by the Spot-Like Mode Action of Bisphenol A. Front. Plant Sci. 2020, 11, 1196. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Dudley, S.; McGinnis, M.; Gan, J. Hydrogen Peroxide Mediates Triclosan-Induced Inhibition of Root Growth in Wheat Seedlings. Environ. Pollut. 2018, 243, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Campos, D.; Gravato, C.; Quintaneiro, C.; Soares, A.M.V.M.; Pestana, J.L.T. Responses of the Aquatic Midge Chironomus Riparius to DEET Exposure. Aquat. Toxicol. 2016, 172, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Tzanova, T.; Gerova, M.; Petrov, O.; Karaivanova, M.; Bagrel, D. Synthesis and Antioxidant Potential of Novel Synthetic Benzophenone Analogues. Eur. J. Med. Chem. 2009, 44, 2724–2730. [Google Scholar] [CrossRef] [PubMed]
- Hutner, S.H.; Provasoli, L.; Filfus, J. Nutrition of Some Phagotrophic Freshwater Chrysomonads. Ann. N. Y. Acad. Sci. 1953, 56, 852–862. [Google Scholar] [CrossRef]
- Nelson, N. A Photometric Adaptation of Somogyi Method for the Determination of Glucose. J. Biol. Chem. 1944, 153, 375–380. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Wellburn, A.R. The Spectral Determination of Chlorophylls a and b, as Well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- Zapata, M.; Rodríguez, F.; Garrido, J. Separation of Chlorophylls and Carotenoids from Marine Phytoplankton:A New HPLC Method Using a Reversed Phase C8 Column and Pyridine-Containing Mobile Phases. Mar. Ecol. Prog. Ser. 2000, 195, 29–45. [Google Scholar] [CrossRef]
- Heath, R.L.; Packer, L. Photoperoxidation in Isolated Chloroplasts. Arch. Biochem. Biophys. 1968, 125, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Alexieva, V.; Sergiev, I.; Mapelli, S.; Karanov, E. The Effect of Drought and Ultraviolet Radiation on Growth and Stress Markers in Pea and Wheat. Plant Cell Environ. 2001, 24, 1337–1344. [Google Scholar] [CrossRef]
Name | Structure | MW (g/mol) | CAS | pKa | logKow | Application Effects on Organisms |
---|---|---|---|---|---|---|
BPA Bisphenol A | 228.11 | 80-05-7 | 10.3 | 3.64 | Used as a substrate for the production of polycarbonates and epoxy resins, and, therefore, many products such as food containers, the inner protective layers of cans, medical products, thermal paper, electronic devices, and dental fillings; it harms the hormonal balance of organisms; exposure is associated with adverse health effects, including diabetes, obesity, reproductive disorders, cardiovascular disease, breast cancer, and birth defects [34]. | |
DEET N,N-Diethyl- m-toluamide | 191.27 | 134-62-3 | - | 2.02 | An insect repellent that is used in products (liquid sprays, lotions, and sticks) to prevent bites from insects, including ticks, flies, mosquitos, and some parasitic worms; toxic for some species of freshwater zooplankton and algae (significant biomass decline); have a slight toxicity for freshwater fish such as rainbow trout [35]. | |
TRC Triclosan | 289.54 | 3380-34-5 | 7.9 | 4.76 | Effective agent against bacteria, as well as some fungi and protozoa; widely used as an antiseptic, preservative, and disinfectant in healthcare, cosmetics, household cleaning products, the surface of medical devices, and kitchen utensils; bioaccumulates and poses a hazard to aquatic biota; can lead to a host of negative consequences in humans, including impaired thyroid function, endocrine disruption, developmental disorders, oxidative stress, and liver carcinogenesis [36]. | |
BPH Benzophenone | 182.22 | 119-61-9 | - | 3.18 | Used as a UV filter, and it is also a degradation product of oxybenzone (OXB), one of the most popular UV protection agents; BPH and OXB are used in the production of plastics and coatings, adhesives, insecticides, pharmaceuticals, and cosmetics; BPH disrupts the functioning of the endocrine system, and limits the reproductive and developmental abilities of organisms; suspected to have neurotoxic and carcinogenic effects [37]. | |
α-END α-Endosulfan | 406.93 | 959-98-8 | - | 4.94 | Since the 1950s, it has been used as an insecticide and acaricide on a wide variety of food crops, including tea, coffee, fruits and vegetables, rice, cereals, maize, sorghum, and also as a wood preservative; banned by the Stockholm Convention in 2011 due to its risk to human health and the environment; still used in some countries, mainly in Asia; toxic by inhalation, skin absorption, or ingestion; has significant acute toxicity, the ability to bioaccumulate, and disrupt the endocrine system of organisms; highly neurotoxic to both insects and mammals, including humans [38]. | |
β-END β-Endosulfan | 406.93 | 33213-65-9 | - | 4.32 |
Treatment | Xanthophyll Content (µg/g Biomass) | ||||||
---|---|---|---|---|---|---|---|
Antheraxanthin | Astaxanthin | Kryptoxanthin | Lutein | Neoxanthin | Violaxanthin | Zeaxanthin | |
Control | 0.61 ± 0.13 d | 0.54 ± 0.05 c | 2.26 ± 0.22 b | 0.38 ± 0.03 d | 0.77 ± 0.11 d | 2.61 ± 0.17 c | 3.04 ± 0.24 c |
0.1 mg/L BPA | 0.96 ± 0.10 a | 1.85 ± 0.27 a | 3.86 ± 0.42 a | 0.64 ± 0.11 a | 1.55 ± 1.06 a | 5.06 ± 0.94 a | 7.29 ± 1.52 a |
1 mg/L BPA | 0.62 ± 0.05 d | 0.59 ± 0.12 c | 2.78 ± 0.55 b | 0.51 ± 0.09 b | 0.93 ± 0.12 c | 3.12 ± 1.01 b | 3.83 ± 0.84 c |
0.1 mg/L DEET | 0.71 ± 0.21 c | 0.69 ± 0.11 b | 2.52 ± 0.09 b | 0.47 ± 0.05 c | 0.81 ± 0.24 c | 2.76 ± 0.11 c | 3.15 ± 0.08 c |
1 mg/L DEET | 0.82 ± 0.16 b | 0.55 ± 0.07 c | 3.66 ± 0.28 a | 0.53 ± 0.15 b | 1.22 ± 0.19 b | 3.31 ± 0.32 b | 4.03 ± 0.25 b |
0.1 mg/L TRC | 0.59 ± 0.12 d | 0.51 ± 0.11 c | 2.17 ± 0.18 b | 0.32 ± 0.09 d | 0.72 ± 0.05 d | 2.44 ± 0.13 c | 2.98 ± 0.16 c |
1 mg/L TRC | 0.42 ± 0.10 e | 0.39 ± 0.14 d | 1.88 ± 0.15 c | 0.28 ± 0.11 e | 0.45 ± 0.16 e | 1.43 ± 0.23 d | 2.10 ± 0.30 d |
0.1 mg/L BPH | 0.59 ± 0.14 d | 0.50 ± 0.02 c | 2.21 ± 0.16 b | 0.29 ± 0.08 e | 0.69 ± 0.22 d | 2.55 ± 0.25 c | 2.99 ± 0.12 c |
1 mg/L BPH | 0.40 ± 0.19 e | 0.39 ± 0.21 d | 2.18 ± 0.12 b | 0.31 ± 0.14 d | 0.65 ± 0.10 d | 2.05 ± 0.38 c | 2.34 ± 0.33 cd |
0.1 mg/L α-END | 0.45 ± 0.11 e | 0.41 ± 0.05 d | 2.00 ± 0.08 bc | 0.18 ± 0.11 f | 0.39 ± 0.15 f | 1.77 ± 0.25 d | 2.11 ± 0.26 d |
1 mg/L α-END | 0.40 ± 0.07 e | 0.38 ± 0.07 d | 1.92 ± 0.16 c | 0.13 ± 0.01 f | 0.33 ± 0.07 f | 1.74 ± 0.16 d | 2.03 ± 0.15 d |
0.1 mg/L β-END | 0.43 ± 0.05 e | 0.33 ± 0.02 e | 1.90 ± 0.11 c | 0.11 ± 0.05 f | 0.28 ± 0.03 f | 1.69 ± 0.14 d | 1.88 ± 0.22 d |
1 mg/L β-END | 0.38 ± 0.06 e | 0.32 ± 0.04 e | 1.78 ± 0.08 c | 0.10 ± 0.03 f | 0.25 ± 0.01 f | 1.58 ± 0.11 d | 1.82 ± 0.08 d |
Mixture | 0.56 ± 0.23 d | 0.46 ± 0.18 c | 2.01 ± 0.31 bc | 0.25 ± 0.41 e | 0.63 ± 0.20 d | 2.12 ± 0.33 c | 2.35 ± 0.26 cd |
Biological Parameter | Treatment | ||||||
---|---|---|---|---|---|---|---|
BPA | DEET | TRC | BPH | α-END | β-END | Mixture | |
Plant growth | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ |
Chlorophyll a | ↑ | ↑ | ↓ | ↑ | ↓ | ↓ | ↓ |
Chlorophyll b | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ |
Carotenes | ↑ | ↑ | ↓ | ↓ | ↓ | ↓ | ↓ |
Xanthophylls | ↑ | ↑ | ↓ | ↓ | ↓ | ↓ | ↓ |
Proteins | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ |
Monosaccharides | ≈ | ↑ | ≈ | ↑ | ↑ | ↑ | ≈ |
MDA | ↑ | ≈ | ↑ | ≈ | ≈ | ↑ | ↑ |
H2O2 | ↑ | ≈ | ↑ | ≈ | ≈ | ↑ | ↑ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotowska, U.; Piotrowska-Niczyporuk, A.; Kapelewska, J.; Jasinska, L.L. The Impact of Organic Micropollutants on the Biochemical Composition and Stress Markers in Wolffia arrhiza. Molecules 2025, 30, 445. https://doi.org/10.3390/molecules30030445
Kotowska U, Piotrowska-Niczyporuk A, Kapelewska J, Jasinska LL. The Impact of Organic Micropollutants on the Biochemical Composition and Stress Markers in Wolffia arrhiza. Molecules. 2025; 30(3):445. https://doi.org/10.3390/molecules30030445
Chicago/Turabian StyleKotowska, Urszula, Alicja Piotrowska-Niczyporuk, Justyna Kapelewska, and Lilla Lane Jasinska. 2025. "The Impact of Organic Micropollutants on the Biochemical Composition and Stress Markers in Wolffia arrhiza" Molecules 30, no. 3: 445. https://doi.org/10.3390/molecules30030445
APA StyleKotowska, U., Piotrowska-Niczyporuk, A., Kapelewska, J., & Jasinska, L. L. (2025). The Impact of Organic Micropollutants on the Biochemical Composition and Stress Markers in Wolffia arrhiza. Molecules, 30(3), 445. https://doi.org/10.3390/molecules30030445