molecules-logo

Journal Browser

Journal Browser

A New Perspective on the Determination and Removal of Pollutants in the Environment

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Green Chemistry".

Deadline for manuscript submissions: closed (31 December 2024) | Viewed by 13539

Special Issue Editor


E-Mail Website
Guest Editor
Institute of Chemistry, Faculty of Biology and Chemistry, University of Bialystok, Bialystok, Poland
Interests: determination of emerging contaminants in wastewater; leachate and other objects of the water environment; phytoremediation; advanced oxidation; microextraction techniques; gas chromatography; mass spectrometry
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The development of civilization and lifestyle changes increased the production and consumption of various chemical compounds. All chemical substances or their decomposition products and by-products of various processes may be released into the environment, including natural waters. Most environmental pollutants have limited environmental persistence, but continuous introduction causes their permanent presence in natural waters. Low concentrations make pollutants unlikely to cause acute toxicity, but many studies have proven that chronic exposure can cause damage to biological components of ecosystems.

This Special Issue aims to present the latest achievements in all aspects related to research on the presence of pollutants in the environment, their harmful effects on organisms and the development of technologies that limit their introduction into the environment.

Dr. Urszula Kotowska
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • organic pollutants
  • toxic metals
  • wastewater
  • natural environment
  • determination methods
  • phytoremediation
  • adsorption
  • microplastic
  • toxicity
  • environmental risk

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issue

Published Papers (10 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

24 pages, 3290 KiB  
Article
The Impact of Organic Micropollutants on the Biochemical Composition and Stress Markers in Wolffia arrhiza
by Urszula Kotowska, Alicja Piotrowska-Niczyporuk, Justyna Kapelewska and Lilla Lane Jasinska
Molecules 2025, 30(3), 445; https://doi.org/10.3390/molecules30030445 - 21 Jan 2025
Viewed by 637
Abstract
For many years, there has been a growing pollution of the aquatic environment with personal care products and industrial chemicals, the main source of which is municipal and industrial wastewater. This raises the need to assess the impact of these pollutants on ecosystems, [...] Read more.
For many years, there has been a growing pollution of the aquatic environment with personal care products and industrial chemicals, the main source of which is municipal and industrial wastewater. This raises the need to assess the impact of these pollutants on ecosystems, including plants living in the aquatic environment. It is important to develop methods for their removal from wastewater, among which using plants for phytoremediation is a promising solution. This study aimed to evaluate the response of the aquatic plant Wolffia arrhiza (Lemnaceae) to low concentrations of bisphenol A (BPA), N,N-diethyl-m-toluamide (DEET), triclosan (TRC), benzophenone (BPH), endosulfan alpha (α-END), and endosulfan beta (β-END). The plant growth, the content of cellular components, and oxidative stress markers were assessed in response to plant contact with single compounds at concentrations of 0.1 mg/L and 1 mg/L, and their mixture at a total concentration of 1 mg/L. All of the pollutants used in the study inhibited the W. arrhiza growth and stimulated the degradation of proteins but enhanced the level of saccharides. TRC, BPH, α-END, and β-END had a negative impact on the content of photosynthetic pigments. Increased concentrations of the oxidative stress markers MDA and H2O2 were registered in the plants exposed to BPA, TRC, and β-END. The mixture of pollutants had higher toxic effects than individual substances. Full article
Show Figures

Figure 1

13 pages, 860 KiB  
Article
Separation of Inorganic Forms of Tellurium Using On-Site SPE Followed by ICP-MS or ICP-OES—The Right Solution for Water Monitoring
by Katarzyna Kińska, Barbara Żelazko, Olga Gajewska, Magdalena Borowska, Monika Sadowska and Beata Krasnodębska-Ostręga
Molecules 2025, 30(2), 303; https://doi.org/10.3390/molecules30020303 - 14 Jan 2025
Viewed by 477
Abstract
Tellurium, recognized as one of the technology-critical elements, should be considered as a xenobiotic. Its application, i.a. in the growing photovoltaic industry, raises concerns about Te(IV) and Te(VI) release to the environment. As both forms differ in mobility and toxicity, Te speciation should [...] Read more.
Tellurium, recognized as one of the technology-critical elements, should be considered as a xenobiotic. Its application, i.a. in the growing photovoltaic industry, raises concerns about Te(IV) and Te(VI) release to the environment. As both forms differ in mobility and toxicity, Te speciation should be included in water monitoring, but problems with speciation changes occurring during sampling, transport, and sample storage require the use of on-site separation of Te forms. A simple procedure based on solid phase extraction (SPE) with the anionic exchange mechanism (SAX, involving commercially available columns), followed by their quantification with elemental techniques, has a high potential for implementation in routine analysis. The proposed SPE-ICP-MS (inductively coupled plasma mass spectrometry) method allows direct analysis of Te(VI) and Te(IV), with Te(IV) determined after elution from the column. The detection limits obtained for the 5.0 mL sample are 0.02 ng mL−1 and 0.05 ng mL−1 for Te(VI) and Te(IV), respectively. Hydride generation inductively coupled plasma optical emission spectrometry (HG-ICP-OES) was used to control possible changes in tellurium speciation occurring during species isolation using SPE. The simple and fast water pretreatment proposed here offers the possibility of separating Te(IV) and Te(VI) at the sampling site, and the elution of Te(IV) does not have to be conducted on-site. Application to the river water and seawater matrix proved the feasibility of incorporating Te speciation analysis into routine water analysis. Full article
Show Figures

Graphical abstract

22 pages, 8876 KiB  
Article
Sorption of Platinum and Palladium on Polyethylene Microplastics in Natural Water
by Sylwia Sajkowska and Barbara Leśniewska
Molecules 2024, 29(24), 5987; https://doi.org/10.3390/molecules29245987 - 19 Dec 2024
Viewed by 478
Abstract
In this work, for the first time, the sorption behaviour of platinum and palladium on polyethylene microplastics (PE-MP) was studied. To simulate natural conditions, part of PE-MP was subjected to the ageing process in lake water under the influence of solar radiation. The [...] Read more.
In this work, for the first time, the sorption behaviour of platinum and palladium on polyethylene microplastics (PE-MP) was studied. To simulate natural conditions, part of PE-MP was subjected to the ageing process in lake water under the influence of solar radiation. The original and aged PE-MP was characterised using elemental analysis, FT-IR, SEM-EDX, and nitrogen porosimetry methods. The studies on Pt and Pd sorption on PE-MP were carried out in batch mode in natural lake water at pH 7.6. It was found that the ageing process led to the degradation of the surface of the PE-MP and the formation of a biofilm. The sorption process of Pt and Pd on PE-MP particles proceeds according to pseudo-second-order kinetics. A good fit of the experimental data to the Freundlich and Langmuir isotherm model indicates the mixed nature of Pt and Pd sorption on PE-MP. It was clearly indicated that Pt and Pd sorption from natural waters can occur on the surface of inert polyethylene particles, which can lead to the preconcentration of these elements, even from waters with a very low content, and transferring them over longer distances. This poses a threat to the health of living organisms and humans. Full article
Show Figures

Figure 1

14 pages, 2584 KiB  
Article
The Effect of Lactiplantibacillus plantarum and Lacticaseiba-cillus Rhamnosus Strains on the Reduction of Hexachlorobenzene Residues in Fermented Goat Milk During Refrigerated Storage
by Agata Witczak, Izabela Dmytrów and Anna Mituniewicz-Małek
Molecules 2024, 29(23), 5686; https://doi.org/10.3390/molecules29235686 - 30 Nov 2024
Viewed by 633
Abstract
Hexachlorobenzene (HCB) is a persistent organic pollutant (POP) commonly detected in milk and dairy products. These compounds pose a serious threat to the health of consumers due to their considerable bioaccumulation potential, high stability, and toxicity. (2) Methods: The study evaluated the potential [...] Read more.
Hexachlorobenzene (HCB) is a persistent organic pollutant (POP) commonly detected in milk and dairy products. These compounds pose a serious threat to the health of consumers due to their considerable bioaccumulation potential, high stability, and toxicity. (2) Methods: The study evaluated the potential of Lactiplantibacillus plantarum and Lacticaseibacillus rhamnosus probiotic cultures to reduce HCB residues in fermented goat milk beverages during 21-day refrigerated storage. HCB content was determined by gas chromatography coupled with mass spectrometry (GC/MS). (3) Results: A strong negative correlation was found between HCB concentration in fermented milk and storage time. After 21 days, a 75–78% reduction in HCB content was observed, with L. plantarum showing greater efficiency in reducing hexachlorobenzene levels than L. rhamnosus. (4) Conclusions: The use of probiotic cultures contributed to a significant reduction in the HCB content of fermented goat milk. Our findings support the hypothesis that the lactic acid bacteria Lactiplantibacillus plantarum and Lacticaseibacillus rhamnosus can lower hexachlorobenzene levels in fermented products Full article
Show Figures

Figure 1

24 pages, 3171 KiB  
Article
Detoxification of Acrylamide by Potentially Probiotic Strains of Lactic Acid Bacteria and Yeast
by Agnieszka Maher, Karolina Miśkiewicz, Justyna Rosicka-Kaczmarek and Adriana Nowak
Molecules 2024, 29(20), 4922; https://doi.org/10.3390/molecules29204922 - 17 Oct 2024
Viewed by 1096
Abstract
Some potentially probiotic strains of lactic acid bacteria (LAB) and yeast that inhabit the digestive tract of humans are known to detoxify xenobiotics, including acrylamide (AA). The objective of the subsequent research was to evaluate the AA-detoxification capability of LAB and yeast isolated [...] Read more.
Some potentially probiotic strains of lactic acid bacteria (LAB) and yeast that inhabit the digestive tract of humans are known to detoxify xenobiotics, including acrylamide (AA). The objective of the subsequent research was to evaluate the AA-detoxification capability of LAB and yeast isolated from various sources. Namely, the effect of AA was tested on the growth of LAB and yeast strains, as well in the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Subsequently, the AA-binding ability of LAB and yeast was investigated in various environments, including the pH, incubation temperature, cell density, and with inanimate cells. The ability of selected LAB and yeast to reduce the genotoxicity of AA was tested on Caco-2 and Hep-G2 cell lines. The results showed that all tested strains exhibited strong resistance to AA at concentrations of 5, 10, and 50 µg/mL. Also, AA was detected in the intracellular and membrane extracts of tested strains. The most effective binding strain was Pediococcus acidilactici 16 at pH = 5, cell density = 109 CFU/mL, and incubation temperature = 37 °C (87.6% of AA removed). Additionally, all tested strains reduced the genotoxicity of AA, with the greatest reduction observed at the highest concentration of 50 µg/mL. The phenomena of detoxification by potentially probiotic strains could reduce the toxic and harmful effects of AA exposure to humans every day. Full article
Show Figures

Figure 1

14 pages, 2086 KiB  
Article
Hydrophobic Cellulose-Based Sorbents for Oil/Water Separation
by Karolina Tomkowiak, Bartłomiej Mazela, Zuzanna Szubert and Waldemar Perdoch
Molecules 2024, 29(19), 4661; https://doi.org/10.3390/molecules29194661 - 30 Sep 2024
Viewed by 930
Abstract
The need for sustainable, biodegradable materials to address environmental challenges, such as oil-water separation, is growing. Cellulose-based absorbents offer an eco-friendly alternative to synthetic materials. However, their hydrophobicity must be enhanced for efficient application. In this study, cellulose-based sorbents derived from Kraft and [...] Read more.
The need for sustainable, biodegradable materials to address environmental challenges, such as oil-water separation, is growing. Cellulose-based absorbents offer an eco-friendly alternative to synthetic materials. However, their hydrophobicity must be enhanced for efficient application. In this study, cellulose-based sorbents derived from Kraft and half-bleached chemo-thermomechanical pulp (BCTMP) were hydrophobized using silanization and alkyl ketene dimer (AKD) techniques. Hydrophobic properties were successfully imparted using methyltrimethoxysilane (MTMOS), n-octyltriethoxysilane (NTES), and N-(2-Aminoethyl)-3-aminopropyltrimethoxysilane (AATMS), with water contact angles ranging from 120° to 140°. The water sorption capacity was significantly reduced to below 1 g/g, whereas the oil sorption capacity remained high (19–28 g/g). The most substantial reduction in water vapor absorption (3–6%) was observed for the MTMOS- and AATMS-silanized samples. These results demonstrate the potential of hydrophobized cellulose-based sorbents as sustainable alternatives for oil-water separation, contributing to environmentally friendly water treatment solutions. Full article
Show Figures

Figure 1

19 pages, 2242 KiB  
Article
Presence of Heavy Metals in Irrigation Water, Soils, Fruits, and Vegetables: Health Risk Assessment in Peri-Urban Boumerdes City, Algeria
by Mohamed Younes Aksouh, Naima Boudieb, Nadjib Benosmane, Yacine Moussaoui, Rajmund Michalski, Justyna Klyta and Joanna Kończyk
Molecules 2024, 29(17), 4187; https://doi.org/10.3390/molecules29174187 - 4 Sep 2024
Cited by 1 | Viewed by 1827
Abstract
This study investigates heavy metal contamination in soils, irrigation water, and agricultural produce (fruits: Vitis vinifera (grape), Cucumis melo var. saccharimus (melon), and Citrullus vulgaris. Schrade (watermelon); vegetables: Lycopersicum esculentum L. (tomato), Cucurbita pepo (zucchini), Daucus carota (carrot), Lactuca sativa (lettuce), Convolvulus Batatas (potato), [...] Read more.
This study investigates heavy metal contamination in soils, irrigation water, and agricultural produce (fruits: Vitis vinifera (grape), Cucumis melo var. saccharimus (melon), and Citrullus vulgaris. Schrade (watermelon); vegetables: Lycopersicum esculentum L. (tomato), Cucurbita pepo (zucchini), Daucus carota (carrot), Lactuca sativa (lettuce), Convolvulus Batatas (potato), and Capsicum annuum L. (green pepper)) in the Boumerdes region of Algeria. The concentrations of seven heavy metals (cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), nickel (Ni), lead (Pb), and zinc (Zn)) in soil and food samples were analyzed using atomic absorption spectrometry. Health risks associated with these metals were evaluated through the estimated daily intake (EDI), non-carcinogenic risks (using target hazard quotient (THQ), total target hazard quotient (TTHQ), and hazard index (HI)), and carcinogenic risks (cancer risk factor (CR)). Statistical analyses, including cluster analysis (CA) and Pearson correlation, were conducted to interpret the data. The results revealed the highest metal transfer as follows: Cd was most significantly transferred to tomatoes and watermelons; Cr to carrots; Cu to tomatoes; and Fe, Ni, Pb, and Zn to lettuce. Among fruits, the highest EDI values were for Zn (2.54·10−3 mg/day) and Cu (1.17·10−3 mg/day), with melons showing the highest Zn levels. For vegetables, the highest EDI values were for Fe (1.68·10−2 mg/day) and Zn (8.37·10−3 mg/day), with potatoes showing the highest Fe levels. Although all heavy metal concentrations were within the World Health Organization’s permissible limits, the HI and TTHQ values indicated potential health risks, particularly from vegetable consumption. These findings suggest the need for ongoing monitoring to ensure food safety and mitigate health risks associated with heavy metal contamination. Full article
Show Figures

Graphical abstract

17 pages, 6187 KiB  
Article
Selective Adsorption of Sr(II) from Aqueous Solution by Na3FePO4CO3: Experimental and DFT Studies
by Yudong Xie, Xiaowei Wang, Jinfeng Men, Min Zhu, Chengqiang Liang, Hao Ding, Zhihui Du, Ping Bao and Zhilin Hu
Molecules 2024, 29(12), 2908; https://doi.org/10.3390/molecules29122908 - 19 Jun 2024
Viewed by 889
Abstract
The efficient segregation of radioactive nuclides from low-level radioactive liquid waste (LLRW) is paramount for nuclear emergency protocols and waste minimization. Here, we synthesized Na3FePO4CO3 (NFPC) via a one-pot hydrothermal method and applied it for the first time [...] Read more.
The efficient segregation of radioactive nuclides from low-level radioactive liquid waste (LLRW) is paramount for nuclear emergency protocols and waste minimization. Here, we synthesized Na3FePO4CO3 (NFPC) via a one-pot hydrothermal method and applied it for the first time to the selective separation of Sr2+ from simulated LLRW. Static adsorption experimental results indicated that the distribution coefficient Kd remained above 5000 mL·g−1, even when the concentration of interfering ions was more than 40 times that of Sr2+. Furthermore, the removal efficiency of Sr2+ showed no significant change within the pH range of 4 to 9. The adsorption of Sr2+ fitted the pseudo-second-order kinetic model and the Langmuir isotherm model, with an equilibrium time of 36 min and a maximum adsorption capacity of 99.6 mg·g−1. Notably, the adsorption capacity was observed to increment marginally with an elevation in temperature. Characterization analyses and density functional theory (DFT) calculations elucidated the adsorption mechanism, demonstrating that Sr2+ initially engaged in an ion exchange reaction with Na+. Subsequently, Sr2+ coordinated with four oxygen atoms on the NFPC (100) facet, establishing a robust Sr-O bond via orbital hybridization. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

20 pages, 1211 KiB  
Review
Recent Advances in Food Waste Transformations into Essential Bioplastic Materials
by Abdulmoseen Segun Giwa, Ehtisham Shafique, Nasir Ali and Mohammadtaghi Vakili
Molecules 2024, 29(16), 3838; https://doi.org/10.3390/molecules29163838 - 13 Aug 2024
Cited by 1 | Viewed by 2972
Abstract
Lignocellulose is a major biopolymer in plant biomass with a complex structure and composition. It consists of a significant amount of high molecular aromatic compounds, particularly vanillin, syringeal, ferulic acid, and muconic acid, that could be converted into intracellular metabolites such as polyhydroxyalkanoates [...] Read more.
Lignocellulose is a major biopolymer in plant biomass with a complex structure and composition. It consists of a significant amount of high molecular aromatic compounds, particularly vanillin, syringeal, ferulic acid, and muconic acid, that could be converted into intracellular metabolites such as polyhydroxyalkanoates (PHA) and hydroxybutyrate (PHB), a key component of bioplastic production. Several pre-treatment methods were utilized to release monosaccharides, which are the precursors of the relevant pathway. The consolidated bioprocessing of lignocellulose-capable microbes for biomass depolymerization was discussed in this study. Carbon can be stored in a variety of forms, including PHAs, PHBs, wax esters, and triacylglycerides. From a biotechnology standpoint, these compounds are quite adaptable due to their precursors’ utilization of hydrogen energy. This study lays the groundwork for the idea of lignocellulose valorization into value-added products through several significant dominant pathways. Full article
Show Figures

Figure 1

24 pages, 746 KiB  
Review
Ion Chromatography and Related Techniques in Carbohydrate Analysis: A Review
by Rajmund Michalski and Joanna Kończyk
Molecules 2024, 29(14), 3413; https://doi.org/10.3390/molecules29143413 - 20 Jul 2024
Viewed by 3009
Abstract
Ion chromatography and related techniques have been the most popular separation methods used in the determination of organic and inorganic anions and cations, predominantly in water and wastewater samples. Making progress in their development and introducing new stationary phases, methods of detection and [...] Read more.
Ion chromatography and related techniques have been the most popular separation methods used in the determination of organic and inorganic anions and cations, predominantly in water and wastewater samples. Making progress in their development and introducing new stationary phases, methods of detection and preparation of samples for analyses have given rise to the broadening of their analytical range. Nowadays, they are also used for substances that are not ionic by nature but can convert to such forms under certain conditions. These encompass, among others, carbohydrates, whose role and significance in humans’ lives and environment is invaluable. Their presence in the air is mostly due to the industrial burning of biomass for energy production purposes. In addition, the content of sugars in plants, fruits and vegetables, constituting the base of human diets, affects our health condition. Given that, there is not only a need for their determination by means of routine methods but also for searching for novel analytical solutions. Based on literature data from the past decade, this paper presents the possibilities and examples of applications regarding ion chromatography and related techniques for the determination of carbohydrates in environmental samples, biomass and plants constituting food or raw materials for food production. Attention has been paid to the virtues and limitations of the discussed separation methods in this respect. Moreover, perspectives on their development have been defined. Full article
Show Figures

Figure 1

Back to TopTop