Enhancing Bioactivity through the Transfer of the 2-(Hydroxymethoxy)Vinyl Moiety: Application in the Modification of Tyrosol and Hinokitiol
Abstract
:1. Introduction
2. Results and Discussion
- (i)
- Bond dissociation enthalpy BDE, adiabatic ionization potential AIP, proton dissociation enthalpy PDE, proton affinity PA, electron transfer enthalpy ETE, the free Gibbs acidity Hacidity (in the gas phase), or Gacidity (in hydrophobic, e.g., benzene, and hydrophilic, e.g., water, solvents) [22,23,24,25,26];
- (ii)
3. Materials and Methods
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kouassi, M.-C.; Grisel, M.; Gore, E. Multifunctional active ingredient-based delivery systems for skincare formulations: A review. Colloids Surf. B Biointerfaces 2022, 217, 112676. [Google Scholar] [CrossRef] [PubMed]
- Molski, M. Density functional theory studies on the chemical reactivity of allyl mercaptan and its derivatives. Molecules 2024, 29, 668. [Google Scholar] [CrossRef] [PubMed]
- Molski, M. Theoretical insight into psittacofulvins and their derivatives. Molecules 2024, 29, 2760. [Google Scholar] [CrossRef] [PubMed]
- Maia, L.F.; Fernandes, R.F.; Lobo-Hajdu, G.; de Oliveira, L.F.C. Conjugated polyenes as chemical probes of life signature: Use of Raman spectroscopy to differentiate polyenic pigments. Phil. Trans. R. Soc. A 2014, 372, 20140200. [Google Scholar] [CrossRef] [PubMed]
- Martinez, A. Donator acceptor map of psittacofulvins and anthocyanins: Are they good antioxidant substances? J. Phys. Chem. 2009, 113, 4915–4921. [Google Scholar] [CrossRef]
- Burtt, E.H., Jr.; Schroeder, M.R.; Smith, L.A.; Sroka, J.E.; McGraw, K.J. Colourful parrot feathers resist bacterial degradation. Biol. Lett. 2011, 7, 214–216. [Google Scholar] [CrossRef] [PubMed]
- Pini, E.; Bertelli, A.; Stradi, R.; Falchi, M. Biological activity of parrodienes, a new class of polyunsaturated linear aldehydes similar to carotenoids. Drugs Exp. Clin. Res. 2004, 30, 203–206. [Google Scholar] [PubMed]
- Morelli, R.; Loscalzo, R.; Stradi, R.; Bertelli, A.; Falchi, M. Evaluation of the antioxidant activity of new carotenoid-like compounds by electron paramagnetic resonance. Drugs Exp. Clin. Res. 2003, 29, 95–100. [Google Scholar] [PubMed]
- McGraw, K.J.; Nogare, M.C. Carotenoid pigments and the selectivity of psittacofulvin based coloration systems in parrots. Comp. Biochem. Physiol. B 2004, 138, 229–233. [Google Scholar] [CrossRef]
- Stradi, R.; Pina, E.; Celentano, G. The chemical structure of the pigments in Ara macao plumage. Comp. Biochem. Physiol. Part B 2001, 130, 57–63. [Google Scholar] [CrossRef]
- Karampelas, S.; Fritsch, E.; Mevellec, J.Y.; Sklavounos, S.; Soldatos, T. Role of polyenes in the coloration of cultured freshwater pearls. Eur. J. Mineral. 2009, 21, 85–97. [Google Scholar] [CrossRef]
- Bergamonti, L.; Bersani, D.; Csermely, D.; Lottici, P.P. The nature of the pigments in corals and pearls: A contribution from Raman spectroscopy. Spectrosc. Lett. 2011, 44, 453–458. [Google Scholar] [CrossRef]
- Maia, L.F.; Fleury, B.G.; Lages, B.G.; Barbosa, J.P.; Pinto, Â.C.; Castro, H.V.; de Oliveira, V.E.; Edwards, H.G.M.; de Oliveira, L.F.C. Identification of reddish pigments in octocorals by Raman spectroscopy. J. Raman Spectrosc. 2011, 42, 653–658. [Google Scholar] [CrossRef]
- Karampelas, S.; Fritsch, E.; Rondeau, B.; Andouche, A.; Métivier, B. Identification of the endangered pink-to-red stylaster corals by Raman spectroscopy. Gems Gemol. 2009, 45, 48–52. [Google Scholar] [CrossRef]
- Shi, L.; Liu, X.; Mao, J.; Han, X. Study of coloration mechanism of cultured freshwater pearls from mollusk Hyriopsis cumingii. J. Appl. Spectrosc. 2014, 81, 97–101. [Google Scholar] [CrossRef]
- Plotnikov, M.B.; Plotnikova, T.M. Tyrosol as a neuroprotector: Strong effects of a "weak" antioxidant. Curr Neuropharmacol 2021, 19, 434–448. [Google Scholar] [CrossRef]
- Chen, D.; Fan, J.; Wang, P.; Zhu, L.; Jin, Y.; Peng, Y.; Du, S. Isolation, identification and antioxidative capacity of water-soluble phenylpropanoid compounds from Rhodiola crenulata. Food Chem. 2012, 134, 2126–2133. [Google Scholar] [CrossRef] [PubMed]
- Salucci, S.; Burattini, S.; Battistelli, M.; Buontempo, F.; Canonico, B.; Martelli, A.M.; Papa, S.; Falcieri, E. Tyrosol prevents apoptosis in irradiated keratinocytes. J. Dermatol. Sci. 2015, 80, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Okabe, T.; Saito, K. Antibacterial and preservative effects of natural hinokitiol (β-thujaplicin) extracted from wood. Acta Agric. Zhejiangensis 1994, 6, 257–266. [Google Scholar] [CrossRef]
- Trust, T.J.; Coombs, W. Antibacterial activity of β-thujaplicin. Can. J. Microbiol. 2011, 19, 1341–1346. [Google Scholar] [CrossRef]
- Arima, Y.; Hatanaka, A.; Tsukihara, S.; Fujimoto, K.; Fukuda, K.; Sakurai, H. Scavenging Activities of α-, β- and γ-Thujaplicins against Active Oxygen Species. Chem. Pharm. Bull. 1997, 45, 12. [Google Scholar] [CrossRef]
- Rimarčik, J.; Lukeš, V.; Klein, E.; Ilčin, M. Study of the solvent effect on the enthalpies of homolytic and heterolytic N–H bond cleavage in p-phenylenediamine and tetracyano-p-phenylenediamine. J. Mol. Struct. THEOCHEM 2010, 952, 25–30. [Google Scholar] [CrossRef]
- Schrauben, J.N.; Cattaneo, M.; Day, T.C.; Tenderholt, A.L.; Mayer, J.M. Multiple-site concerted proton-electron transfer reactions of hydrogen-bonded phenols are nonadiabatic and well described by semiclassical Marcus theory. J. Am. Chem. Soc. 2012, 134, 16635–16645. [Google Scholar] [CrossRef] [PubMed]
- Tyburski, R.; Liu, T.; Glover, S.D.; Hammarstrom, L. Proton-coupled electron transfer guidelines, fair and square. J. Am. Chem. Soc. 2021, 143, 560–570. [Google Scholar] [CrossRef] [PubMed]
- Leopoldini, M.; Russo, N.; Toscano, M. Gas and liquid phase acidity of natural antioxidants. J. Agric. Food Chem. 2006, 54, 3078–3085. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ouyang, X.; Liang, M.; Chen, D. Comparative analysis of radical adduct formation (RAF) products and an tioxidant pathways between myricetin-3- O-galactoside and myricetin aglycone. Molecules 2019, 24, 2769. [Google Scholar] [CrossRef]
- Koopmans, T. Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms. Physica 1934, 1, 104–113. [Google Scholar] [CrossRef]
- Parr, R.G.; Yang, W. Density Functional Theory of Atoms and Molecules; Oxford University Press: Oxford, UK, 1989. [Google Scholar] [CrossRef]
- Pearson, R.G. Chemical Hardness—Applications from Molecules to Solids; Wiley: Weinheim, Germany, 1997; ISBN 978-3-527-60617-7. [Google Scholar]
- Sanchez-Marquez, J.; García, V.; Zorrilla, D.; Fernandez, M. On electronegativity, hardness, and reactivity descriptors: A new property-oriented basis set. J. Phys. Chem. A 2020, 124, 4700–4711. [Google Scholar] [CrossRef] [PubMed]
- Parr, R.G.; Szentpály, L.V.; Liu, S. Electrophilicity index. J. Am. Chem. Soc. 1999, 121, 1922–1924. [Google Scholar] [CrossRef]
- Gázquez, J.L.; Cedillo, A.; Vela, A.J. Electrodonating and electroaccepting powers. Phys. Chem. 2007, 111, 1966–1970. [Google Scholar] [CrossRef]
- Annex V (EU). List of Preservatives Allowed in Cosmetics Products. Available online: https://ec.europa.eu/growth/tools-databases/cosing/reference/annexes/list/V (accessed on 5 July 2024).
- Termopoli, V.; Piergiovanni, M.; Cappiello, A.; Palma, P.; Famiglini, G. Tyrosol and hydroxytyrosol determination in extra virgin olive oil with direct liquid electron ionization-tandem mass spectrometry. Separations 2021, 8, 173. [Google Scholar] [CrossRef]
- Timón, M.L.; Ana Isabel Andrés, A.I.; Petrón, M.J. Antioxidant Activity of Aqueous Extracts Obtained from By-Products of Grape, Olive, Tomato, Lemon, Red Pepper and Pomegranate. Foods 2024, 13, 1802. [Google Scholar] [CrossRef] [PubMed]
- Bernatoniene, J.; Jakstas, V.; Kopustinskiene, D.M. Phenolic compounds of Rhodiola rosea L. as the potential alternative therapy in the treatment of chronic diseases. Int. J. Mol. Sci. 2023, 24, 12293. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.K.; Fujita, K.; Sakai, K. Reactive oxygen species, nitric oxide, and their interactions play different roles in Cupressus lusitanica cell death and phytoalexin biosynthesis. New Phytol. 2007, 175, 215–229. [Google Scholar] [CrossRef] [PubMed]
- Saeki, Y.; Ito, Y.; Shibata, M.; Sato, Y.; Okuda, K.; Takazoe, I. Antimicrobial action of natural substances on oral bacteria. Bull. Tokyo Dent. Coll. 1989, 30, 129–135. [Google Scholar] [PubMed]
- Arima, Y.; Nakai, Y.; Hayakawa, R.; Nishino, T. Antibacterial effect of beta-thujaplicin on staphylococci isolated from atopic dermatitis: Relationship between changes in the number of viable bacterial cells and clinical improvement in an eczematous lesion of atopic dermatitis. J. Antimicrob. Chemother. 2003, 51, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.H.; Lu, S.H.; Chang, C.C.; Thomas, P.A.; Jayakumarc, T.; Sheu, J.R. Hinokitiol, a tropolone derivative, inhibits mouse melanoma (B16-F10) cell migration and in vivo tumor formation. Eur. J. Pharmacol. 2015, 746, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Molski, M. Theoretical modeling of structure-toxicity relationship of cyanides. Toxicol. Lett. 2021, 349, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R.R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef] [PubMed]
- Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comput. Chem. 2003, 24, 669–681. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Account. 2008, 120, 215–241. [Google Scholar] [CrossRef]
- Becke, A.D. A new mixing of Hartree–Fock and local density-functional theories. J. Chem. Phys. 1993, 98, 1372–1377. [Google Scholar] [CrossRef]
- Gaussian 16, Revision A.03. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian, Inc.: Wallingford, CT, USA, 2016.
- Han, J.; Gong, R.; Wang, B.; Gong, T.; Chen, X. Evaluation of the safety and efficacy of cosmetics ingredient Spherulites Paeony Superior Retinol. J. Cosmet. Dermatol. 2024, online ahead of print. [Google Scholar] [CrossRef]
- Ogawa, T.; Yamamoto, A. Active agent loaded uniform, rigid, spherical, nanoporous calcium phosphate particles and methods of making and using the same. Patent 10758478, 1 September 2020. [Google Scholar]
- Commission Regulation (EU) 2023/1464 of 14 July 2023 Amending Annex XVII to Regulation (EC) No 1907/2006 of the European Parliament and of the Council as Regards Formaldehyde and Formaldehyde Releasers. Available online: https://eur-lex.europa.eu/eli/reg/2023/1464/oj (accessed on 20 July 2024).
Descriptor | O=C–H | C–O–H | ||||
---|---|---|---|---|---|---|
Vacuum | Benzene | Water | Vacuum | Benzene | Water | |
BDE | 72.00 | 74.99 | 74.19 | 100.22 | 66.47 | 63.80 |
PA | 337.92 | 110.43 | 68.86 | 308.24 | 82.53 | 42.25 |
ETE | 48.59 | 62.19 | 51.43 | 106.49 | 81.57 | 67.65 |
PA + ETE | 386.51 | 172.62 | 120.29 | 414.73 | 164.10 | 109.90 |
AIP | 136.74 | 119.46 | 83.24 | 136.74 | 119.46 | 83.24 |
PDE | 249.76 | 53.16 | 37.04 | 277.99 | 44.63 | 26.65 |
Gacidity | – | 322.90 | 311.86 | – | 288.37 | 280.95 |
Hacidity | 336.44 | – | – | 306.76 | – | – |
Mechanism | HAT | HAT | SPLET | HAT | HAT | SPLET |
Descriptor | T1 | T2 | TD1 | TD2 | H1 | HD1 | HD2 |
---|---|---|---|---|---|---|---|
BDE | 81.86 | 101.06 | 74.83 | 74.87 | 87.18 | 87.73 | 100.07 |
PA | 52.36 | 68.63 | 51.08 | 53.28 | 47.38 | 49.50 | 45.48 |
ETE | 75.60 | 78.53 | 69.85 | 67.68 | 85.89 | 84.32 | 100.68 |
PA + ETE | 127.96 | 147.16 | 120.92 | 120.97 | 133.28 | 133.82 | 146.16 |
AIP | 115.18 | 115.18 | 96.66 | 96.66 | 118.14 | 114.22 | 114.22 |
PDE | 12.78 | 31.98 | 4.26 | 24.30 | 15.13 | 19.61 | 31.94 |
Gacidity | 295.30 | 312.20 | 294.49 | 294.05 | 290.20 | 291.36 | 285.27 |
Mechanism | SPLET | SPLET | SPLET | SPLET | SPLET | SPLET | SPLET |
Functional | B3LYP | B3LYP | B3LYP | M06-2X | BHandHLYP |
---|---|---|---|---|---|
Descriptor | Vacuum | Benzene | Water | Water | Water |
EA | 3.0240 | 3.0297 | 3.0531 | 2.1590 | 1.8634 |
IP | 5.0662 | 5.0189 | 4.9653 | 4.9653 | 5.7574 |
ΔE | 2.0422 | 1.9892 | 1.9121 | 2.8063 | 3.8939 |
η | 1.0211 | 0.9948 | 0.9561 | 1.4032 | 1.9470 |
S | 0.4897 | 0.5027 | 0.5230 | 0.3563 | 0.2568 |
χ = −μ | 4.0451 | 4.0243 | 4.0092 | 3.5621 | 3.8104 |
ω | 8.0123 | 8.1416 | 8.4061 | 4.5215 | 3.7287 |
ω+ | 6.1174 | 6.2538 | 6.5210 | 2.9158 | 2.0668 |
ω− | 10.1625 | 10.2781 | 10.5302 | 6.4779 | 5.8772 |
Ra [a] | 1.7982 | 1.8383 | 1.9168 | 0.8571 | 0.6075 |
Rd [a] | 2.9288 | 2.9621 | 3.0348 | 1.8669 | 1.6938 |
Descriptor | T | TD | H | HD |
---|---|---|---|---|
EA | 0.6033 | 0.9543 | 2.1508 | 2.1617 |
IP | 6.3022 | 5.5936 | 6.4415 | 6.3329 |
ΔE | 5.6989 | 4.6393 | 4.2907 | 4.1712 |
η | 2.8494 | 2.3196 | 2.1453 | 2.0856 |
S | 0.1755 | 0.2156 | 0.2331 | 0.2397 |
χ = −μ | 3.4527 | 3.2739 | 4.2961 | 4.2473 |
ω | 2.0919 | 2.3104 | 4.3016 | 4.3247 |
ω+ | 0.7217 | 0.9634 | 2.4217 | 2.4618 |
ω− | 4.1744 | 4.2373 | 6.7178 | 6.7091 |
Ra [a] | 0.2121 | 0.2832 | 0.7118 | 0.7236 |
Rd [a] | 1.2031 | 1.2212 | 1.9361 | 1.9336 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molski, M. Enhancing Bioactivity through the Transfer of the 2-(Hydroxymethoxy)Vinyl Moiety: Application in the Modification of Tyrosol and Hinokitiol. Molecules 2024, 29, 3414. https://doi.org/10.3390/molecules29143414
Molski M. Enhancing Bioactivity through the Transfer of the 2-(Hydroxymethoxy)Vinyl Moiety: Application in the Modification of Tyrosol and Hinokitiol. Molecules. 2024; 29(14):3414. https://doi.org/10.3390/molecules29143414
Chicago/Turabian StyleMolski, Marcin. 2024. "Enhancing Bioactivity through the Transfer of the 2-(Hydroxymethoxy)Vinyl Moiety: Application in the Modification of Tyrosol and Hinokitiol" Molecules 29, no. 14: 3414. https://doi.org/10.3390/molecules29143414
APA StyleMolski, M. (2024). Enhancing Bioactivity through the Transfer of the 2-(Hydroxymethoxy)Vinyl Moiety: Application in the Modification of Tyrosol and Hinokitiol. Molecules, 29(14), 3414. https://doi.org/10.3390/molecules29143414