Effect of Bridging Manner on the Transport Behaviors of Dimethyldihydropyrene/Cyclophanediene Molecular Devices
Abstract
:1. Introduction
2. Results and Discussion
3. Computational Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Si, W.; Li, J.; Li, G.; Jia, C.; Guo, X. Single-molecule non-volatile memories: An overview and future perspectives. J. Mater. Chem. C 2024, 12, 751–764. [Google Scholar] [CrossRef]
- Li, X.; Ge, W.; Guo, S.; Bai, J.; Hong, W. Characterization and application of supramolecular junctions. Angew. Chem. Int. Ed. 2022, 63, e202216819. [Google Scholar]
- Yang, C.; Yang, C.; Guo, Y.; Feng, J.; Guo, X. Graphene–molecule–graphene single-molecule junctions to detect electronic reactions at the molecular scale. Nat. Protoc. 2023, 18, 1958–1978. [Google Scholar] [CrossRef]
- Chen, B.; Xu, K. Single molecule-based electronic devices: A review. Nano 2019, 14, 1930007. [Google Scholar] [CrossRef]
- Kim, Y. Photoswitching Molecular junctions: Platforms and electrical properties. ChemPhysChem 2020, 21, 2368–2383. [Google Scholar] [CrossRef]
- Hnid, I.; Frath, D.; Lafolet, F.; Sun, X.; Lacroix, J.-C. Highly efficient photoswitch in diarylethene-based molecular junctions. J. Am. Chem. Soc. 2020, 142, 7732–7736. [Google Scholar] [CrossRef]
- Goulet-Hanssens, A.; Eisenreich, F.; Hecht, S. Enlightening materials with photoswitches. Adv. Mater. 2020, 32, 1905966. [Google Scholar] [CrossRef]
- Jaroš, A.; Bonab, E.F.; Straka, M.; Foroutan-Nejad, C. Fullerene-based switching molecular diodes controlled by oriented external electric fields. J. Am. Chem. Soc. 2019, 141, 19644–19654. [Google Scholar] [CrossRef]
- Chen, X.; Roemer, M.; Yuan, L.; Du, W.; Thompson, D.; del Barco, E.; Nijhuis, C.A. Molecular diodes with rectification ratios exceeding 105 driven by electrostatic interactions. Nat. Nanotechnol. 2017, 12, 797–803. [Google Scholar] [CrossRef]
- Wu, Z.; Cui, P.; Deng, M. Rational design of photocontrolled rectifier switches in single-molecule junctions based on diarylethene. Molecules 2023, 28, 7158. [Google Scholar] [CrossRef]
- Yang, X.; Tan, F.; Dong, Y.; Yu, H.; Liu, Y. Transition metal-containing molecular devices: Controllable single-spin negative differential thermoelectric resistance effects under gate voltages. Phys. Chem. Chem. Phys. 2019, 21, 5243–5252. [Google Scholar] [CrossRef]
- Kuang, G.; Shi, Z.C.; Yan, L.; Chen, K.Q.; Shang, X.; Liu, P.N. Negative differential conductance in polyporphyrin oligomers with nonlinear backbones. J. Am. Chem. Soc. 2018, 140, 570–573. [Google Scholar] [CrossRef]
- Perrin, M.L.; Frisenda, R.; Koole, M.; Seldenthuis, J.S.; Celis Gil, J.A.; Valkenier, H.; Hummelen, J.C.; Renaud, N.; Grozema, F.C.; Thijssen, J.M.; et al. Large negative differential conductance in single-molecule break junctions. Nat. Nanotech. 2014, 9, 830–834. [Google Scholar] [CrossRef]
- Zhang, D.-Y.; Sang, Y.; Das, T.K.; Guan, Z.; Zhong, N.; Duan, C.-G.; Wang, W.; Fransson, J.; Naaman, R.; Yang, H.-B. Highly conductive topologically chiral molecular knots as efficient spin filters. J. Am. Chem. Soc. 2023, 145, 26791–26798. [Google Scholar] [CrossRef]
- Suda, M.; Thathong, Y.; Promarak, V.; Kojima, H.; Nakamura, M.; Shiraogawa, T.; Ehara, M.; Yamamoto, H.M. Light-driven molecular switch for reconfigurable spin filters. Nat. Commun. 2019, 10, 2455. [Google Scholar] [CrossRef]
- Song, Y.; Wang, C.-K.; Chen, G.; Zhang, G.-P. A first-principles study of phthalocyanine-based: Multifunctional spintronic molecular devices. Phys. Chem. Chem. Phys. 2021, 23, 18760–18769. [Google Scholar] [CrossRef]
- Liu, W.; Yang, S.; Li, J.; Su, G.; Ren, J.-C. One molecule, two states: Single molecular switch on metallic electrodes. WIREs Comput. Mol. Sci. 2020, 11, e1511. [Google Scholar] [CrossRef]
- Xiang, D.; Wang, X.; Jia, C.; Lee, T.; Guo, X. Molecular-scale electronics: From concept to function. Chem. Rev. 2016, 116, 4318–4440. [Google Scholar] [CrossRef]
- Irie, M. Photochromism: memories and switches Introduction. Chem. Rev. 2000, 100, 1683–1684. [Google Scholar] [CrossRef]
- Thompson, D.; Barco, E.; Nijhuis, C.A. Design principles of dual-functional molecular switches in solid-state tunnel junctions. Appl. Phys. Lett. 2020, 117, 030502. [Google Scholar] [CrossRef]
- Szcherer, M.; Gracheva, S.; Maid, H.; Placht, C.; Hampei, F.; Dube, H. Reversible C=N bond formation controls charge-separation in an aza-diarylethene photoswitch. J. Am. Chem. Soc. 2024, 146, 9575–9582. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Shiri, M.; Zhang, H.; Ayinla, R.T.; Wang, K. Light-driven charge transport and optical sensing in molecular junctions. Nanomaterials 2022, 21, 698. [Google Scholar] [CrossRef]
- Bakkar, A.; Lafolet, F.; Roldan, D.; Puyoo, E.; Jouvenot, D.; Royal, G.; Saint-Aman, E.; Cobo, S. Bidirectional light-induced conductance switching in molecular wires containing a dimethyldihydropyrene unit. Nanoscale 2018, 10, 5436–5441. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Zhang, G.-P.; Duan, S.; Fu, Q.; Luo, Y. Molecular design to enhance the thermal stability of a photo switchable molecular junction based on dimethyldihydropyrene and cyclophanediene isomerization. J. Phys. Chem. C 2015, 119, 11468–11474. [Google Scholar] [CrossRef]
- Roldan, D.; Kaliginedi, V.; Cobo, S.; Kolivoska, V.; Bucher, C.; Hong, W.; Yoyal, G.; Wandlowski, T. Charge transport in photoswitchable dimethyldihydropyrenetype single-molecule junctions. J. Am. Chem. Soc. 2013, 135, 5974–5977. [Google Scholar] [CrossRef]
- Han, L.; Li, H.; Zuo, X.; Gao, Q.; Li, D.; Cui, B.; Fang, C.; Liu, D. Rational design of [e]-fusion induced high-performance DHP/CPD based photoswitches. Phys. Chem. Chem. Phys. 2020, 45, 26255–26264. [Google Scholar] [CrossRef]
- Gehring, P.; Thijssen, J.M.; van der Zant, H.S.J. Single-molecule quantum-transport phenomena in break junctions. Nat. Rev. Phys. 2019, 1, 381–396. [Google Scholar] [CrossRef]
- Berdiyorov, G.R.; Peeters, F.M.; Hamoudi, H. Effect of halogenation on the electronic transport properties of aromatic and alkanethiolate molecules. Phys. E 2022, 144, 115428. [Google Scholar] [CrossRef]
- Zhang, G.-P.; Mu, Y.-Q.; Zhao, J.-M.; Huang, H.; Hua, G.-C.; Li, Z.-L.; Wang, C.-K. Optimizing the conductance switching performance in photoswitchable dimethyldihydropyrene/cyclophanediene single-molecule junctions. Phys. E 2019, 109, 1–5. [Google Scholar] [CrossRef]
- Wang, M.; Wang, T.; Ojambati, O.S.; Duffin, T.J.; Kang, K.; Lee, T.; Scheer, E.; Xiang, D.; Nijhuis, C.A. Plasmonic phenomena in molecular junctions: Principles and applications. Nat. Rev. Chem. 2022, 6, 681–704. [Google Scholar] [CrossRef]
- Dulić, D.; van der Molen, S.J.; Kudernac, T.; Jonkman, H.T.; de Jong, J.J.; Bowden, T.N.; van Esch, J.; Feringa, B.L.; van Wees, B.J. One-way optoelectronic switching of photochromic molecules on gold. Phys. Rev. Lett. 2003, 91, 207402. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Small, J.P.; Klare, J.E.; Wang, Y.; Purewal, M.S.; Tam, I.W.; Hong, B.H.; Caldwell, R.; Huang, L.; O’Brien, S.; et al. Covalently bridging gaps in single-walled carbon nanotubes with conducting molecules. Science 2006, 311, 356–359. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhou, L.; Wang, X.; You, W. Exploring the odd-even effect, current stabilization, and negative differential resistance in carbon-chain-based molecular devices. Electronics 2024, 13, 1764. [Google Scholar] [CrossRef]
- Chen, T.; Yan, S.; Xu, L.; Liu, D.; Li, Q.; Wang, L.; Long, M. Spin-filtering and giant magnetoresistance effects in polyacetylene-based molecular devices. J. Appl. Phys. 2017, 122, 035103. [Google Scholar] [CrossRef]
- Baykov, S.V.; Filimonov, S.I.; Rozhkov, A.V.; Novikov, A.S.; Ananyev, I.V.; Ivanov, D.M.; Kukushkin, V.Y. Reverse sandwich structures from interplay between lone pair−π-hole atom-directed C···dz2[M] and halogen bond interactions. Cryst. Growth Des. 2020, 20, 995–1008. [Google Scholar] [CrossRef]
- Jia, C.; Migliore, A.; Xin, N.; Huang, S.; Wang, J.; Yang, Q.; Wang, S.; Chen, H.; Wang, D.; Feng, B.; et al. Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity. Science 2016, 352, 1443–1445. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Han, X.; Yuan, P.; Bian, B.; Zheng, Y.; Shi, H.; Ding, Y. Effect of the lateral linking groups on the switching behavior in single molecular device. Mater. Chem. Phys. 2018, 1, 140–145. [Google Scholar] [CrossRef]
- Danilov, A.; Kubatkin, S.; Kafanov, S.; Hedegard, P.; Stuhr-Hansen, N.; Moth-Poulsen, K.; Bjørnholm, T. Electronic transport in single molecule junctions: Control of the molecule-electrode coupling through intramolecular tunneling barriers. Nano Lett. 2008, 8, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Jia, C.; Wang, J.; Yao, C.; Cao, Y.; Zhong, Y.; Liu, Z.; Liu, Z.; Guo, X. Conductance switching and mechanisms in single-molecule junctions. Angew. Chem. Int. Ed. 2013, 52, 8666–8670. [Google Scholar] [CrossRef] [PubMed]
- QuantumATK, Version P-2019.03. Available online: https://www.synopsys.com/silicon/quantumatk.html (accessed on 20 August 2019).
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- van Setten, M.J.; Giantomassi, M.; Bousquet, E.; Verstraete, M.J.; Hamann, D.R.; Gonze, X.; Rignanese, G.M. The pseudodojo: Training and grading a 85 element optimized norm-conserving pseudopotential table. Comput. Phys. Commun. 2018, 226, 39–54. [Google Scholar] [CrossRef]
- Büttiker, M.; Imry, Y.; Landauer, R.; Pinhas, S. Generalized many-channel conductance formula with application to small rings. Phys. Rev. B 1985, 31, 6207–6215. [Google Scholar] [CrossRef] [PubMed]
J1 | J2 | J3 | J4 | |
---|---|---|---|---|
Tclose | 4.44 × 10−6 | 1.46 × 10−4 | 0.44 | 0.50 |
Topen | 2.66 × 10−6 | 2.41 × 10−7 | 2.17 × 10−3 | 2.28 × 10−3 |
Tclose/Topen | 2 | 606 | 203 | 219 |
MPSH Eigenvalues (eV) | Closed Form | Open Form | ||||
---|---|---|---|---|---|---|
HOMO | LUMO | Gap | HOMO | LUMO | Gap | |
J1 | −0.74 | 1.17 | 1.91 | −1.02 | 1.38 | 2.40 |
J2 | −0.76 | 1.10 | 1.86 | −0.36 | 1.67 | 2.03 |
J3 | −0.72 | 0.56 | 1.28 | −1.02 | 0.72 | 1.74 |
J4 | −0.66 | 0.74 | 1.40 | −1.12 | 0.84 | 1.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, P.; Dai, Z.; Wu, Z.; Deng, M. Effect of Bridging Manner on the Transport Behaviors of Dimethyldihydropyrene/Cyclophanediene Molecular Devices. Molecules 2024, 29, 2726. https://doi.org/10.3390/molecules29122726
Cui P, Dai Z, Wu Z, Deng M. Effect of Bridging Manner on the Transport Behaviors of Dimethyldihydropyrene/Cyclophanediene Molecular Devices. Molecules. 2024; 29(12):2726. https://doi.org/10.3390/molecules29122726
Chicago/Turabian StyleCui, Peng, Zhouhao Dai, Ziye Wu, and Mingsen Deng. 2024. "Effect of Bridging Manner on the Transport Behaviors of Dimethyldihydropyrene/Cyclophanediene Molecular Devices" Molecules 29, no. 12: 2726. https://doi.org/10.3390/molecules29122726
APA StyleCui, P., Dai, Z., Wu, Z., & Deng, M. (2024). Effect of Bridging Manner on the Transport Behaviors of Dimethyldihydropyrene/Cyclophanediene Molecular Devices. Molecules, 29(12), 2726. https://doi.org/10.3390/molecules29122726