Ion Chromatography and Related Techniques in Carbohydrate Analysis: A Review
Abstract
:1. Introduction
2. Methods of Carbohydrate Determination
2.1. High-Pressure Anion Exchange Chromatography (HPAEC)
2.2. Ion Chromatography
3. Carbohydrate Analysis in Different Matrices
3.1. Environmental Samples
3.2. Plants
3.3. Fruits, Vegetables and Fungi
4. Limits of Carbohydrate Detection and Quantification
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mohammed, A.S.A.; Naveed, M.; Jost, N. Polysaccharides; Classification, Chemical Properties, and Future Perspective Applications in Fields of Pharmacology and Biological Medicine (A Review of Current Applications and Upcoming Potentialities). J. Polym. Environ. 2021, 29, 2359–2371. [Google Scholar] [CrossRef] [PubMed]
- Amon, R.M.W.; Benner, R. Combined Neutral Sugars as Indicators of the Diagenetic State of Dissolved Organic Matter in the Arctic Ocean. In Deep Sea Research Part I: Oceanographic Research Papers; Elsevier: Amsterdam, The Netherlands, 2003; Volume 50. [Google Scholar]
- Kang, J.H.; Hwang, H.; Lee, S.J.; Choi, S.D.; Kim, J.S.; Hong, S.; Do Hur, S.; Baek, J.H. Record of North American Boreal Forest Fires in Northwest Greenland Snow. Chemosphere 2021, 276, 130187. [Google Scholar] [CrossRef] [PubMed]
- Torto, N.; Lobelo, B.; Gorton, L. Determination of Saccharides in Wastewater from the Beverage Industry by Microdialysis Sampling, Microbore High Performance Anion Exchange Chromatography and Integrated Pulsed Electrochemical Detection. Analyst 2000, 125, 1379–1381. [Google Scholar] [CrossRef]
- Rogge, W.F.; Medeiros, P.M.; Simoneit, B.R.T. Organic Marker Compounds in Surface Soils of Crop Fields from the San Joaquin Valley Fugitive Dust Characterization Study. Atmos. Environ. 2007, 41, 8183–8204. [Google Scholar] [CrossRef]
- Kirchgeorg, T.; Schüpbach, S.; Kehrwald, N.; McWethy, D.B.; Barbante, C. Method for the Determination of Specific Molecular Markers of Biomass Burning in Lake Sediments. Org. Geochem. 2014, 71, 1–6. [Google Scholar] [CrossRef]
- Vincenti, B.; Paris, E.; Carnevale, M.; Palma, A.; Guerriero, E.; Borello, D.; Paolini, V.; Gallucci, F. Saccharides as Particulate Matter Tracers of Biomass Burning: A Review. Int. J. Environ. Res. Public Health 2022, 19, 4387. [Google Scholar] [CrossRef] [PubMed]
- Norton, M.; Baldi, A.; Buda, V.; Carli, B.; Cudlin, P.; Jones, M.B.; Korhola, A.; Michalski, R.; Novo, F.; Oszlányi, J.; et al. Serious Mismatches Continue between Science and Policy in Forest Bioenergy. GCB Bioenergy 2019, 11, 1256–1263. [Google Scholar] [CrossRef]
- Cordell, R.L.; White, I.R.; Monks, P.S. Validation of an Assay for the Determination of Levoglucosan and Associated Monosaccharide Anhydrides for the Quantification of Wood Smoke in Atmospheric Aerosol. Anal. Bioanal. Chem. 2014, 406, 5283–5292. [Google Scholar] [CrossRef]
- Marynowski, L.; Simoneit, B.R.T. Saccharides in Atmospheric Particulate and Sedimentary Organic Matter: Status Overview and Future Perspectives. Chemosphere 2022, 288, 132376. [Google Scholar] [CrossRef]
- Marynowski, L.; Łupikasza, E.; Dąbrowska-Zapart, K.; Małarzewski, Ł.; Niedźwiedź, T.; Simoneit, B.R.T. Seasonal and Vertical Variability of Saccharides and Other Organic Tracers of PM10 in Relation to Weather Conditions in an Urban Environment of Upper Silesia, Poland. Atmos. Environ. 2020, 242, 117849. [Google Scholar] [CrossRef]
- Marynowski, L.; Rahmonov, O.; Smolarek-Lach, J.; Rybicki, M.; Simoneit, B.R.T. Origin and Significance of Saccharides during Initial Pedogenesis in a Temperate Climate Region. Geoderma 2020, 361, 114064. [Google Scholar] [CrossRef]
- Jie, L.; Yuan, Z.; Yu, Z.; Xue-song, F. Progress in the Pretreatment and Analysis of Carbohydrates in Food: An Update since 2013. J. Chromatogr. A 2021, 1655, 462496. [Google Scholar] [CrossRef] [PubMed]
- Rao, P.S.; Singh, P.; Sharma, V.; Arora, S. Traditional Analytical Approaches for Lactose Residues Determination in Lactose Hydrolysed Milks: A Review. LWT 2021, 151, 112069. [Google Scholar] [CrossRef]
- Rohrer, J.S.; Basumallick, L.; Hurum, D. High-Performance Anion-Exchange Chromatography with Pulsed Amperometric Detection for Carbohydrate Analysis of Glycoproteins. Biochemistry 2013, 78, 697–709. [Google Scholar] [CrossRef] [PubMed]
- Fedorowski, J.; LaCourse, W.R. A Review of Pulsed Electrochemical Detection Following Liquid Chromatography and Capillary Electrophoresis. Anal. Chim. Acta 2015, 861, 1–11. [Google Scholar] [CrossRef]
- Marrubini, G.; Appelblad, P.; Maietta, M.; Papetti, A. Hydrophilic Interaction Chromatography in Food Matrices Analysis: An Updated Review. Food Chem. 2018, 257, 53–66. [Google Scholar] [CrossRef] [PubMed]
- Janoszka, K.; Czaplicka, M. Methods for the Determination of Levoglucosan and Other Sugar Anhydrides as Biomass Burning Tracers in Environmental Samples—A Review. J. Sep. Sci. 2019, 42, 319–329. [Google Scholar] [CrossRef]
- Boshagh, F. Measurement Methods of Carbohydrates in Dark Fermentative Hydrogen Production—A Review. Int. J. Hydrogen Energy 2021, 46, 24028–24050. [Google Scholar] [CrossRef]
- Faixo, S.; Gehin, N.; Balayssac, S.; Gilard, V.; Mazeghrane, S.; Haddad, M.; Gaval, G.; Paul, E.; Garrigues, J.C. Current Trends and Advances in Analytical Techniques for the Characterization and Quantification of Biologically Recalcitrant Organic Species in Sludge and Wastewater: A Review. Anal. Chim. Acta 2021, 1152, 338284. [Google Scholar] [CrossRef]
- Kurzyna-Szklarek, M.; Cybulska, J.; Zdunek, A. Analysis of the Chemical Composition of Natural Carbohydrates—An Overview of Methods. Food Chem. 2022, 394, 133466. [Google Scholar] [CrossRef]
- Gerwig, G.J. The Art of Carbohydrate Analysis; Springer International Publishing: Cham, Switzerland, 2021; ISBN 978-3-030-77790-6. [Google Scholar]
- Goubet, F.; Dupree, P.; Johansen, K.S. Carbohydrate Gel Electrophoresis. Methods Mol. Biol. 2020, 2149, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Churms, S.C. Handbook of Chromatography Volume II (1990): Carbohydrates; CRC Press: Boca Raton, FL, USA, 2017; ISBN 9781351363396. [Google Scholar]
- Pitirollo, O.; Grimaldi, M.; Corradini, C.; Pironi, S.; Cavazza, A. HPAEC-PAD Analytical Evaluation of Carbohydrates Pattern for the Study of Technological Parameters Effects in Low-FODMAP Food Production. Molecules 2023, 28, 3564. [Google Scholar] [CrossRef] [PubMed]
- Paull, B.; Michalski, R. Ion Exchange: Ion Chromatography Principles and Applications. Encycl. Anal. Sci. 2019, 5, 178–189. [Google Scholar]
- Muntean, E. Simultaneous Carbohydrate Chromatography and Unsuppressed Ion Chromatography in Detecting Fruit Juices Adulteration. Chromatographia 2010, 71, 69–74. [Google Scholar] [CrossRef]
- Bradbury, A.G.W. Gas Chromatography of Carbohydrates in Food. In Principles and Applications of Gas Chromatography in Food Analysis; Gordon, M.W., Ed.; Ellis Horwood Limited: Chichester, UK, 1990; Volume 4, pp. 111–144. [Google Scholar]
- Ruiz-Matute, A.I.; Hernández-Hernández, O.; Rodríguez-Sánchez, S.; Sanz, M.L.; Martínez-Castro, I. Derivatization of Carbohydrates for GC and GC–MS Analyses. J. Chromatogr. B 2011, 879, 1226–1240. [Google Scholar] [CrossRef]
- Jain, A.; Jain, R.; Jain, S. Thin Layer Chromatography of Carbohydrates. In Basic Techniques in Biochemistry, Microbiology and Molecular Biology; Springer Protocols Handbooks; Humana: New York, NY, USA, 2020; pp. 251–253. [Google Scholar]
- Fu, Q.; Liang, T.; Li, Z.; Xu, X.; Ke, Y.; Jin, Y.; Liang, X. Separation of Carbohydrates Using Hydrophilic Interaction Liquid Chromatography. Carbohydr. Res. 2013, 379, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Honda, S. Postcolumn Derivatization for Chromatographic Analysis of Carbohydrates. J. Chromatogr. A 1996, 720, 183–199. [Google Scholar] [CrossRef]
- Yu, R.B.; Dalman, N.A.V.; Wuethrich, A.; Quirino, J.P. Derivatization of Carbohydrates for Analysis by Liquid Chromatography and Capillary Electrophoresis. In Carbohydrate Analysis by Modern Liquid Phase Separation Techniques, 2nd ed.; El Rassi, Z., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–33. ISBN 978-0-12-821447-3. [Google Scholar]
- Guo, D.; Lou, C.; Zhang, P.; Zhang, J.; Wang, N.; Wu, S.; Zhu, Y. Polystyrene-Divinylbenzene-Glycidyl Methacrylate Stationary Phase Grafted with Poly (Amidoamine) Dendrimers for Ion Chromatography. J. Chromatogr. A 2016, 1456, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, Y.; Cheng, H.; Wang, N.; Wu, S.; Zhang, P.; Zhu, Y. High-Capacity Anion Exchangers Based on Poly (Glycidylmethacrylate-Divinylbenzene) Microspheres for Ion Chromatography. Talanta 2016, 159, 272–279. [Google Scholar] [CrossRef]
- Zhao, Q.; Wu, S.; Zhang, P.; Zhu, Y. Hydrothermal Carbonaceous Sphere Based Stationary Phase for Anion Exchange Chromatography. Talanta 2017, 163, 24–30. [Google Scholar] [CrossRef]
- Michalski, R. Ion Chromatography as a Reference Method for Determination of Inorganic Ions in Water and Wastewater. Crit. Rev. Anal. Chem. 2006, 36, 107–127. [Google Scholar] [CrossRef]
- Fritz, J.S. Principles and Applications of Ion-Exclusion Chromatography. J. Chromatogr. A 1991, 546, 111–118. [Google Scholar] [CrossRef]
- Buszewski, B. Teresa Cecchi: Ion-Pair Chromatography and Related Techniques. Anal. Bioanal. Chem. 2012, 403, 1199–1200. [Google Scholar] [CrossRef]
- Fasciano, J.M.; Mansour, F.R.; Danielson, N.D. Ion-Exclusion High-Performance Liquid Chromatography of Aliphatic Organic Acids Using a Surfactant-Modified C18 Column. J. Chromatogr. Sci. 2016, 54, 958–970. [Google Scholar] [CrossRef] [PubMed]
- Michalski, R. Hyphenated Methods Based on Separation Methods for Speciation Analysis. In Encyclopedia of Analytical Chemistry; Wiley: Hoboken, NJ, USA, 2021; pp. 1–16. [Google Scholar]
- Morales-Rubio, Á.; de la Guardia, M. Ion Chromatography. In Handbook of Mineral Elements in Food; Wiley: Hoboken, NJ, USA, 2015; pp. 313–374. [Google Scholar]
- Kończyk, J.; Muntean, E.; Gega, J.; Frymus, A.; Michalski, R. Major Inorganic Anions and Cations in Selected European Bottled Waters. J. Geochem. Explor. 2019, 197, 27–36. [Google Scholar] [CrossRef]
- Muntean, E. Food Analysis; De Gruyter: Berlin, Germany, 2022; ISBN 9783110644401. [Google Scholar]
- Michalski, R. Detection in Ion Chromatography. In Encyclopedia of Chromatography; Cazes, J., Ed.; CRC Press: Boca Raton, FL, USA, 2010; pp. 576–580. ISBN 9780429105432. [Google Scholar]
- Buchberger, W.W. Detection Techniques in Ion Chromatography of Inorganic Ions. Trends Anal. Chem. 2001, 20, 296–303. [Google Scholar] [CrossRef]
- Rocklin, R.D.; Pohl, C.A. Determination of Carbohydrates by Anion Exchange Chromatography with Pulsed Amperometric Detection. J. Liq. Chromatogr. 1983, 6, 1577–1590. [Google Scholar] [CrossRef]
- Johnson, D.C. Carbohydrate Detection Gains Potential. Nature 1986, 321, 451–452. [Google Scholar] [CrossRef]
- Bruggink, C.; Jensen, D. Combining Ion Chromatography with Mass Spectrometry and Inductively Coupled Plasma-Mass Spectrometry: Annual Review 2020. Anal. Sci. Adv. 2021, 2, 238–249. [Google Scholar] [CrossRef]
- Li, J.; Chen, M.; Zhu, Y. Separation and Determination of Carbohydrates in Drinks by Ion Chromatography with a Self-Regenerating Suppressor and an Evaporative Light-Scattering Detector. J. Chromatogr. A 2007, 1155, 50–56. [Google Scholar] [CrossRef]
- Muntean, E. Column Selection Strategies for High Performance Liquid Chromatographic Analysis of Carbohydrates. J. Agroaliment. Proesses Technol. 2010, 16, 89–92. [Google Scholar]
- Barragan, J.T.C.; Kubota, L.T. Nanostructured Cupric Oxide Electrode: An Alternative to Amperometric Detection of Carbohydrates in Anion-Exchange Chromatography. Anal. Chim. Acta 2016, 906, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Gillarová, S.; Henke, S.; Svoboda, T.; Kadlec, P.; Hinková, A.; Bubník, Z.; Pour, V.; Sluková, M. Chromatographic Separation of Mannitol from Mixtures of Other Carbohydrates in Aqueous Solutions. Czech J. Food Sci. 2021, 39, 281–288. [Google Scholar] [CrossRef]
- Michalski, R. Applications of Ion Chromatography in Environmental Analysis. In Ion-Exchange Chromatography and Related Techniques; Elsevier: Amsterdam, The Netherlands, 2024; pp. 333–349. [Google Scholar]
- Arfelli, G.; Sartini, E. Characterisation of Brewpub Beer Carbohydrates Using High Performance Anion Exchange Chromatography Coupled with Pulsed Amperometric Detection. Food Chem. 2014, 142, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Ni, C.; Zhu, B.; Wang, N.; Wang, M.; Chen, S.; Zhang, J.; Zhu, Y. Simple Column-Switching Ion Chromatography Method for Determining Eight Monosaccharides and Oligosaccharides in Honeydew and Nectar. Food Chem. 2016, 194, 555–560. [Google Scholar] [CrossRef] [PubMed]
- Carabetta, S.; Di Sanzo, R.; Campone, L.; Fuda, S.; Rastrelli, L.; Russo, M. High-Performance Anion Exchange Chromatography with Pulsed Amperometric Detection (HPAEC–PAD) and Chemometrics for Geographical and Floral Authentication of Honeys from Southern Italy (Calabria Region). Foods 2020, 9, 1625. [Google Scholar] [CrossRef] [PubMed]
- Muntean, E. Applications of Ion Chromatography in Food Analysis. In Ion-Exchange Chromatography and Related Techniques; Poole, C.F., Ed.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 351–369. [Google Scholar]
- Vodička, P.; Kawamura, K.; Deshmukh, D.K.; Pokorná, P.; Schwarz, J.; Ždímal, V. Anthropogenic and Biogenic Tracers in Fine Aerosol Based on Seasonal Distributions of Dicarboxylic Acids, Sugars and Related Compounds at a Rural Background Site in Central Europe. Atmos. Environ. 2023, 299, 119619. [Google Scholar] [CrossRef]
- Nirmalkar, J.; Deshmukh, D.K.; Deb, M.K.; Tsai, Y.I.; Sopajaree, K. Mass Loading and Episodic Variation of Molecular Markers in PM2.5 Aerosols over a Rural Area in Eastern Central India. Atmos. Environ. 2015, 117, 41–50. [Google Scholar] [CrossRef]
- Nirmalkar, J.; Deb, M.K.; Deshmukh, D.K.; Tsai, Y.I.; Verma, S.K. Molecular Markers in Ambient Aerosol in the Mahanadi Riverside Basin of Eastern Central India during Winter. Environ. Sci. Pollut. Res. 2015, 22, 1220–1231. [Google Scholar] [CrossRef]
- Atzei, D.; Fermo, P.; Vecchi, R.; Fantauzzi, M.; Comite, V.; Valli, G.; Cocco, F.; Rossi, A. Composition and Origin of PM2.5 in Mediterranean Countryside. Environ. Pollut. 2019, 246, 294–302. [Google Scholar] [CrossRef]
- Makkonen, U.; Vestenius, M.; Huy, L.N.; Anh, N.T.N.; Linh, P.T.V.; Thuy, P.T.; Phuong, H.T.M.; Nguyen, H.; Thuy, L.T.; Aurela, M.; et al. Chemical Composition and Potential Sources of PM2.5 in Hanoi. Atmos. Environ. 2023, 299, 119650. [Google Scholar] [CrossRef]
- Clemente, Á.; Yubero, E.; Nicolás, J.F.; Crespo, J.; Galindo, N. Organic Tracers in Fine and Coarse Aerosols at an Urban Mediterranean Site: Contribution of Biomass Burning and Biogenic Emissions. Environ. Sci. Pollut. Res. 2024, 31, 25216–25226. [Google Scholar] [CrossRef] [PubMed]
- Nouara, A.; Panagiotopoulos, C.; Sempéré, R. Simultaneous Determination of Neutral Sugars, Alditols and Anhydrosugars Using Anion-Exchange Chromatography with Pulsed Amperometric Detection: Application for Marine and Atmospheric Samples. Mar. Chem. 2019, 213, 24–32. [Google Scholar] [CrossRef]
- Samaké, A.; Jaffrezo, J.L.; Favez, O.; Weber, S.; Jacob, V.; Canete, T.; Albinet, A.; Charron, A.; Riffault, V.; Perdrix, E.; et al. Arabitol, Mannitol, and Glucose as Tracers of Primary Biogenic Organic Aerosol: The Influence of Environmental Factors on Ambient Air Concentrations and Spatial Distribution over France. Atmos. Chem. Phys. 2019, 19, 11013–11030. [Google Scholar] [CrossRef]
- Asakawa, D.; Furuichi, Y.; Yamamoto, A.; Oku, Y.; Funasaka, K. Rapid and Sensitive Quantification of Levoglucosan in Aerosols by High-Performance Anion-Exchange Chromatography with Positive Electrospray Ionization Mass Spectrometry (HPAEC-Positive ESI-MS). Atmos. Environ. 2015, 122, 183–187. [Google Scholar] [CrossRef]
- Saarnio, K.; Teinilä, K.; Saarikoski, S.; Carbone, S.; Gilardoni, S.; Timonen, H.; Aurela, M.; Hillamo, R. Online Determination of Levoglucosan in Ambient Aerosols with Particle-into-Liquid Sampler–High-Performance Anion-Exchange Chromatography – Mass Spectrometry (PILS-HPAEC-MS). Atmos. Meas. Tech. 2013, 6, 2839–2849. [Google Scholar] [CrossRef]
- Barbaro, E.; Kirchgeorg, T.; Zangrando, R.; Vecchiato, M.; Piazza, R.; Barbante, C.; Gambaro, A. Sugars in Antarctic Aerosol. Atmos. Environ. 2015, 118, 135–144. [Google Scholar] [CrossRef]
- Barbaro, E.; Morabito, E.; Gregoris, E.; Feltracco, M.; Gabrieli, J.; Vardè, M.; Cairns, W.R.L.; Dallo, F.; De Blasi, F.; Zangrando, R.; et al. Col Margherita Observatory: A Background Site in the Eastern Italian Alps for Investigating the Chemical Composition of Atmospheric Aerosols. Atmos. Environ. 2020, 221, 117071. [Google Scholar] [CrossRef]
- Scalabrin, E.; Barbaro, E.; Pizzini, S.; Radaelli, M.; Feltracco, M.; Piazza, R.; Gambaro, A.; Capodaglio, G. Australian Black Summer Smoke Signal on Antarctic Aerosol Collected between New Zealand and the Ross Sea. Chemosphere 2024, 357, 142073. [Google Scholar] [CrossRef]
- Alvi, M.U.; Kistler, M.; Shahid, I.; Alam, K.; Chishtie, F.; Mahmud, T.; Kasper-Giebl, A. Composition and Source Apportionment of Saccharides in Aerosol Particles from an Agro-Industrial Zone in the Indo-Gangetic Plain. Environ. Sci. Pollut. Res. 2020, 27, 14124–14137. [Google Scholar] [CrossRef]
- Thepnuan, D.; Chantara, S.; Te Lee, C.; Lin, N.H.; Tsai, Y.I. Molecular Markers for Biomass Burning Associated with the Characterization of PM2.5 and Component Sources during Dry Season Haze Episodes in Upper South East Asia. Sci. Total Environ. 2019, 658, 708–722. [Google Scholar] [CrossRef]
- Thepnuan, D.; Yabueng, N.; Chantara, S.; Prapamontol, T.; Tsai, Y.I. Simultaneous Determination of Carcinogenic PAHs and Levoglucosan Bound to PM2.5 for Assessment of Health Risk and Pollution Sources during a Smoke Haze Period. Chemosphere 2020, 257, 127154. [Google Scholar] [CrossRef] [PubMed]
- Shahid, I.; Kistler, M.; Shahid, M.Z.; Puxbaum, H. Aerosol Chemical Characterization and Contribution of Biomass Burning to Particulate Matter at a Residential Site in Islamabad, Pakistan. Aerosol Air Qual. Res. 2019, 19, 148–162. [Google Scholar] [CrossRef]
- Stracquadanio, M.; Petralia, E.; Berico, M.; Torretta, T.M.G.L.; Malaguti, A.; Mircea, M.; Gualtieri, M.; Ciancarella, L. Source Apportionment and Macro Tracer: Integration of Independent Methods for Quantification of Woody Biomass Burning Contribution to PM10. Aerosol Air Qual. Res. 2019, 19, 711–723. [Google Scholar] [CrossRef]
- Sanz Rodriguez, E.; Perron, M.M.G.; Strzelec, M.; Proemse, B.C.; Bowie, A.R.; Paull, B. Analysis of Levoglucosan and Its Isomers in Atmospheric Samples by Ion Chromatography with Electrospray Lithium Cationisation—Triple Quadrupole Tandem Mass Spectrometry. J. Chromatogr. A 2020, 1610, 460557. [Google Scholar] [CrossRef]
- Sanz Rodríguez, E.; Díaz-Arenas, G.L.; Makart, S.; Ghosh, D.; Patti, A.F.; Garnier, G.; Tanner, J.; Paull, B. Determination of Xylooligosaccharides Produced from Enzymatic Hydrolysis of Beechwood Xylan Using High-Performance Anion-Exchange Chromatography Tandem Mass Spectrometry. J. Chromatogr. A 2022, 1666, 462836. [Google Scholar] [CrossRef]
- Díaz-Arenas, G.L.; Lebanov, L.; Sanz Rodríguez, E.; Sadiq, M.M.; Paull, B.; Garnier, G.; Tanner, J. Chemometric Optimisation of Enzymatic Hydrolysis of Beechwood Xylan to Target Desired Xylooligosaccharides. Bioresour. Technol. 2022, 352, 127041. [Google Scholar] [CrossRef]
- Simangunsong, E.; Ziegler-Devin, I.; Chrusciel, L.; Girods, P.; Wistara, N.J.; Brosse, N. Steam Explosion of Beech Wood: Effect of the Particle Size on the Xylans Recovery. Waste Biomass Valorization 2020, 11, 625–633. [Google Scholar] [CrossRef]
- Moukagni, E.M.; Ziegler-Devin, I.; Safou-Tchima, R.; Aymes, A.; Kapel, R.; Brosse, N. Steam Explosion of Aucoumea klaineana Sapwood: Membrane Separation of Acetylated Hemicelluloses. Carbohydr. Res. 2022, 519, 108622. [Google Scholar] [CrossRef]
- Mougnala Moukagni, E.; Ziegler-Devin, I.; Safou-Tchima, R.; Brosse, N. Extraction of Acetylated Glucuronoxylans and Glucomannans from Okoume (Aucoumea klaineana Pierre) Sapwood and Heartwood by Steam Explosion. Ind. Crops Prod. 2021, 166, 113466. [Google Scholar] [CrossRef]
- Li, Z.; Qiu, C.; Gao, J.; Wang, H.; Fu, Y.; Qin, M. Improving Lignin Removal from Pre-Hydrolysis Liquor by Horseradish Peroxidase-Catalyzed Polymerization. Sep. Purif. Technol. 2019, 212, 273–279. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, J.; Fu, Y.; Wang, Z.; Qin, M. Recycling of Pre-Hydrolysis Liquor to Improve the Concentrations of Hemicellulosic Saccharides during Water Pre-Hydrolysis of Aspen Woodchips. Carbohydr. Polym. 2017, 174, 385–391. [Google Scholar] [CrossRef]
- Stankovikj, F.; McDonald, A.G.; Helms, G.L.; Olarte, M.V.; Garcia-Perez, M. Characterization of the Water-Soluble Fraction of Woody Biomass Pyrolysis Oils. Energy Fuels 2017, 31, 1650–1664. [Google Scholar] [CrossRef]
- Lorenz, D.; Janzon, R.; Saake, B. Determination of Uronic Acids and Neutral Carbohydrates in Pulp and Biomass by Hydrolysis, Reductive Amination and HPAEC-UV. Holzforschung 2017, 71, 767–775. [Google Scholar] [CrossRef]
- Yang, L.C.; Hsieh, C.C.; Lin, W.C. Characterization and Immunomodulatory Activity of Rice Hull Polysaccharides. Carbohydr. Polym. 2015, 124, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Coulier, L.; Zha, Y.; Bas, R.; Punt, P.J. Analysis of Oligosaccharides in Lignocellulosic Biomass Hydrolysates by High-Performance Anion-Exchange Chromatography Coupled with Mass Spectrometry (HPAEC-MS). Bioresour. Technol. 2013, 133, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Tian, T.; Rumachik, N.; Sinrod, A.J.G.; Barile, D.; Liu, Y. Coupling an Ion Chromatography to High Resolution Mass Spectrometry (IC-MS) for the Discovery of Potentially Prebiotic Oligosaccharides in Chardonnay Grape Marc. J. Chromatogr. B 2023, 1214, 123540. [Google Scholar] [CrossRef]
- Cardoso de Sá, A.; Cristina Sedenho, G.; Paim, L.L.; Ramos Stradiotto, N. New Method for Carbohydrates Determination in Sugarcane Bagasse by HPAEC-RPAD Using Glassy Carbon Electrode Modified with Carbon Nanotubes and Nickel Nanoparticles. Electroanalysis 2018, 30, 128–136. [Google Scholar] [CrossRef]
- Han, J.; You, X.; Wang, S.; Chen, C.; Yao, S.; Meng, C.; Liang, C.; Zhao, J. Chlorine Dioxide Oxidation of Hemicellulose from Alkaline Hydrolysate Bagasse to Remove Lignin Unit in Lignin-Carbohydrate Complex. Carbohydr. Polym. 2022, 277, 118817. [Google Scholar] [CrossRef]
- Xie, Y.; Guo, X.; Ma, Z.; Gong, J.; Wang, H.; Lv, Y. Efficient Extraction and Structural Characterization of Hemicellulose from Sugarcane Bagasse Pith. Polymers 2020, 12, 608. [Google Scholar] [CrossRef]
- Zhao, D.; Feng, F.; Yuan, F.; Su, J.; Cheng, Y.; Wu, H.; Song, K.; Nie, B.; Yu, L.; Zhang, F. Simultaneous Determination of 13 Carbohydrates Using High-Performance Anion-Exchange Chromatography Coupled with Pulsed Amperometric Detection and Mass Spectrometry. J. Sep. Sci. 2017, 40, 1843–1854. [Google Scholar] [CrossRef] [PubMed]
- Bruno, A.; Velders, A.H.; Biasone, A.; Li Vigni, M.; Mondelli, D.; Miano, T. Chemical Composition, Biomolecular Analysis, and Nuclear Magnetic Resonance Spectroscopic Fingerprinting of Posidonia Oceanica and Ascophyllum Nodosum Extracts. Metabolites 2023, 13, 170. [Google Scholar] [CrossRef]
- Lin, L.; Xie, J.; Liu, S.; Shen, M.; Tang, W.; Xie, M. Polysaccharide from Mesona chinensis: Extraction Optimization, Physicochemical Characterizations and Antioxidant Activities. Int. J. Biol. Macromol. 2017, 99, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Shen, M.; Xie, J.; Liu, D.; Du, M.; Lin, L.; Gao, H.; Hamaker, B.R.; Xie, M. Physicochemical Characterization, Antioxidant Activity of Polysaccharides from Mesona chinensis Benth and Their Protective Effect on Injured NCTC-1469 Cells Induced by H2O2. Carbohydr. Polym. 2017, 175, 538–546. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Liu, S.; Shen, M.; Jiang, L.; Ren, Y.; Luo, Y.; Wen, H.; Xie, J. Physicochemical, Rheological and Thermal Properties of Mesona chinensis Polysaccharides Obtained by Sodium Carbonate Assisted and Cellulase Assisted Extraction. Int. J. Biol. Macromol. 2019, 126, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.H.; Shen, M.Y.; Nie, S.P.; Liu, X.; Zhang, H.; Xie, M.Y. Analysis of Monosaccharide Composition of Cyclocarya Paliurus Polysaccharide with Anion Exchange Chromatography. Carbohydr. Polym. 2013, 98, 976–981. [Google Scholar] [CrossRef] [PubMed]
- Ritter, S.; Nobis, A.; Gastl, M.; Becker, T. Evaluating Raffinose Family Oligosaccharides and Their Decomposition Products by Ion Chromatography—A Method Development and Advanced Repeatability Study. Talanta Open 2022, 5, 100086. [Google Scholar] [CrossRef]
- Almeida, V.O.; Carneiro, R.V.; Carvalho, M.A.M.; Figueiredo-Ribeiro, R.C.L.; Moraes, M.G. Diversity of Non-Structural Carbohydrates in the Underground Organs of Five Iridaceae Species from the Cerrado (Brazil). S. Afr. J. Bot. 2015, 96, 105–111. [Google Scholar] [CrossRef]
- Dos Santos, R.; Vergauwen, R.; Pacolet, P.; Lescrinier, E.; Van Den Ende, W. Manninotriose Is a Major Carbohydrate in Red Deadnettle (Lamium purpureum, Lamiaceae). Ann. Bot. 2013, 111, 385–393. [Google Scholar] [CrossRef]
- Cruz-Rubio, J.M.; Riva, A.; Cybulska, J.; Zdunek, A.; Berry, D.; Loeppert, R.; Viernstein, H.; Praznik, W.; Maghuly, F. Neutral and Pectic Heteropolysaccharides Isolated from Opuntia joconostle Mucilage: Composition, Molecular Dimensions and Prebiotic Potential. Int. J. Mol. Sci. 2023, 24, 3208. [Google Scholar] [CrossRef]
- Cruz-Rubio, J.M.; Mueller, M.; Loeppert, R.; Viernstein, H.; Praznik, W. The Effect of Cladode Drying Techniques on the Prebiotic Potential and Molecular Characteristics of the Mucilage Extracted from Opuntia ficus-Indica and Opuntia Joconostle. Sci. Pharm. 2020, 88, 43. [Google Scholar] [CrossRef]
- Juhari, N.H.; Bredie, W.L.P.; Toldam-Andersen, T.B.; Petersen, M.A. Characterization of Roselle Calyx from Different Geographical Origins. Food Res. Int. 2018, 112, 378–389. [Google Scholar] [CrossRef]
- Kim, H.; Lim, C.Y.; Lee, D.B.; Seok, J.H.; Kim, K.H.; Chung, M.S. Inhibitory Effects of Laminaria Japonica Fucoidans against Noroviruses. Viruses 2020, 12, 997. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.-J.; Yu, J.; Ji, H.-Y.; Zhang, H.-C.; Zhang, Y.; Liu, H.P. Extraction of a Novel Cold-Water-Soluble Polysaccharide from Astragalus membranaceus and Its Antitumor and Immunological Activities. Molecules 2018, 23, 62. [Google Scholar] [CrossRef]
- Manns, D.; Deutschle, A.L.; Saake, B.; Meyer, A.S. Methodology for Quantitative Determination of the Carbohydrate Composition of Brown Seaweeds (Laminariaceae). RSC Adv. 2014, 4, 25736–25746. [Google Scholar] [CrossRef]
- Márquez-López, R.E.; Santiago-García, P.A.; López, M.G. Agave Fructans in Oaxaca’s Emblematic Specimens: Agave angustifolia Haw. and Agave potatorum Zucc. Plants 2022, 11, 1834. [Google Scholar] [CrossRef] [PubMed]
- Mellado-Mojica, E.; López, M.G. Fructan Metabolism in A. Tequilana Weber Blue Variety along Its Developmental Cycle in the Field. J. Agric. Food Chem. 2012, 60, 11704–11713. [Google Scholar] [CrossRef]
- Aldrete-Herrera, P.I.; López, M.G.; Medina-Torres, L.; Ragazzo-Sánchez, J.A.; Calderón-Santoyo, M.; González-Ávila, M.; Ortiz-Basurto, R.I. Physicochemical Composition and Apparent Degree of Polymerization of Fructans in Five Wild Agave Varieties: Potential Industrial Use. Foods 2019, 8, 404. [Google Scholar] [CrossRef] [PubMed]
- Muhidinov, Z.K.; Bobokalonov, J.T.; Ismoilov, I.B.; Strahan, G.D.; Chau, H.K.; Hotchkiss, A.T.; Liu, L.S. Characterization of Two Types of Polysaccharides from Eremurus hissaricus Roots Growing in Tajikistan. Food Hydrocoll. 2020, 105, 105768. [Google Scholar] [CrossRef]
- Nep, E.I.; Carnachan, S.M.; Ngwuluka, N.C.; Kontogiorgos, V.; Morris, G.A.; Sims, I.M.; Smith, A.M. Structural Characterisation and Rheological Properties of a Polysaccharide from Sesame Leaves (Sesamum radiatum Schumach. & Thonn.). Carbohydr. Polym. 2016, 152, 541–547. [Google Scholar] [CrossRef]
- Santiago-García, P.A.; Mellado-Mojica, E.; León-Martínez, F.M.; López, M.G. Evaluation of Agave angustifolia Fructans as Fat Replacer in the Cookies Manufacture. LWT 2017, 77, 100–109. [Google Scholar] [CrossRef]
- Sun, J.; Ding, Z.Q.; Gao, Q.; Xun, H.; Tang, F.; Xia, E.D. Major Chemical Constituents of Bamboo Shoots (Phyllostachys pubescens): Qualitative and Quantitative Research. J. Agric. Food Chem. 2016, 64, 2498–2505. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, Y.; Mao, F.; Liu, Y.; Wei, X. Purification, Characterization and Biological Activities in Vitro of Polysaccharides Extracted from Tea Seeds. Int. J. Biol. Macromol. 2013, 62, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Stanojević, M.; Trifković, J.; Akšić, M.F.; Rakonjac, V.; Nikolić, D.; Šegan, S.; Milojković-Opsenica, D. Sugar Profile of Kernels as a Marker of Origin and Ripening Time of Peach (Prunus persicae L.). Plant Foods Human. Nutr. 2015, 70, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.B.; Liu, D.B.; Guo, X.M.; Yu, S.J.; Yu, P. Improvement of Sugar Analysis Sensitivity Using Anion-Exchange Chromatography-Electrospray Ionization Mass Spectrometry with Sheath Liquid Interface. J. Chromatogr. A 2014, 1366, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Li, Z.; Zhang, C.Y.; Li, M.; Lee, Y.; Zhang, G.G. Extract Methods, Molecular Characteristics, and Bioactivities of Polysaccharide from Alfalfa (Medicago sativa L.). Nutrients 2019, 11, 1181. [Google Scholar] [CrossRef]
- Zhou, Y.; Ma, Y.; Li, L.; Yang, X. Purification, Characterization, and Functional Properties of a Novel Glycoprotein from Tartary Buckwheat (Fagopyrum tartaricum) Seed. Food Chem. 2020, 309, 125671. [Google Scholar] [CrossRef]
- He, Y.; Zhang, C.; Zheng, Y.; Xiong, H.; Ai, C.; Cao, H.; Xiao, J.; El-Seedi, H.; Chen, L.; Teng, H. Effects of Blackberry Polysaccharide on the Quality Improvement of Boiled Chicken Breast. Food Chem. X 2023, 18, 100623. [Google Scholar] [CrossRef]
- Cvetković, M.; Kočić, M.; Dabić Zagorac, D.; Ćirić, I.; Natić, M.; Hajder, Đ.; Životić, A.; Fotirić Akšić, M. When Is the Right Moment to Pick Blueberries? Variation in Agronomic and Chemical Properties of Blueberry (Vaccinium corymbosum) Cultivars at Different Harvest Times. Metabolites 2022, 12, 798. [Google Scholar] [CrossRef]
- Akšić, M.F.; Tosti, T.; Sredojević, M.; Milivojević, J.; Meland, M.; Natić, M. Comparison of Sugar Profile between Leaves and Fruits of Blueberry and Strawberry Cultivars Grown in Organic and Integrated Production System. Plants 2019, 8, 205. [Google Scholar] [CrossRef]
- Dare, A.P.; Günther, C.S.; Grey, A.C.; Guo, G.; Demarais, N.J.; Cordiner, S.; McGhie, T.K.; Boldingh, H.; Hunt, M.; Deng, C.; et al. Resolving the Developmental Distribution Patterns of Polyphenols and Related Primary Metabolites in Bilberry (Vaccinium myrtillus) Fruit. Food Chem. 2022, 374, 131703. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; You, L.J.; Abbasi, A.M.; Fu, X.; Liu, R.H. Optimization for Ultrasound Extraction of Polysaccharides from Mulberry Fruits with Antioxidant and Hyperglycemic Activity in Vitro. Carbohydr. Polym. 2015, 130, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Liang, Z.; Li, J.; Manzoor, M.F.; Liu, H.; Han, Z.; Zeng, X. Variation in Physicochemical Properties and Bioactivities of Morinda citrifolia L. (Noni) Polysaccharides at Different Stages of Maturity. Front. Nutr. 2023, 9, 1094906. [Google Scholar] [CrossRef] [PubMed]
- Chidouh, A.; Aouadi, S.; Heyraud, A. Extraction, Fractionation and Characterization of Water-Soluble Polysaccharide Fractions from Myrtle (Myrtus communis L.) Fruit. Food Hydrocoll. 2014, 35, 733–739. [Google Scholar] [CrossRef]
- Ren, Y.-Y.; Zhu, Z.-Y.; Sun, H.-Q.; Chen, L.-J. Structural Characterization and Inhibition on α-Glucosidase Activity of Acidic Polysaccharide from Annona squamosa. Carbohydr. Polym. 2017, 174, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.S.; Sun, H.Q.; Zhang, X.L.; Huang, F.N.; Pan, L.C.; Zhu, Z.Y. Structural Characterization and Inhibitions on α-Glucosidase and α-Amylase of Alkali-Extracted Water-Soluble Polysaccharide from Annona squamosa Residue. Int. J. Biol. Macromol. 2021, 166, 730–740. [Google Scholar] [CrossRef] [PubMed]
- Guffa, B.; Nedić, N.M.; Dabić Zagorac, D.Č.; Tosti, T.B.; Gašić, U.M.; Natić, M.M.; Fotirić Akšić, M.M. Characterization of Sugar and Polyphenolic Diversity in Floral Nectar of Different ‘Oblačinska’ Sour Cherry Clones. Chem. Biodivers. 2017, 14, e1700061. [Google Scholar] [CrossRef] [PubMed]
- Pöhnl, T.; Böttcher, C.; Schulz, H.; Stürtz, M.; Widder, S.; Carle, R.; Schweiggert, R.M. Comparison of High Performance Anion Exchange Chromatography with Pulsed Amperometric Detection (HPAEC-PAD) and Ultra-High Performance Liquid Chromatography with Evaporative Light Scattering (UHPLC-ELSD) for the Analyses of Fructooligosaccharides in Onion (Allium cepa L.). J. Food Compos. Anal. 2017, 63, 148–156. [Google Scholar] [CrossRef]
- Mudrić, S.; Gašić, U.M.; Dramićanin, A.M.; Ćirić, I.; Milojković-Opsenica, D.M.; Popović-Đorđević, J.B.; Momirović, N.M.; Tešić, Ž.L. The Polyphenolics and Carbohydrates as Indicators of Botanical and Geographical Origin of Serbian Autochthonous Clones of Red Spice Paprika. Food Chem. 2017, 217, 705–715. [Google Scholar] [CrossRef]
- Pico, J.; Vidal, N.P.; Widjaja, L.; Falardeau, L.; Albino, L.; Martinez, M.M. Development and Assessment of GC/MS and HPAEC/PAD Methodologies for the Quantification of α-Galacto-Oligosaccharides (GOS) in Dry Beans (Phaseolus vulgaris). Food Chem. 2021, 349, 129151. [Google Scholar] [CrossRef]
- John, K.M.M.; Luthria, D. Amino Acid, Organic Acid, and Sugar Profiles of 3 Dry Bean (Phaseolus vulgaris l.) Varieties. J. Food Sci. 2015, 80, C2662–C2669. [Google Scholar] [CrossRef] [PubMed]
- Gangola, M.P.; Jaiswal, S.; Khedikar, Y.P.; Chibbar, R.N. A Reliable and Rapid Method for Soluble Sugars and RFO Analysis in Chickpea Using HPAEC-PAD and Its Comparison with HPLC-RI. Food Chem. 2014, 154, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Mellado-Mojica, E.; Calvo-Gómez, O.; Jofre-Garfias, A.E.; Dávalos-González, P.A.; Desjardins, Y.; López, M.G. Fructooligosaccharides as Molecular Markers of Geographic Origin, Growing Region, Genetic Background and Prebiotic Potential in Strawberries: A TLC, HPAEC-PAD and FTIR Study. Food Chem. Adv. 2022, 1, 100064. [Google Scholar] [CrossRef]
- Scroccarello, A.; Della Pelle, F.; Neri, L.; Pittia, P.; Compagnone, D. Silver and Gold Nanoparticles Based Colorimetric Assays for the Determination of Sugars and Polyphenols in Apples. Food Res. Int. 2019, 119, 359–368. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Cárdenas, C.I.; Miranda-Ham, M.L.; Castro-Concha, L.A.; Ku-Cauich, J.R.; Vergauwen, R.; Reijnders, T.; Van Den Ende, W.; Medrano, R.M.E.G. Fructans and Other Water Soluble Carbohydrates in Vegetative Organs and Fruits of Different Musa spp. Accessions. Front. Plant Sci. 2015, 6, 395. [Google Scholar] [CrossRef]
- Chen, D.; Sheng, M.; Wang, S.; Chen, X.; Leng, A.; Lin, S. Dynamic Changes and Formation of Key Contributing Odorants with Amino Acids and Reducing Sugars as Precursors in Shiitake Mushrooms during Hot Air Drying. Food Chem. 2023, 424, 136409. [Google Scholar] [CrossRef]
- Yang, Z.; Hu, Y.; Wu, J.; Liu, J.; Zhang, F.; Ao, H.; Zhu, Y.; He, L.; Zhang, W.; Zeng, X. High-Efficiency Production of Auricularia Polytricha Polysaccharides through Yellow Slurry Water Fermentation and Its Structure and Antioxidant Properties. Front. Microbiol. 2022, 13, 811275. [Google Scholar] [CrossRef]
- Akšić, M.F.; Tosti, T.; Nedić, N.; Marković, M.; Ličina, V.; Milojković-Opsenica, D.; Tešić, Ž. Influence of Frost Damage on the Sugars and Sugar Alcohol Composition in Quince (Cydonia oblonga Mill.) Floral Nectar. Acta Physiol. Plant 2015, 37, 1701. [Google Scholar] [CrossRef]
- Zhao, Y.; Guo, B.; Liu, J.; Yang, H.; Yin, X.; Tuo, S.; Zhang, Q. Simultaneous Determination of Seven Carbohydrates in Tobacco by Ultrasonic Extraction-Ion Chromatography. Asian J. Chem. 2014, 26, 5149–5155. [Google Scholar] [CrossRef]
- Tedesco, R.; Barbaro, E.; Zangrando, R.; Rizzoli, A.; Malagnini, V.; Gambaro, A.; Fontana, P.; Capodaglio, G. Carbohydrate Determination in Honey Samples by Ion Chromatography–Mass Spectrometry (HPAEC-MS). Anal. Bioanal. Chem. 2020, 412, 5217–5227. [Google Scholar] [CrossRef]
- Lorenz, D.; Erasmy, N.; Akil, Y.; Saake, B. A New Method for the Quantification of Monosaccharides, Uronic Acids and Oligosaccharides in Partially Hydrolyzed Xylans by HPAEC-UV/VIS. Carbohydr. Polym. 2016, 140, 181–187. [Google Scholar] [CrossRef] [PubMed]
Column Name | CarboPac PA1 | CarboPac PA10 | CarboPac PA20 | CarboPac PA100 | CarboPac MA1 | CarboPac PA200 | CarboPac SA10 | CarboPac PA210- Fast-4 μm | Metro-sep Carb2 | RCX-30 |
---|---|---|---|---|---|---|---|---|---|---|
Manufacturer | Dionex | Dionex | Dionex | Dionex | Dionex | Dionex | Dionex | Dionex | Metrohm (Herisau, Switzerland) | Hamilton (Giarmata, Romania) |
Column dimensions [mm] | 250 × 4.0 | 250 × 4.0 | 250 × 4.0 | 250 × 4.0 | 250 × 4.0 | 250 × 3.0 | 250 × 4.0 | 150 × 4.0 | 250 × 4.6 | 250 × 4.6 |
pH range | 0–14 | 0–14 | 0–14 | 0–14 | 0–14 | 0–14 | 0–14 | 0–14 | 0–14 | 1–13 |
Filling | PS/ DVB | EVB/ DVB | EVB/ DVB | EVB/ DVB | VBC/ DVB | EVB/ DVB | EVB/ DVB | EVB/ DVB | PS/ DVB | PS/ DVB/ TMA |
Ion exchange capacity [µval/column] | 100 | 65 | 65 | 90 | 1450 | 35 | 290 | 66 | 1530 | 2000 |
Particle size [μm] | 10 | 10 | 6.5 | 10 | 8.5 | 8.5 | 6.0 | 4.0 | 5 | 7 |
Cross-linking [%] | 5 | 5 | 5 | 6 | 15 | 6 | 5 | 6 | - | - |
Recommended eluent flow [mL/min] | 1 | 1 | 5 | 1 | 0.4 | 0.5 | 1.5 | 0.8 | 0.5 | 1.0 |
Maximum preasure [MPa] | 27.5 | 27.5 | 24.1 | 27.5 | 9.6 | 18.6 | 24.1 | 27.5 | 20 | 34 |
Compatibility with organic solvent [%] | 2 | 90 | 100 | 100 | 0 | 100 | 100 | 100 | 0–50 | - |
Matrix | Analyte | Column/Precolumn | Elution Mode | Elution Parameters | Detection Mode | Ref. |
---|---|---|---|---|---|---|
PM1 | glucose, fructose, mannose, galactose, sucrose, levoglucosan, mannosan, galactosan, arabitol, mannitol, erythritol | CarboPac MA1 (4 × 250 mm)/(4 × 50 mm) | Gradient: −15–−14.9 min: 35% A + 65% B; 14.9–20 min: 52% A + 48% B; 20.1–45 min: 35% A + 65% B | A: H2O; B: 1.0 M NaOH; 0.4 mL/min; room temperature; 25 µL | HPAE-PAD | [59] |
PM2.5 | levoglucosan, arabitol, mannitol, erythritol, xylitol, glycerol, myo-inositol, glucose, mannopyranose, trehalose, mannose, galactose | CarboPac MA1 (4 × 250 mm)/(4 × 50 mm) | Gradient: 200–600 mM A | A: NaOH; B: H2O; 0.4 mL/min; 400 mL | HPAEC-PAD | [60] |
PM10 | [61] | |||||
PM 2.5 | levoglucosan | CarboPac PA20 | Gradient: 0–15 min: 18 mM; 15–40 min: 18–200 mM; 40–50 min: 200 mM | NaOH | HPAEC-PAD | [62] |
PM2.5 | levoglucosan | CarboPac PA10 (2 × 250 mm)/(2 × 250 mm) | Gradient: 0–15 min: 0.5 mM; 0.5–10 mM (2.375 mM/min); 10–50 mM (4 mM/min); 65 mM for 6 min; 0.5 mM for 4 min | KOH; 0.20 mL/min | HPAEC-MS | [63] |
PM1, PM10 | levoglucosan, mannosan, galactosan, inositol, xylitol, sorbitol, mannitol, glucose | CarboPac PA10 (4 × 250 mm) | Isocratic: 0–25 min: 25 mM; cleaning: 200 mM for 8 min; reequilibration: 25 mM for 17 min | NaOH; 0.5 mL/min | HPAEC-PAD | [64] |
Marine and atmospheric samples | fucose, rhamnose, arabinose, galactose, glucose, mannose, xylose, fructose, ribose, xylitol, arabitol, sorbitol, mannitol, levoglucosan, mannosan, galactosan, sucrose | Set 1.CarboPac MA1 (7.5 μm, 4 × 250 mm)/(4 × 50 mm) Set 2. CarboPac PA1 (10 μm, 4 × 250 mm)/(4 × 50 mm) | Set. 1. Gradient: 0–30 min: 250–350 mM NaOH; 30–45 min: 350–450 mM NaOH; 45–55 min: 450–700 mM NaOH; 55–75 min: 700 mM NaOH; 75–95 min: 250 mM NaOH; Set 2. 0–15 min: 1 mM NaOH; 15–38 min: 19 mM NaOH | Set 1. NaOH; 0.3 mL/min; detector: 25 °C, column: 0–30 min: 25–28 °C; 30–75 min: 28 °C; 75–95 min: 25 °C; 230 µL; Set 2. NaOH; 0.7 mL/min, 17 °C (column); 20 °C (detector) | HPAEC-PAD | [65] |
PM10 | glucose, arabitol, mannitol | Set 1: A Supp 15–150 + Carb 1–150/Carb 1-Guard; Set 2: Carb (2 × 150 mm)/(2 × 50 mm). Set 3: CarboPac MA1 (4 × 250 mm) | Isocratic: Set 1: 120 mM NaOH for 9 min (cleaning); 70 mM NaOH for 11 min, NaOH for 9 min. Set 2: 15% B + 85% C; Set 3: 480 mM NaOH | A: NaOH; B: 200 mM NaOH + 4 mM NaOAc; C: H2O; 1 mL/min; room temperature; 25 µL | HPLC-PAD | [66] |
PM2.5 | levoglucosan, mannnosan, galactosan | CarboPac PA1 (10 µm, 2 × 250 mm)/(10 µm, 2 × 50 mm) | Gradient: 0–2 min: 2 mM; 2–7 min: 2–10 mM; 7–10 min: 10–200 mM; 10–11 min, 200 mM; 11–11.1 min: 200–2 mM; 11.1–15 min: 2 mM | NaOH; 0.25 mL/min; 30 °C; 10 μL | HPAEC-positive ESI-MS | [67] |
Ambient aerosols | levoglucosan | CarboPac PA10 (2 × 250 mm)/(2 × 50 mm) | I: Isocratic; 2 mM; II: 0.5 mM for 1 min; 0.5–10 mM (2.375 mM/min); 10–50 mM (4 mM/min); 50 mM for 3 min; 0.5 mM for 7 min; III: 0.5 mM for 1 min; 0.5–10 mM (2.375 mM/min); 10–50 mM (4 mM/min); 65 mM for 6 min; 0.5 mM for 4 min | KOH; I. 0.25 mL/min; II: 0.20 mL/min; III: 0.20 mL/min | PILS-HPAEC-MS | [68] |
Antarctic aerosol | arabinose, fructose, galactose, glucose, mannose, ribose, xylose, sucrose, lactose, lactulose, erythritol, maltitol | Set 1. CarboPac PA10 (2 × 250 mm)/(2 × 50 mm) and AminoTrap (2 × 50 mm); Set 2. CarboPac MA1 (2 × 250 mm)/AminoTrap (2 × 50 mm) | Gradient: Set 1. 0–3 min: 1 mM; 3–20 min: 10–20 mM; 20–45 min: 20 mM; 45–55 min: 100 mM; 55–60 min: 1 mM; Set 2. 1, 0–23 min: 20 mM; 23–43 min: 100 mM; 43–53 min: 20 mM | NaOH; 0.25 mL/min; 50 μL | HPAEC-MS | [69] |
PM10 | arabinose, fructose, galactose, glucose, mannose, ribose, xylose, sucrose, arabitol, erythritol, mannitol, ribitol, sorbitol, xylitol, galactitol, maltitol, levoglucosan, mannosan, galactosan | [70] | ||||
Antarctic aerosols (TSP) | levoglucosan, galactosan, mannosan, arabinose, ribose, xylose, fructose, galactose, glucose, mannose, sucrose, erythritol, arabitol, xylitol, ribitol, mannitol, sorbitol, maltitol | [71] | ||||
PM10 | glucose, fructose, trehalose, sucrose, cellobiose, galactose, erythritol, inositol, mannitol, arabitol, galactosan, mannosan, levoglucosan | CarboPac MA1 (4 × 250 mm)/(4 × 50 mm) | Gradient: -0–20 min: 480 mM; 35–45 min: 650 mM; reequilibration: 450 mM for 14.9 min | A: H2O; B: 1 M NaOH; 0.4 mL/min; 25 °C; 25 μL | HPAEC-PAD | [72] |
PM2.5 | levoglucosan, mannosan, galactosan, glucose, mannose, erythritol, arabitol, mannitol | CarboPac MA1 (4 × 250 mm)/(4 × 50 mm) | Isocratic | 250 mM NaOH; 0.5 mL/min | HPAEC-PAD | [73] |
PM2.5 | levoglucosan | [74] | ||||
PM10 | xylitol, arabitol, mannosan, trehalose, mannitol, levoglucosan, galactosan, glucose, galactose, fructose, sucrose | CarboPac MA1 (4 × 250 mm)/(4 × 50 mm) | Gradient: 0–20 min: 480 mM; 35–45 min: 650 mM; reequilibration: 480 mM for 14.9 min | A: H2O; B: 1 M NaOH; 0.4 mL/min; 25 °C; 25 μL | HPAEC-PAD | [75] |
PM10 | levoglucosan | [76] | ||||
Atmospheric samples (terrestial, marine, rain) | levoglucosan, mannosan, galactosan | CarboPac RPA-1 (10 μm, 2 × 250 mm)/(2 × 50 mm) | Gradient: 9 min cleaning; 0–2: 0.5 mM; 2–7 min: 0.5 –10 mM; 7–9 min: 10–100 mM; 9–15 min: 100 mM; 15–17 min: 100–0.5 mM; 17–20 min: 0.5 mM; | KOH; 0.25 mL/min; 30 °C; 50 μL 20 min | IC-TSQ-MS | [77] |
Matrix | Analyte | Column/Precolumn | Elution Mode | Elution Parameters | Detection Mode | Ref. |
---|---|---|---|---|---|---|
Beechwood | xylose, xyobiose, xylotriose, xylopentaose, xylohexaose | CarboPac PA200 (3 × 250 mm)/AminoTrap (3 × 50 mm) | Gradient: 0–30 min: 2 to 150 mM B 30–60 min: B + A | A: 150 mM NaOH B: NaOAc; 35 °C; 20 μL; 0.45 mL/min | HPAEC-QqQ-MS | [78] |
Beechwood (Fagus sylvatica L.) | glucose, arabinose, xylose, glucuronic acid | [79] | ||||
Beechwood | fucose, glucose, xylose, galactose, mannose, rhamnose, arabinose, galacturonic acid, glucuronic acid | CarboPac PA20 (3 × 150 mm) | Gradient: 0–20 min: 0.8% A + 99.2% B; 20 –37 min: 20% A + 75% B + 5% C; 37–41 min: 20% A + 40% B + 40% C | A: 250 mM A; B: H2O; C: 1 M NaOAc in 20 mM NaOH; 0.4 mL/min; 35 °C; 45 min; 20 μL | HPAE-PAD | [80] |
Hardwood Aucoumea klaineana | xylose, mannose, glucose, arabinose, galactose, rhamnose, galacturonic acid, glucuronic acid | CarboPac PA20 (3 × 150 mm/(3 × 30 mm) | Gradient: A + B + C in variable proportion | A: 250 mM A; B: H2O; C: 1 M NaOAc; 0.4 mL/min; 35 °C | HPAEC-PAD | [81] |
Gradient: 0–20 min: 0.8% A + 99.2% B; 20–37 min: 20 % A + 75% B + 5% C; 37–45 min: 20% A + 40% B + 40% C | A: 250 mM A; B: H2O; C: 1 M NaOAc + 20 mM NaOH; 0.4 mL/min; 35 °C; 45 min | [82] | ||||
Aspen wood chips | glucose, arabinose, mannose, galactose | CarboPac PA20 (3 × 150 mm)/(3 × 30 mm) | Gradient: 0–22 min: 4% A + 96% B; 22–27 min: 40% A + 20% B + 40% C; 28–35 min: 20% B + 80% D | A: 50 mM NaOH; B: H2O µL; C: 1 M NaOAc; D: 50 mM NaOH; 0.4 mL/min; 30 °C (column) and 25 °C (detector) | HPAEC-PAD | [83] |
[84] | ||||||
Pine wood pyrolysis oils | levoglucosan, arabinose, galactose, glucose, xylose | CarboPac PA20 | Isocratic | 80% H2O + 20% 50 mM NaOH; 0.50 mL/min; 10 μL; 35 °C | HPAEC-PAD (detector pH = 10.4) | [85] |
Spruce and beech pulps, Wood: Picea abies (L.) Eucalyptus globulus, Fagus sylvatica L., Quercus alba L., Alnus glutinosa (L.), Populus alba L., wheat straw and bagasse | xylose, galactose, glucose, arabinose, mannose, MeGlcA-xylose MeGlcA, galacturonic acid | CarboPac PA200 (3 × 250 mm)/(3 × 50 mm) | Gradient: 30 min: 7.5% B 30–60 min: up to 60% B; 60–85 min: 60% B; cleaning: 200 mM NaOH for 20 min; equilibration: 7.5% B for 10 min | A: H2O, B: 1 M NaOAc in 200 mM NaOH; 0.4 mL/min; 10 μL; 30 °C | HPAEC-UV | [86] |
Rice hull | arabinose, galactose, glucose, mannose, xylose | CarboPac PA1 | isocratic | 10 mM NaOH + 1 mM (CH3COO)2Ba; 1 mL/min | HPAEC-PAD | [87] |
Sugar cane bagasse, wheat and barley straw, willow wood | glucose, xylose galactose, arabinose, mannose, ribose, cellobiose, xylobiose, arabinobiose, mannobiose, cellotriose, xylotriose, mannotriose, xylotetraose, galactonic acid, gluconic acid, galacturonic acid, glucuronic acid, lactobionic acid | CarboPac PA1 (2 × 250 mm) | Gradient: 0–5 min: 100% A, 5–78 min: linear gradient from 100–74% (linear); 100% B for 6 min (cleaning); 100% A for 10 min (re-equilibration) | A: 100 mM NaOH; B: 100 mM NaOH + 500 mM NaOAc. 215 µL/min; 3 µL; 35 °C | HPAEC-MS | [88] |
Chardonnay grape marc | hexose, deoxyhexose, hexuronic acid, pentose, pentose alditol | CarboPacPA300-4 μm (2 × 250 mm)/(2 × 50 mm) | Gradient: 0–15 min: 68.5–5% A; 29.5–35% B; 2–60% C; 15–45 min: 5–25% A; 35–25% B; 60–0% C; 0–50% D; 45–55 min: 25–0% A; 25–0% B; 50–100% D; 55–55.9 min: 100% D; 60–75 min: 68.5% A; 29.5% B; 2% C | A: H2O; B: 200 mM NaOH; C: 25 mM NaOAc in 50 mM NaOH; D: 250 mM NaOAc in 100 mM NaOH; 0.25 mL/min; 10 μL (partial loop); 4 °C | IC-PAD/MS/MS | [89] |
Sugarcane bagasse | arabinose, galactose, glucose, xylose | CarboPac PA 10 (4 × 250 mm)/(4 × 50 mm) | Isocratic | 99% H2O + 1% 150 mM NaOH; 1 mL/min; 25 °C (column); 35 °C (detector); 25 μL | HPAEC-RPAD | [90] |
Sugarcane bagasse | arabinose, galactose, glucose, xylose, mannose | CarboPac PA20 | Isocratic | 8 g/L NaOH + 20 g/L NaOAc; 0.3 mL/min; 25 µL; 30 °C | HPAEC-PAD | [91] |
Sugarcane bagasse pith | arabinose, galactose, glucose, xylose, glucuronic acid, galacturonic acid | CarboPac PA1 | Isocratic | 8 g/L NaOH + 20 g/L NaOAc; 1 mL/min; 25 µL; 30 °C | HPAEC-PAD | [92] |
Matrix | Analyte | Column/Precolumn | Elution Mode | Elution Parameters | Detection Mode | Ref. |
---|---|---|---|---|---|---|
Spirulina platensis | fucose, fructose, rhamnose, arabinose, galactose, glucose, xylose, mannose, ribose, mannitol, sucrose, galacturonic acid, glucuronic acid | CarboPac PA20 (3 × 150 mm)/(3 × 50 mm) | Gradient: 0–5 min: 30–60% B, 0–20% C; 5–15 min: 60–20% B, 20–80% C; 15–25 min: 20–30% B, 80–20% C; 25–25.1 min: 30% B; 20% C; 25.1–30 min: 30% B, 20–0% C | A: H2O; B: 0.1 M NaOH; C: 0.4 M NaOAc; 0.45 mL/min; 30 °C; 25 μL | HPAEC-PAD-MS | [93] |
Posidonia oceanica, Ascophyllum nodosum | adonitol, mannitol, fucose, arabinose, galactose, glucose, xylose, mannose | CarboPac PA20 (3 × 150 mm)/(3 × 30 mm) | Gradient: 0–21 min: 1.5% B; 21–33 min: 50% B; 33–49 min: 100% C; 49–53 min: 100% A; 53–70 min: 1.5% B | A: H2O Milli-Q; B: 0.2 M NaOH; C: 0.1 M NaOH + 0.1 M NaOAc; 0.4 mL/min; 30 °C | HPAEC-PAD | [94] |
Mesona chinensis benth | glucose, mannose, xylose, rhamnose, arabinose, galactose, fructose, ribose, fucose | CarboPac PA10 (2.0 × 250 mm) | Isocratic | 12.5 mM NaOH; 0.25 mL/min; 25 μL; 30 °C | HPAEC-PAD | [95] |
Mesona chinensis benth | rhamnose, arabinose, galactose, glucose, xylose, mannose, glucuronic acid, galacturonic acid | CarboPac PA20 BioLC (3 × 150 mm)/(3 × 30 mm) | Isocratic | 250 mM NaOH + H2O + 1 M NaOAc | HPAEC-PAD | [96] |
Mesona chinensis herbaceous plant | glucose, rhamnose, arabinose, fucose, xylose, mannose, galactose | Carbo PAC PA10 (2.0 × 250 mm) | Isocratic | 12.5 mM NaOH; 0.25 mL/min; 25 μL; 30 °C | HPAEC-PAD | [97] |
Sweet tea tree Cyclocarya paliurus | arabinose, rhamnose, fucose, fructose, xylose, galactose, glucose, mannose | [98] | ||||
Lupine seeds (Lupinus angustifolius | galactose, glucose, sucrose, fructose, raffinose, stachyose, verbascose, maltose, 2-deoxy-d-glucose | CarboPac PA100 (2 × 250 mm)/(2 × 50 mm) | Gradient: 10% A at 0 min, 25% A at 10 min, 25% A at 12 min, 95% A at 52 min, 95% A at 56 min, 10% A at 57 min, 8 min at 10% A (equilibration) | A: 0.145 M NaOH; B: H2O; 0.25 mL/min; 1 μL; 68–73 min | HPAEC-PAD | [99] |
Iridaceae species | glucose, fructose, sucrose, raffinose, maltose, 1-kestose, nystose, neokestose | CarboPac PA100 (4 × 250 mm) | Gradient: 0–2 min: 5 mM; 2.1–8 min: 5–50 mM; 8.1–11 min: 50–150 mM; 11.1–14 min: 250 mM; 14.1–18 min: 5 mM | NaOAc in 150 mM NaOH; 1 mL/min | HPAEC-PAD | [100] |
Red deadnettle (Lamium purpureum, Lamiaceae) | glucose, fructose, melibiose, manninotriose, sucrose, raffinose, stachyose, galactose, galactinol, mannitol | CarboPac PA100 | Gradient: 90 mM NaOH for 9 min (equilibration); 0–6 min: 0–10 mM A; 6–16 min: 10–100 mM A; 500 mM NaOAC for 5 min (regeneration) | A: NaOAc; 1 mL/min; | HPAEC-PAD | [101] |
Opuntia joconostle | rhamnose, arabinose, xylose, galactose, fucose, glucose, galacturonic acid | CarboPac PA1 (4 × 250 mm)/(4 × 50 mm) | Gradient: −20 to −2.5 min: A; −2.5–22 min: 10 mM NaOH + 2 mM NaOAc; 22–40 min: ramp up to B; 40–50 min: A | A: 200 mM NaOH; B: 200 mM NaOH + 200 mM NaOAc; C: H2O; 1 mL/min; 30 °C; 10 µL | HPAEC-PAD | [102] |
Opuntia ficus-indica, Opuntia joconostle | rhamnose, arabinose, xylose, galactose, glucose, galacturonic acid | [103] | ||||
Roselle (Hibiscus sabdariffa L.) | glucose, fructose, sucrose | Metrosep CARB 1 (4.0 × 150 mm) | Isocratic | 100 mM NaOH; 1.0 mL/min; 20 μL; 35 °C | IC-PAD | [104] |
Laminaria japonica Fucoidans | fucose, galactose, glucose, mannose, rhamnose, xylose | CarboPac PA10 (4 × 250 mm) | Isocratic | 200 mM NaOH; 0.5 mL/min | HPAEC-PAD | [105] |
Astragalus membranaceus | fucose, rhamnose, arabinose, galactose, glucose, xylose, mannose, glucuronic acid, galacturonic acid | CarboPac PA20 (3 × 150 mm) | Isocratic | 6 mM NaOH + 100 mM NaOAc; 1 mL; 30 °C; | HPAEC-PAD | [106] |
Laminaria digitata, Saccharina latissimi | fucose, rhamnose, arabinose, galactose, xylose, mannose, galacturonic acid, glucuronic acid; glucose, xylose | Set 1. CarboPac PA20 Set 2. Omnifit bore (6.6 × 115 mm) filled with resin MCI Gel CA08F resin | Set 1. 25 min: 1% B in A for 25 min; 200 mM NaOH (0.2 mL/min) for 25 min; 200–20 mM NaOH for 25 min (linear). Set 2. 90% A + 10% B; to 10%A + 90%B for 35 min (linear). | Set 1. A: H2O, B: 200 mM NaOH; 1 M NaOAc in 200 mM NaOH; 0.4 mL/min; 25 min; Set 2. A: 0.3 M potassium borate buffer pH 9.2; B: 0.9 M potassium borate buffer pH 9.2; 0.7 mL/min | Set 1. HPAEC-PAD; Set 2. borate-HPAEC-UV/Vis | [107] |
Agave angustifolia Haw., Agave potatorum Zucc. | glucose, fructose, sucrose, 1-ketose, nystose, fructosyl-nystose | CarboPac PA100 (4 × 250 mm)/(4 × 50 mm) | Gradient: 0–5 min: 45 mM A; 5–60 min: 0–375 mM B; 60–65 min: 500 mM B; and 65–75 min: 45 mM A | A: NaOH; B: NaOAc in 0.15 M NaOH; 0.8 mL/min; 25 μL; 25 °C | HPAEC-PAD | [108] |
Agave tequilana | glucose, fructose, sucrose; inulin; fructooligosaccharides | CarboPac PA100 (4 × 250 mm)/(4 × 50 mm) | Gradient: 0 to 500 mM A | A: NaOAc in 0.15 M NaOH; 0.8 mL/min; 25 μL; 25 °C | HPAEC-PAD | [109] |
Wild Agave varieties | glucose, fructose, sucrose, kestose, nystose | CarboPac PA100 (40 × 250 mm)/(40 × 25 mm) | Gradient | A: 100 mM NaOH B: 600 mM NaOAc; 35 °C | HPAEC-PAD | [110] |
Eremurus hissaricus | glucose, mannose, arabinose galactose, xylose, rhamnose, fucose, glucuronic acid, galacturonic acid | CarboPac PA20 | Gradient: 1 mM A for 15 min, 0–130 mM B for 30 min; 1.0 M NaOAc for 0.8 min (cleaning); 1 mM NaOH for 30 min (re-equilibration) | A: NaOH, B: NaOAc in 100 mM NaOH; C: H2O; 0.5 mL/min | HPAEC-PAD | [111] |
Sesamum radiatum Schumach. &Thonn. | glucuronic acid, mannose, galactose, xylose, glucose, rhamnose, arabinose | CarboPac PA1 (4 × 250 mm | 25 mM NaOH; gradient of NaOH and NaOAc | A: NaOH, B: NaOAc; C: H2O; 1 mL/min; 25 µL; 30 °C | HPAEC-PAD | [112] |
Agave angustifolia | fructans | CarboPac PA100 (4 × 250 mm)/(4 × 50 mm) | Gradient: 0 to 500 mM A | A: NaOAc in 0.15 M NaOH; 0.8 mL/min; 25 μL; 25 °C | HPAEC-PAD | [113] |
Phyllostachys Pubescens | glucose, xylose, fructose, galactose, arabinose | Hamilton RCX-30 (7 μm; 4.6 × 250 mm) | Isocratic | 2.0 mM NaOH and 0.5 mM NaOAc; 1 mL/min; 2 mL; 60 min | HPAEC-PAD | [114] |
Tea seeds | fucose, mannose, xylose, ribose, glucose, galactose, rhamnose, arabinose, galactose acid, glucose acid | CarboPac PA20 (3 × 150 mm) | Isocratic | 2 mM NaOH; 0.45 mL/min; 25 μL; 30 °C | HPAEC-PAD | [115] |
Peach kernel | glucose, fructose, sucrose | CarboPac PA100 (4 × 250 mm, 8.5 μm, <10 Å) | Gradient: linear, 0–5 min: 15% A + 85% C; 5.0–5.1 min,: 15% A + 2% B + 83% C; 5.1–12.0 min: 15% A + 2% B + 83% C; 12.0–12.1 min: 15% A + 4% B + 81% C; 12.1–20.0 min: 15% A + 4% B + 81% C; 20.0–20.1 min: 20% A + 20% B + 60% C; 20.1–30.0 min: 20% A + 20% B + 60% C; preconditioning with 15% A + 85% C for 15 min | A: 600 mM NaOH; B: 500 mM NaOAc; C: H2O; 0.7 mL/min; 25 μL; 30 °C | HPAEC-PAD | [116] |
Jerusalem artichoke pectins | glucose, fructose, galactose, rhamnose, mannose, maltose, arabinose, xylose | CarboPac PA1 (2 × 250 mm) with precolumn (2 × 50 mm) | Gradient: 10 mM NaOH (0–25 min); 100 mM NaOH (25–45 min) | NaOH; 0.30 mL/min; 25 μL; 30 °C | HPAEC-PAD; HPAEC-ESI-MS | [117] |
Alfalfa (Medicago sativa L.) plant | fucose, arabinose, galactose, glucose, xylase, mannose, fructose, ribnose, galacturonic acid, glucuronic acid | No data | Isocratic | 200 mM NaOH or 200 mM NaOAc; 1.0 mL/min | IC-DAD | [118] |
Tartary buckwheat seeds | maltose, starch, laminarin, xylan, avicel, cellobiose, lactose, sucrose | CarboPac PA20 | Isocratic | 6.25 mM NaOH; 0.5 mL/min | HPAEC-PAD | [119] |
Matrix | Analyte | Column/Precolumn | Elution Mode | Elution Parameters | Detection Mode | Ref. |
---|---|---|---|---|---|---|
Blackberry | fucose, rhamnose, arabinose, galactose, glucose, xylose, mannose, fructose, ribose, galacturonic acid, glucuronic acid, mannose acid, guluronic acid | CarboPac PA20 (3 × 150 mm, 10 μm) | Gradient: 0 min: A/B/C (95:5:0, v/v), 26 min: A/B/C (85:5:10, v/v), 42 min: A/B/C (85:5:10, v/v),42.1 min: A/B/C (60:0:40, v/v), 52 min: A/B/C (60:40:0, v/v), 52.1 min: A/B/C (95:5:0, v/v), 60 min: A/B/C (95:5:0, v/v) | A: H2O, B: 0.1 M NaOH, C: 0.1 M NaOH + 0.2 M NaOAc; 30 °C; 5 μL | HPEAC-PAD | [120] |
Blueberry | trehalose, fructose, sucrose, maltose, glucose, maltotriose, gentiobiose, isomaltose | Carbo Pac PA100 (4 × 250 mm) | Gradient: 0–5 min: 5% A;5–11.9 min: 15% A + 2% B; 12–19.9 min: 15% A + 4% B + 81% C; 20.0–30 min: 20% A + 20% B + 60% C | A: 600 mM NaOH, B: 500 mM NaOAc, C: H2O | HPEAC-PAD | [121] |
Blueberry and strawberry | trehalose, fructose, succrose, maltose, glucose, arabinose, maltotriose isomaltotriose, xylose, ribose, raffinose, melibiose, gentiobiose, isomaltose, panose | [122] | ||||
Bilberry (Vaccinium myrtillus) | glucose, fructose, sucrose, arabinose, galactose, xylose, myo-inositol | CarboPac PA20/Amino trap | Gradient: 9 to 100 mM KOH | KOH | HPEAC-PAD | [123] |
Mulberry | galactose, glucose, arabinose | CarboPac PA1 (4 × 250 mm) | Gradient: 0–25 min: 1%; 25–40 min: 1% to 100% A (linear); 40–50 min: 100% A. For sugar acids: 0–20 min: 20% A; 20–30 min: 100% B, 30–45 min: 20 to 35% A (linear) | A: 500 mM NaOH; B: 100 mM NaOH + 170 mM NaOAc; 30 °C; 20 µL | HPEAC-PAD | [124] |
Noni (Morinda citrifolia L.) | fucose, glucose, rhamnose, xylose, mannose, galactose, arabinose, glucuronic acid, galacturonic acid | [125] | ||||
Myrtle (Myrtus communis L.) fruit | rhamnose, arabinose, glucose, xylose, mannose, galactose, glucuronic acid, galacturonic acid. | CarboPac PA1 (4 × 250 mm) | Gradient: 0–30 min: 91 % A + 9% B; 30–35.1 min: 91% A + 7% B + 2% C; 35.1–50 min: 50% A + 50% C; 50. 1–65 min: 50% B + 50% C; 65.1–85 min: 100% C; 85.1–100 min: 100% B; 100.1–115 min: 91% A + 9% B | A: H2O; B: 200 mM NaOH; C: 200 mM NaOH in 1 M NaOAc; 1 mL/min; 17 °C | HPAEC-PAD | [126] |
Annona squamosa | glucose, galactose, rhamnose, xylose, mannose, arabinose, glucuronic acid, galacturonic acid | CarboPac PA10 (4 × 250 mm)/(4 mm × 50 mm) | Isocratic | 2 mM or 10 mM NaOH, 0.45 mL/min | HPAEC-PAD | [127] |
rhamnose, glucose, xylose, galactose, mannose, arabinose, glucuronic acid, galacturonic acid, p-nitrophenyl-α-d-glucopyranoside, acarbose | [128] | |||||
Oblačinska’ sour cherry | trehalose, rhamnose, arabinose, glucose, fructose, isomaltose, sucrose, melezitose, gentiobiose, turanose, isomaltotriose, maltose, panose, maltotriose, glycerol, erythritol, arabitol, sorbitol, galactitol, mannitol | CarboPac PA10 (4 × 250 mm) | Gradient: 0–20 min: 15% A; 20.1–30 min: 20% A; 0–5 min: 0% B; 5.1–12 min: 2% B; 12.1–20 min: 4% B; 20.1–30 min: 20% B | A: 600 mM NaOH; B: 500 mM NaOAc; C: H2O; 0.7 mL/min; 25 μL; 30 °C | HPAEC-PAD | [129] |
Onion (Allium cepa L.) | fructose, glucose, sucrose, 1-kestose, nystose; (1)3-kestopentaose, (1)4-kestohexaose, (1)5-kestoheptaose, (1)6-kestooctaose, (1)7-kestononaose, myo-inositol | CarboPac PA200 (3 × 250 mm) with precolumn (3 × 50 mm) | Gradient: eluent B: 0–70 min: 27.5%; 70–75 min: 27.5–0%; 75–80 min: 0–66%; 80–80.01: 66–27.5%; 80.01–86 min: 27.5–66%; 86–90 min: 66%; 90–95 min: 66–27.5%; 95–110 min: 27.5%) and eluent C: 0–30 min: 2.5–30%; 30–60 min: 30–54%; 60–70 min: 54–72.5%; 70–75 min: 72.5–100%; 75–80 min: 100–34%; 80–80.01: 34–72.5%; 80.01–86 min: 72.5–34%; 86–90 min: 34%; 90–95 min: 34–2.5%; 95–110 min: 2.5%), with A to 100%. | A: H2O; B: 225 mM NaOH; C: 500 mM NaOAc; 0.25 mL/min; 5 µL; 25 °C; 110 min | HPAEC-PAD | [130] |
Red spice paprika | trehalose, arabinose, glucose, fructose, sucrose, galactitol, ribose, maltose, xylose, rhamnose, mannose, raffinose, sorbitol | CarboPac PA10 (4 × 250 mm) | Gradient: 0.0–20.0 min: 15% A; 20.1–30.0 min: 20% A; 0.0–5.0 min: 0% B; 5.1–12.0 min: 2% B; 12.1–20.0 min: 4% B; 20.1–30.0 min: 20% B, 0.0–5.0 min, 85% C; 5.1–12.0 min: 83% C; 12.1–20.0 min: 81% C; 20.1–30.0 min: 60% C. | A: 600 mM NaOH, B: 500 mM NaOAc; C: H2O; 0.7 mL/min; 25 µL | HPAEC-PAD | [131] |
Beans (Phaseolus vulgaris) | raffinose, stachyose, verbascose | CarboPac PA100 (4 × 250 mm)/(4 × 50 mm) | Isocratic | 10 mM NaOH; 1.0 mL/min; 25 μL; room temperature | HPAEC/PAD (Au) | [132] |
Beans (Phaseolus vulgaris L.) | xylose, fructose, mannose, galactose, glucose, sucrose, galacturonic acid, myo-inositol, arabitol, | IonPac PA20 (3 × 150 mm) | Isocratic | H2O; 100 μL (slit ratio of 50:50) | IC-ESI-MS | [133] |
Chickpea | glucose, fructose, raffinose, stachyose, verbascose, sucrose, myo-inositol, galactinol, | Set 1. CarboPac PA200 (3 × 250 mm)/(3 × 50 mm) Set 2. CarboPac PA100 (4 × 250 mm)/(3 × 50 mm) | Gradient: Set 1. 0 min: 90% A + 10% B1; 0–15 min: to 20% A + 80 % B1; 15 min: to 90% A + 10% B1: 15–25 min: 90% A + 10% B1; Set 2. 0 min: 90% A + 10% B2; 0–25 min: to 100% B2; 25 min: to 90% A + 10% B2: 25–35 min: 90% A + 10% B2 | Set 1. A: H2O; B1: 100 mM NaOH; 0.5 mL/min; Set 2. A: H2O; B2: 200 mM NaOH; 1.0 mL/min; | HPAEC–PAD | [134] |
Poria cocos and Atractylodes macrocephala | trehalose, glucose, maltotriose, galacturonic acid | PEEK, 4 × 150 mm with PAMAM | Isocratic | 10 mM NaOH; 1.0 mL/min; 25 μL | HPAEC-PAD | [34] |
Strawberries | glucose, fructose, sucrose; 1-kestose, 1-nystose; 1-fructofuranosyl-d-nystose, raftilose, neoinulin type fructans, neonystose; neopentaose | CarboPac PA100 (4 × 250 mm)/(4 × 50 mm) | Gradient: 0 to 500 mM A | A: NaOAc in 0.15 M NaOH; 0.8 mL/min; 25 μL; 25 °C | HPAEC-PAD | [135] |
Apples | glucose, fructose, sorbitol, sucrose, trehalose, maltose | CarboPac PA20 (3 × 150 mm)/(3 × 30 mm) | Isocratic | 50 mM NaOH; 0.5 mL/min; 10 μL; 30 °C; 35 min | HPAEC-PAD | [136] |
Banana (leaf, rhizome and fruit pulp) | glucose, fructose, sucrose, 1-kestotriose, inulobiose, 1,1-nystose, inulotriose, 1,1,1-kestopentaose, 1-kestotriose, 6-kestotriose, 6g-kestotriose, raffinose, stachyose, maltose, maltotriose | CarboPac PA100 | Gradient: 90 mM NaOH for 9 min (equilibration); 0–6 min: 0–10 mM A; 6–16 min: 10–100 mM A; 500 mM NaOAc for 5 min (regeneration) | A: NaOAc; 1 mL/min; | HPAEC-IPAD | [137] |
Shiitake mushrooms | galactose, glucose, xylose, fructose, ribose | CarboPac PA1 | Gradient: 0~15 min: 5.00% A; 15~40 min: 5–30% A (linear); 40~45 min: 30 to 100% A (linear); 45~54 min: 100% A | A: 250.00 mM NaOH; 0.25 mL/min; 25 °C; 25 µL | HPEAC-PAD | [138] |
Fungus Auricularia polytricha | fucose, rhamnose, arabinose, mannose, galactose, glucose, xylose, fructose | CarboPac PA20 (3 × 150 mm) | Gradient: 0–21 min: 98% A + 2% B; 21–21.1 min: to 93% A + 2% B + 5% C; 21.1–30 min: to 78% A + 2% B + 20% C; 30–30.1 min: to 20% A + 80% B; 30.1–50 min: 20% A + 80% B | A: H2O: B: 250 mM NaOH; C: 1 M NaOAc; 0.25 mL/min; 25 μL; 30 °C | HPAEC-PAD | [139] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michalski, R.; Kończyk, J. Ion Chromatography and Related Techniques in Carbohydrate Analysis: A Review. Molecules 2024, 29, 3413. https://doi.org/10.3390/molecules29143413
Michalski R, Kończyk J. Ion Chromatography and Related Techniques in Carbohydrate Analysis: A Review. Molecules. 2024; 29(14):3413. https://doi.org/10.3390/molecules29143413
Chicago/Turabian StyleMichalski, Rajmund, and Joanna Kończyk. 2024. "Ion Chromatography and Related Techniques in Carbohydrate Analysis: A Review" Molecules 29, no. 14: 3413. https://doi.org/10.3390/molecules29143413
APA StyleMichalski, R., & Kończyk, J. (2024). Ion Chromatography and Related Techniques in Carbohydrate Analysis: A Review. Molecules, 29(14), 3413. https://doi.org/10.3390/molecules29143413