Theoretical Study of the Thermal Rate Coefficients of the H3+ + C2H4 Reaction: Dynamics Study on a Full-Dimensional Potential Energy Surface
Abstract
:1. Introduction
2. Results and Discussion
2.1. Potential Energy Profile
2.2. Rate Coefficients
2.3. Internal Energies of Fragments
3. Methodology
3.1. Development of a Global Potential Energy Surface
3.2. Procedure for Molecular Dynamics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oka, T. Interstellar H3+. Chem. Rev. 2013, 113, 8738–8761. [Google Scholar] [CrossRef] [PubMed]
- Oka, T. Interstellar H3+. Proc. Natl. Acad. Sci. USA 2006, 103, 12235–12242. [Google Scholar] [CrossRef] [PubMed]
- Larsson, M. H3+: The Initiator of Interstellar Chemistry. Int. J. Astrobiol. 2008, 7, 237–241. [Google Scholar] [CrossRef]
- Bromley, S.T.; Goumans, T.P.M.; Herbst, E.; Jones, A.P.; Slater, B. Challenges in Modelling the Reaction Chemistry of Interstellar Dust. Phys. Chem. Chem. Phys. 2014, 16, 18623. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, B.; Wei, L.; Jiang, T.; Yu, W.; Hutton, R.; Zou, Y.; Chen, L.; Wei, B. Proton Migration in Hydrocarbons Induced by Slow Highly Charged Ion Impact. J. Chem. Phys. 2019, 150, 204303. [Google Scholar] [CrossRef] [PubMed]
- Berg, M.; Wolf, A.; Petrignani, A. Visible Transitions from Ground State H3+ Measured with High-Sensitivity Action Spectroscopy. Phil. Trans. R. Soc. A 2012, 370, 5028–5040. [Google Scholar] [CrossRef] [PubMed]
- Betz, A.L. Ethylene in IRC +10216. Astrophys. J. 1981, 244, L103. [Google Scholar] [CrossRef]
- Goldhaber, D.M.; Betz, A.L.; Ottusch, J.J. New Lines of Ethylene and a Search for Methylene in IRC + 10216. Astrophys. J. 1987, 314, 356. [Google Scholar] [CrossRef]
- Hinkle, K.H.; Wallace, L.; Richter, M.J.; Cernicharo, J. Ethylene in the Circumstellar Envelope of IRC+10216. Proc. Int. Astron. Union 2008, 4, 161–162. [Google Scholar] [CrossRef]
- Fonfría, J.P.; Hinkle, K.H.; Cernicharo, J.; Richter, M.J.; Agúndez, M.; Wallace, L. The Abundance of C2H4 in the Circumstellar Envelope of IRC+10216. Astrophys. J. 2017, 835, 196. [Google Scholar] [CrossRef]
- Smith, D.; Spanel, P.; Millar, T.J. The Role of H+ and H3+ Ions in the Degradation of Interstellar Molecules. Mon. Not. R. Astron. Soc. 1994, 266, 31–34. [Google Scholar] [CrossRef]
- Milligan, D.B.; Wilson, P.F.; Freeman, C.G.; Meot-Ner, M.; McEwan, M.J. Dissociative Proton Transfer Reactions of H3+, N2H+, and H3O+ with Acyclic, Cyclic, and Aromatic Hydrocarbons and Nitrogen Compounds, and Astrochemical Implications. J. Phys. Chem. A 2002, 106, 9745–9755. [Google Scholar] [CrossRef]
- Kim, J.K.; Theard, L.P.; Huntress, W.T. Reactions of Excited and Ground State H3+ Ions with Simple Hydrides and Hydrocarbons: Collisional Deactivation of Vibrationally Excited H3+ Ions. Int. J. Mass Spectrom. Ion. Phys. 1974, 15, 223–244. [Google Scholar] [CrossRef]
- Fiaux, A.S.; Smith, D.L.; Futrell, J.H. Internal Energy Effects on the Reaction of Hydrogen Ion (H3+) with Ethylene. J. Am. Chem. Soc. 1976, 98, 5773–5780. [Google Scholar] [CrossRef]
- Uggerud, E. Letter: Mechanism of the Reaction C2H5+ → C2H3+ + H2. Eur. J. Mass Spectrom. 1997, 3, 403. [Google Scholar] [CrossRef]
- Anicich, V.G. Evaluated Bimolecular Ion-Molecule Gas Phase Kinetics of Positive Ions for Use in Modeling Planetary Atmospheres, Cometary Comae, and Interstellar Clouds. J. Phys. Chem. Ref. Data 1993, 22, 1469–1569. [Google Scholar] [CrossRef]
- Rakshit, A.B. A Drift-Chamber Mass-Spectrometric Study of the Interaction of H3+ Ions with Neutral Molecules at 300 K. Int. J. Mass Spectrom. Ion. Phys. 1982, 41, 185–197. [Google Scholar] [CrossRef]
- Watanabe, Y.; Maeda, S.; Ohno, K. Global Reaction Route Mapping on Potential Energy Surfaces of C2H7+ and C3H9+. Chem. Phys. Lett. 2007, 447, 21–26. [Google Scholar] [CrossRef]
- East, A.L.L.; Liu, Z.F.; McCague, C.; Cheng, K.; Tse, J.S. The Three Isomers of Protonated Ethane, C2H7+. J. Phys. Chem. A 1998, 102, 10903–10911. [Google Scholar] [CrossRef]
- Hrušák, J.; Žabka, J.; Dolejšek, Z.; Herman, Z. A DFT/HF Study of the Potential Energy Surface of Protonated Ethane C2H7+. Int. J. Mass Spectrom. Ion Proc. 1997, 167–168, 675–687. [Google Scholar] [CrossRef]
- Xie, Z.; Bowman, J.M. Permutationally Invariant Polynomial Basis for Molecular Energy Surface Fitting via Monomial Symmetrization. J. Chem. Theory Comput. 2010, 6, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Nandi, A.; Qu, C.; Bowman, J.M. Using Gradients in Permutationally Invariant Polynomial Potential Fitting: A Demonstration for CH4 Using as Few as 100 Configurations. J. Chem. Theory Comput. 2019, 15, 2826–2835. [Google Scholar] [CrossRef]
- Craig, I.R.; Manolopoulos, D.E. Quantum Statistics and Classical Mechanics: Real Time Correlation Functions from Ring Polymer Molecular Dynamics. J. Chem. Phys. 2004, 121, 3368–3373. [Google Scholar] [CrossRef] [PubMed]
- Craig, I.R.; Manolopoulos, D.E. Chemical Reaction Rates from Ring Polymer Molecular Dynamics. J. Chem. Phys. 2005, 122, 084106. [Google Scholar] [CrossRef] [PubMed]
- Craig, I.R.; Manolopoulos, D.E. A Refined Ring Polymer Molecular Dynamics Theory of Chemical Reaction Rates. J. Chem. Phys. 2005, 123, 034102. [Google Scholar] [CrossRef] [PubMed]
- Miller, T.F., III; Manolopoulos, D.E. Quantum Diffusion in Liquid Water from Ring Polymer Molecular Dynamics. J. Chem. Phys. 2005, 123, 154504. [Google Scholar] [CrossRef] [PubMed]
- Ali, Z.A.; Aquino, F.W.; Wong, B.M. The Diamine Cation Is Not a Chemical Example Where Density Functional Theory Fails. Nat. Commun. 2018, 9, 4733. [Google Scholar] [CrossRef] [PubMed]
- Karpfen, A.; Parasuk, V. Accurate Torsional Potentials in Conjugated Systems: Ab Initio and Density Functional Calculations on 1,3-Butadiene and Monohalogenated Butadienes. Mol. Phys. 2004, 102, 819–826. [Google Scholar] [CrossRef]
- Álvarez-Barcia, S.; Russ, M.-S.; Meisner, J.; Kästner, J. Atom Tunnelling in the Reaction NH3+ + H2 → NH4+ + H and Its Astrochemical Relevance. Faraday Discuss. 2016, 195, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Murakami, T.; Iida, R.; Hashimoto, Y.; Takahashi, Y.; Takahashi, S.; Takayanagi, T. Ring-Polymer Molecular Dynamics and Kinetics for the H− + C2H2 → H2 + C2H− Reaction Using the Full-Dimensional Potential Energy Surface. J. Phys. Chem. A 2022, 126, 9244–9258. [Google Scholar] [CrossRef]
- Saito, K.; Hashimoto, Y.; Takayanagi, T. Ring-Polymer Molecular Dynamics Calculations of Thermal Rate Coefficients and Branching Ratios for the Interstellar H3+ + CO → H2 + HCO+/HOC+ Reaction and Its Deuterated Analogue. J. Phys. Chem. A 2021, 125, 10750–10756. [Google Scholar] [CrossRef]
- Nandi, A.; Qu, C.; Houston, P.L.; Conte, R.; Bowman, J.M. Δ-Machine Learning for Potential Energy Surfaces: A PIP Approach to Bring a DFT-Based PES to CCSD(T) Level of Theory. J. Chem. Phys. 2021, 154, 051102. [Google Scholar] [CrossRef]
- Qu, C.; Houston, P.L.; Conte, R.; Nandi, A.; Bowman, J.M. Breaking the Coupled Cluster Barrier for Machine-Learned Potentials of Large Molecules: The Case of 15-Atom Acetylacetone. J. Phys. Chem. Lett. 2021, 12, 4902–4909. [Google Scholar] [CrossRef]
- Houston, P.L.; Qu, C.; Nandi, A.; Conte, R.; Yu, Q.; Bowman, J.M. Permutationally Invariant Polynomial Regression for Energies and Gradients, Using Reverse Differentiation, Achieves Orders of Magnitude Speed-up with High Precision Compared to Other Machine Learning Methods. J. Chem. Phys. 2022, 156, 044120. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian09 Revision D.01 Gaussian Inc. Wallingford CT 2009; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Hashimoto, Y.; Takayanagi, T.; Murakami, T. Theoretical Calculations of the Thermal Rate Coefficients for the Interstellar NH3+ + H2 → NH4+ + H Reaction on a New Δ-Machine Learning Potential Energy Surface. ACS Earth Space Chem. 2023, 7, 623–631. [Google Scholar] [CrossRef]
- Takayanagi, T. Application of Reaction Path Search Calculations to Potential Energy Surface Fits. J. Phys. Chem. A 2021, 125, 3994–4002. [Google Scholar] [CrossRef]
- Győrffy, W.; Knizia, G.; Werner, H.-J. Analytical Energy Gradients for Explicitly Correlated Wave Functions. I. Explicitly Correlated Second-Order Møller-Plesset Perturbation Theory. J. Chem. Phys. 2017, 147, 214101. [Google Scholar] [CrossRef]
- Győrffy, W.; Werner, H.-J. Analytical Energy Gradients for Explicitly Correlated Wave Functions. II. Explicitly Correlated Coupled Cluster Singles and Doubles with Perturbative Triples Corrections: CCSD(T)-F12. J. Chem. Phys. 2018, 148, 114104. [Google Scholar] [CrossRef]
- Werner, H.-J.; Knowles, P.J.; Celani, P.; Györffy, W.; Hesselmann, A.; Kats, D.; Knizia, G.; Köhn, A.; Korona, T.; Kreplin, D.; et al. MOLPRO, Version 2023.2, a Package of Ab Initio Programs. Available online: https://www.molpro.net (accessed on 11 October 2023).
- Ohno, K.; Maeda, S. A Scaled Hypersphere Search Method for the Topography of Reaction Pathways on the Potential Energy Surface. Chem. Phys. Lett. 2004, 384, 277–282. [Google Scholar] [CrossRef]
- Maeda, S.; Ohno, K. Global Mapping of Equilibrium and Transition Structures on Potential Energy Surfaces by the Scaled Hypersphere Search Method: Applications to Ab Initio Surfaces of Formaldehyde and Propyne Molecules. J. Phys. Chem. A 2005, 109, 5742–5753. [Google Scholar] [CrossRef]
- Maeda, S.; Ohno, K. GRRM 11, a Program Package. Available online: https://iqce.jp/GRRM/index_e.shtml (accessed on 29 September 2021).
- Murakami, T.; Ogino, K.; Hashimoto, Y.; Takayanagi, T. Ring-polymer Molecular Dynamics Simulation for the Adsorption of H2 on Ice Clusters (H2O)n (n = 8, 10, and 12). ChemPhysChem 2023, 24, e202200939. [Google Scholar] [CrossRef] [PubMed]
- Witt, A.; Ivanov, S.D.; Shiga, M.; Forbert, H.; Marx, D. On the Applicability of Centroid and Ring Polymer Path Integral Molecular Dynamics for Vibrational Spectroscopy. J. Chem. Phys. 2009, 130, 194510. [Google Scholar] [CrossRef] [PubMed]
- Bulut, N.; Aguado, A.; Sanz-Sanz, C.; Roncero, O. Quantum Effects on the D + H3+ → H2D+ + H Deuteration Reaction and Isotopic Variants. J. Phys. Chem. A 2019, 123, 8766–8775. [Google Scholar] [CrossRef]
- Kimizuka, H.; Thomsen, B.; Shiga, M. Artificial Neural Network-Based Path Integral Simulations of Hydrogen Isotope Diffusion in Palladium. J. Phys. Energy 2022, 4, 034004. [Google Scholar] [CrossRef]
- Kwon, H.; Shiga, M.; Kimizuka, H.; Oda, T. Accurate Description of Hydrogen Diffusivity in Bcc Metals Using Machine-Learning Moment Tensor Potentials and Path-Integral Methods. Acta Mater. 2023, 247, 118739. [Google Scholar] [CrossRef]
- Suleimanov, Y.V.; Aguado, A.; Gómez-Carrasco, S.; Roncero, O. A Ring Polymer Molecular Dynamics Approach to Study the Transition between Statistical and Direct Mechanisms in the H2 + H3+ → H3+ + H2 Reaction. J. Phys. Chem. Lett. 2018, 9, 2133–2137. [Google Scholar] [CrossRef]
- Shiga, M. PIMD Ver. 2.6.0. Available online: https://ccse.jaea.go.jp/software/PIMD/index.en.html (accessed on 12 April 2024).
PES | MP2 | DF-CCSD(T)-F12a | MP2 | ||
---|---|---|---|---|---|
cc-pVDZ | cc-pVDZ | cc-pVTZ | 6-31G(d,p) a | ||
(a) H3+ + C2H4 → [C2H5+···H2] → H2 + C2H5+ | |||||
Reactant | 0.0 | 0.0 | 0.0 | 0.0 | — |
Intermediate complex | −72.9 | −65.2 | −65.3 | −63.8 | — |
Product | −58.5 | −63.7 | −63.6 | −62.0 | — |
(b) C2H5+ → [C2H3+···H2]‡ → [C2H3+···H2] → H2 + C2H3+ | |||||
Reactant | — | −63.7 (0.0) | −63.6 (0.0) | −62.0 (0.0) | (0.0) |
Transition state | — | 2.3 (66.0) | −0.2 (63.4) | −0.6 (61.4) | (55.9) |
Intermediate complex | — | −5.7 (58.0) | −4.2 (59.4) | −5.3 (56.7) | — |
Product | — | −3.2 (60.5) | −1.5 (62.1) | −2.6 (59.4) | (50.0) |
Classical | RPMD | KIDA | |||||||
---|---|---|---|---|---|---|---|---|---|
T (K) | (k(T) ± Δk(T)) × 10−9 | bmax (Å) | Nr | Nt | (k(T) ± Δk(T)) × 10−9 | bmax (Å) | Nr | Nt | k(T) × 10−9 |
100 | 2.59 ± 0.03 | 12.0 | 3245 | 4994 | 2.66 ± 0.09 | 13.5 | 453 | 859 | - |
150 | 2.86 ± 0.03 | 11.5 | 3183 | 4995 | 3.03 ± 0.09 | 13.0 | 514 | 972 | - |
200 | 3.14 ± 0.04 | 11.5 | 3028 | 4989 | 3.21 ± 0.07 | 12.5 | 1036 | 1972 | - |
250 | 3.31 ± 0.04 | 11.5 | 2856 | 4981 | 3.47 ± 0.10 | 12.0 | 531 | 964 | - |
300 | 3.43 ± 0.04 | 11.5 | 2703 | 4996 | 3.59 ± 0.07 | 11.5 | 1119 | 1975 | 2.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murakami, T.; Takahashi, S.; Kikuma, Y.; Takayanagi, T. Theoretical Study of the Thermal Rate Coefficients of the H3+ + C2H4 Reaction: Dynamics Study on a Full-Dimensional Potential Energy Surface. Molecules 2024, 29, 2789. https://doi.org/10.3390/molecules29122789
Murakami T, Takahashi S, Kikuma Y, Takayanagi T. Theoretical Study of the Thermal Rate Coefficients of the H3+ + C2H4 Reaction: Dynamics Study on a Full-Dimensional Potential Energy Surface. Molecules. 2024; 29(12):2789. https://doi.org/10.3390/molecules29122789
Chicago/Turabian StyleMurakami, Tatsuhiro, Soma Takahashi, Yuya Kikuma, and Toshiyuki Takayanagi. 2024. "Theoretical Study of the Thermal Rate Coefficients of the H3+ + C2H4 Reaction: Dynamics Study on a Full-Dimensional Potential Energy Surface" Molecules 29, no. 12: 2789. https://doi.org/10.3390/molecules29122789
APA StyleMurakami, T., Takahashi, S., Kikuma, Y., & Takayanagi, T. (2024). Theoretical Study of the Thermal Rate Coefficients of the H3+ + C2H4 Reaction: Dynamics Study on a Full-Dimensional Potential Energy Surface. Molecules, 29(12), 2789. https://doi.org/10.3390/molecules29122789