Hydrophobic Cellulose-Based Sorbents for Oil/Water Separation †
Abstract
:1. Introduction
2. Results and Discussion
2.1. Density and Porosity
2.2. Water Contact Angle
2.3. Sorption Capacity
2.4. Moisture Content after Moist Air Exposure
3. Materials and Methods
3.1. Materials
3.2. Material Preparation
3.2.1. Manufacturing of Cellulose-Based Absorbents
3.2.2. Silanization of Cellulose-Based Absorbent
3.2.3. Alkyl Ketene Dimer Hydrophobization of Cellulose-Based Absorbent
3.3. Density and Porosity
3.4. Microscopic Imaging of Cross-Sections of Protein Materials
3.5. Water Contact Angle (WCA)
3.6. Sorption Capacity
3.7. Moisture Content after Moist Air Exposure
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Halder, J.; Islam, N. Water Pollution and Its Impact on the Human Health. J. Environ. Hum. 2015, 2, 36–46. [Google Scholar] [CrossRef]
- Asif, Z.; Chen, Z.; An, C.; Dong, J. Environmental Impacts and Challenges Associated with Oil Spills on Shorelines. J. Mar. Sci. Eng. 2022, 10, 762. [Google Scholar] [CrossRef]
- Chilvers, B.L.; Morgan, K.J.; White, B.J. Sources and Reporting of Oil Spills and Impacts on Wildlife 1970–2018. Environ. Sci. Pollut. Res. 2021, 28, 754–762. [Google Scholar] [CrossRef]
- Michel, J.; Fingas, M. Oil Spills: Causes, Consequences, Prevention, and Countermeasures. In World Scientific Series in Current Energy Issues; World Scientific: Singapore, 2016; Volume 1, pp. 159–201. ISBN 978-981-4699-97-6. [Google Scholar]
- Gautam, R.K.; Chattopadhyaya, M.C. Remediation Technologies for Water Cleanup: New Trends. In Nanomaterials for Wastewater Remediation; Gautam, R.K., Chattopadhyaya, M.C., Eds.; Butterworth-Heinemann: Boston, MA, USA, 2016; pp. 19–32. ISBN 978-0-12-804609-8. [Google Scholar]
- Saravanan, A.; Senthil Kumar, P.; Jeevanantham, S.; Karishma, S.; Tajsabreen, B.; Yaashikaa, P.R.; Reshma, B. Effective Water/Wastewater Treatment Methodologies for Toxic Pollutants Removal: Processes and Applications towards Sustainable Development. Chemosphere 2021, 280, 130595. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.; Wang, Y.-Z. Cellulose-Based Absorbents for Oil Contaminant Removal. In Cellulose-Based Superabsorbent Hydrogels; Mondal, M.I.H., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–27. ISBN 978-3-319-76573-0. [Google Scholar]
- Liu, J.; Wang, X. A New Method to Prepare Oil Adsorbent Utilizing Waste Paper and Its Application for Oil Spill Clean-Ups. BioRes 2019, 14, 3886–3898. [Google Scholar] [CrossRef]
- Wang, S.; Peng, X.; Zhong, L.; Tan, J.; Jing, S.; Cao, X.; Chen, W.; Liu, C.; Sun, R. An Ultralight, Elastic, Cost-Effective, and Highly Recyclable Superabsorbent from Microfibrillated Cellulose Fibers for Oil Spillage Cleanup. J. Mater. Chem. A 2015, 3, 8772–8781. [Google Scholar] [CrossRef]
- Akintunde, M.O.; Adebayo-Tayo, B.C.; Ishola, M.M.; Zamani, A.; Horváth, I.S. Bacterial Cellulose Production from Agricultural Residues by Two Komagataeibacter Sp. Strains. Bioengineered 2022, 13, 10010–10025. [Google Scholar] [CrossRef]
- Lupașcu, R.E.; Ghica, M.V.; Dinu-Pîrvu, C.-E.; Popa, L.; Velescu, B.Ș.; Arsene, A.L. An Overview Regarding Microbial Aspects of Production and Applications of Bacterial Cellulose. Materials 2022, 15, 676. [Google Scholar] [CrossRef]
- Atalla, R.H. The Structures of Cellulose. MRS Online Proc. Libr. 1990, 197, 89–98. [Google Scholar] [CrossRef]
- He, X.; Lu, W.; Sun, C.; Khalesi, H.; Mata, A.; Andaleeb, R.; Fang, Y. Cellulose and Cellulose Derivatives: Different Colloidal States and Food-Related Applications. Carbohydr. Polym. 2021, 255, 117334. [Google Scholar] [CrossRef]
- Brown, R.M. Cellulose Structure and Biosynthesis: What Is in Store for the 21st Century? J. Polym. Sci. A Polym. Chem. 2004, 42, 487–495. [Google Scholar] [CrossRef]
- Hindi, S.S.Z. Microcrystalline Cellulose: The Inexhaustible Treasure for Pharmaceutical Industry. Nanosci. Nanotechnol. Res. 2017, 4, 17–24. [Google Scholar] [CrossRef]
- Peter, Z. Order in Cellulosics: Historical Review of Crystal Structure Research on Cellulose. Carbohydr. Polym. 2021, 254, 117417. [Google Scholar] [CrossRef] [PubMed]
- Pascual, A.R.; Martín, M.E.E. Cellulose; BoD—Books on Demand, 2019; ISBN 978-1-83968-056-4. Available online: https://www.intechopen.com/chapters/67083 (accessed on 24 September 2024).
- Festucci-Buselli, R.A.; Otoni, W.C.; Joshi, C.P. Structure, Organization, and Functions of Cellulose Synthase Complexes in Higher Plants. Braz. J. Plant Physiol. 2007, 19, 1–13. [Google Scholar] [CrossRef]
- Perdoch, W.; Treu, A.; Mazela, B.; Majka, J.; Czajkowski, Ł.; Olek, W. Hydrophobic and Hygroscopic Properties of Cellulose Treated with Silicone Agents. Eur. J. Wood Prod. 2024, 82, 821–832. [Google Scholar] [CrossRef]
- Martinelli, F.R.B.; Ribeiro, F.R.C.; Marvila, M.T.; Monteiro, S.N.; Filho, F.D.C.G.; Azevedo, A.R.G.D. A Review of the Use of Coconut Fiber in Cement Composites. Polymers 2023, 15, 1309. [Google Scholar] [CrossRef]
- Rodríguez-Fabià, S.; Torstensen, J.; Johansson, L.; Syverud, K. Hydrophobisation of Lignocellulosic Materials Part I: Physical Modification. Cellulose 2022, 29, 5375–5393. [Google Scholar] [CrossRef]
- Rodríguez-Fabià, S.; Torstensen, J.; Johansson, L.; Syverud, K. Hydrophobization of Lignocellulosic Materials Part II: Chemical Modification. Cellulose 2022, 29, 8957–8995. [Google Scholar] [CrossRef]
- Rodríguez-Fabià, S.; Torstensen, J.; Johansson, L.; Syverud, K. Hydrophobization of Lignocellulosic Materials Part III: Modification with Polymers. Cellulose 2022, 29, 5943–5977. [Google Scholar] [CrossRef]
- Niemz, P.; Teischinger, A.; Sandberg, D. Springer Handbook of Wood Science and Technology; Springer Nature: Berlin/Heidelberg, Germany, 2023; ISBN 978-3-030-81315-4. [Google Scholar]
- Paulauskiene, T.; Sirtaute, E.; Uebe, J. A Cellulose Aerogel Made from Paper and Hemp Waste Added with Starch for the Sorption of Oil. J. Mar. Sci. Eng. 2023, 11, 1343. [Google Scholar] [CrossRef]
- Paulauskiene, T.; Uebe, J.; Ziogas, M. Cellulose Aerogel Composites as Oil Sorbents and Their Regeneration. PeerJ 2021, 9, e11795. [Google Scholar] [CrossRef] [PubMed]
- Sanguanwong, A.; Pavasant, P.; Jarunglumlert, T.; Nakagawa, K.; Flood, A.; Prommuak, C. Hydrophobic Cellulose Aerogel from Waste Napkin Paper for Oil Sorption Applications. Nord. Pulp Pap. Res. J. 2020, 35, 137–147. [Google Scholar] [CrossRef]
- Li, Z.; Zhong, L.; Zhang, T.; Qiu, F.; Yue, X.; Yang, D. Sustainable, Flexible, and Superhydrophobic Functionalized Cellulose Aerogel for Selective and Versatile Oil/Water Separation. ACS Sustain. Chem. Eng. 2019, 7, 9984–9994. [Google Scholar] [CrossRef]
- Hubbe, M.A.; Ayoub, A.; Daystar, J.S.; Venditti, R.A.; Pawlak, J.J. Enhanced Absorbent Products Incorporating Cellulose and Its Derivatives: A Review. BioResources 2013, 8, 6556–6629. [Google Scholar] [CrossRef]
- Wang, X. Improving the Papermaking Properties of Kraft Pulp by Controlling Hornification and Internal Fibrillation; Helsinki University of Technology: Espoo, Finland, 2006; ISBN 978-951-22-8230-2. [Google Scholar]
- Lovikka, V.A.; Khanjani, P.; Väisänen, S.; Vuorinen, T.; Maloney, T.C. Porosity of Wood Pulp Fibers in the Wet and Highly Open Dry State. Microporous Mesoporous Mater. 2016, 234, 326–335. [Google Scholar] [CrossRef]
- Koistinen, A.; Wang, H.; Hiltunen, E.; Vuorinen, T.; Maloney, T. Refinability of Mercerized Softwood Kraft Pulp. Cellulose 2024, 31, 6471–6484. [Google Scholar] [CrossRef]
- Lazzari, L.K.; Zampieri, V.B.; Zanini, M.; Zattera, A.J.; Baldasso, C. Sorption Capacity of Hydrophobic Cellulose Cryogels Silanized by Two Different Methods. Cellulose 2017, 24, 3421–3431. [Google Scholar] [CrossRef]
- Adenekan, K.; Hutton-Prager, B. Sticky Hydrophobic Behavior of Cellulose Substrates Impregnated with Alkyl Ketene Dimer (AKD) via Sub- and Supercritical Carbon Dioxide. Colloids Surf. A: Physicochem. Eng. Asp. 2019, 560, 154–163. [Google Scholar] [CrossRef]
- Li, W.; Li, Z.; Wang, W.; Li, Z.; Li, Q.; Qin, C.; Cao, F. Green Approach to Facilely Design Hydrophobic Aerogel Directly from Bagasse. Ind. Crops Prod. 2021, 172, 113957. [Google Scholar] [CrossRef]
- Nowak, T.; Mazela, B.; Olejnik, K.; Peplińska, B.; Perdoch, W. Starch-Silane Structure and Its Influence on the Hydrophobic Properties of Paper. Molecules 2022, 27, 3136. [Google Scholar] [CrossRef]
- Chang, S.; Seo, J.; Hong, S.; Lee, D.-G.; Kim, W. Dynamics of Liquid Imbibition through Paper with Intra-Fibre Pores. J. Fluid. Mech. 2018, 845, 36–50. [Google Scholar] [CrossRef]
- Calcagnile, P.; Caputo, I.; Cannoletta, D.; Bettini, S.; Valli, L.; Demitri, C. A Bio-Based Composite Material for Water Remediation from Oily Contaminants. Mater. Des. 2017, 134, 374–382. [Google Scholar] [CrossRef]
- Korhonen, J.T.; Kettunen, M.; Ras, R.H.A.; Ikkala, O. Hydrophobic Nanocellulose Aerogels as Floating, Sustainable, Reusable, and Recyclable Oil Absorbents. ACS Appl. Mater. Interfaces 2011, 3, 1813–1816. [Google Scholar] [CrossRef]
- Mazela, B.; Tomkowiak, K.; Jones, D. Strength and Moisture-Related Properties of Filter Paper Coated with Nanocellulose. Coatings 2022, 12, 1376. [Google Scholar] [CrossRef]
- Majka, J.; Perdoch, W.; Czajkowski, Ł.; Mazela, B.; Olek, W. Sorption Properties of Paper Treated with Silane-Modified Starch. Eur. J. Wood Prod. 2023, 81, 1581–1590. [Google Scholar] [CrossRef]
- ISO 2470; Paper, Board and Pulps—Measurement of Diffuse Blue Reflectance Factor—Part 2: Outdoor Daylight Conditions (D65 Brightness). Technical Committee ISO/TC 6: Geneva, Switzerland, 2008.
- ISO5350-2; Pulps—Estimation of Dirt and Shives Part 2: Inspection of MillSheeted Pulp by Transmitted Light. Technical Committee ISO/TC 6: Geneva, Switzerland, 2006.
- ISO 5351; Pulps—Determination of Limiting Viscosity Number in Cupriethylenediamine (CED)Solution. Technical Committee ISO/TC 6: Geneva, Switzerland, 2010.
- ISO6588-1; Paper, Board and Pulps—Determination of pH of Aqueous Extracts. Technical Committee ISO/TC 6: Geneva, Switzerland, 2021.
- ISO5267-1; Pulps—Determination of drainability Part 1: Schopper-Riegler method. Technical Committee ISO/TC 6: Geneva, Switzerland, 1999.
- Siuda, J.; Perdoch, W.; Mazela, B.; Zborowska, M. Catalyzed Reaction of Cellulose and Lignin with Methyltrimethoxysilane—FT-IR, 13C NMR and 29Si NMR Studies. Materials 2019, 12, 2006. [Google Scholar] [CrossRef]
- Tshabalala, M.A.; Kingshott, P.; VanLandingham, M.R.; Plackett, D. Surface Chemistry and Moisture Sorption Properties of Wood Coated with Multifunctional Alkoxysilanes by Sol-gel Process. J. Appl. Polym. Sci. 2003, 88, 2828–2841. [Google Scholar] [CrossRef]
- Zhang, R.; Dahlström, C.; Zou, H.; Jonzon, J.; Hummelgård, M.; Örtegren, J.; Blomquist, N.; Yang, Y.; Andersson, H.; Olsen, M.; et al. Cellulose-Based Fully Green Triboelectric Nanogenerators with Output Power Density of 300 W m−2. Adv. Mater. 2020, 32, 2002824. [Google Scholar] [CrossRef]
Sample Code | Density [kg/m3] | Porosity [%] | ||
---|---|---|---|---|
Average | ±SD * | Average | ±SD | |
Control_B | 35.74 | 3.57 | 97.62 | 0.24 |
Control_K | 28.29 | 2.92 | 98.11 | 0.19 |
MTMOS1_B | 38.10 | 4.83 | 97.46 | 0.32 |
MTMOS1_K | 35.02 | 3.16 | 97.67 | 0.21 |
MTMOS2_B | 33.95 | 2.92 | 97.74 | 0.19 |
MTMOS2_K | 35.17 | 3.11 | 97.66 | 0.21 |
NTES1_B | 39.92 | 2.82 | 97.34 | 0.19 |
NTES1_K | 37.51 | 2.44 | 97.50 | 0.16 |
NTES2_B | 38.80 | 1.97 | 97.41 | 0.13 |
NTES2_K | 36.46 | 2.21 | 97.57 | 0.15 |
AATMS1_B | 44.14 | 1.78 | 97.06 | 0.12 |
AATMS1_K | 38.35 | 2.18 | 97.44 | 0.15 |
AATMS2_B | 37.90 | 1.34 | 97.47 | 0.09 |
AATMS2_K | 40.31 | 2.05 | 97.31 | 0.14 |
AKD5_B | 39.71 | 2.60 | 97.35 | 0.17 |
AKD5_K | 38.26 | 4.67 | 97.45 | 0.31 |
AKD10_B | 41.78 | 3.04 | 97.21 | 0.20 |
AKD10_K | 40.15 | 3.30 | 97.32 | 0.22 |
Sample Code | Water Contact Angle [°] | Reduction of WCA through Time [°] | |||
---|---|---|---|---|---|
Elapsed Time from Drop Application [min] | |||||
1 | ±SD | 5 | ±SD | ||
Control_B | 0 e * | 0 | 0 | 0 | 0.00 |
Control_K | 0 e | 0 | 0 | 0 | 0.00 |
MTMOS1_B | 122.01 c | 7.33 | 116.22 | 6.59 | −5.78 |
MTMOS1_K | 131.86 abcd | 8.89 | 129.53 | 9.17 | −2.32 |
MTMOS2_B | 127.08 bcd | 6.22 | 123.88 | 7.06 | −3.20 |
MTMOS2_K | 132.48 abcd | 7.45 | 130.39 | 7.37 | −2.09 |
NTES1_B | 131.10 abcd | 6.23 | 124.45 | 10.68 | −6.65 |
NTES1_K | 131.73 abcd | 2.91 | 129.73 | 2.71 | −2.00 |
NTES2_B | 134.64 abd | 6.71 | 130.50 | 6.92 | −4.15 |
NTES2_K | 130.13 abcd | 7.43 | 127.86 | 6.88 | −2.27 |
AATMS1_B | 128.01 abcd | 13.06 | 123.29 | 12.18 | −4.72 |
AATMS1_K | 138.83 a | 5.01 | 136.16 | 5.29 | −2.67 |
AATMS2_B | 127.13 abcd | 9.47 | 124.12 | 9.62 | −3.01 |
AATMS2_K | 123.44 bc | 7.49 | 122.19 | 10.56 | −1.25 |
AKD5_B | 133.91 abd | 5.71 | 131.96 | 6.59 | −1.95 |
AKD5_K | 138.56 ad | 4.79 | 137.03 | 5.28 | −1.53 |
AKD10_B | 134.89 abd | 3.11 | 133.17 | 3.92 | −1.72 |
AKD10_K | 135.70 ad | 5.07 | 134.02 | 5.34 | −1.68 |
Sample Code | Hydrophobizing Agents | Amount of Hydrophobizing Agents Added | Cellulose Type Used (Concentration 2 wt%) | |
---|---|---|---|---|
Control_B | (Control sample) | - | BCTMP | |
Control_K | (Control sample) | - | Kraft | |
MTMOS1_B | MTMOS | 0.8 | g/g of sample | BCTMP |
MTMOS1_K | MTMOS | 0.8 | Kraft | |
MTMOS2_B | MTMOS | 1.6 | BCTMP | |
MTMOS2_K | MTMOS | 1.6 | Kraft | |
NTES1_B | NTES | 0.8 | BCTMP | |
NTES1_K | NTES | 0.8 | Kraft | |
NTES2_B | NTES | 1.6 | BCTMP | |
NTES2_K | NTES | 1.6 | Kraft | |
AATMS1_B | AATMS | 0.8 | BCTMP | |
AATMS1_K | AATMS | 0.8 | Kraft | |
AATMS2_B | AATMS | 1.6 | BCTMP | |
AATMS2_K | AATMS | 1.6 | Kraft | |
AKD5_B | AKD | 5 wt% | to the dry weight of fibers | BCTMP |
AKD5_K | AKD | 5 wt% | Kraft | |
AKD10_B | AKD | 10 wt% | BCTMP | |
AKD10_K | AKD | 10 wt% | Kraft |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomkowiak, K.; Mazela, B.; Szubert, Z.; Perdoch, W. Hydrophobic Cellulose-Based Sorbents for Oil/Water Separation. Molecules 2024, 29, 4661. https://doi.org/10.3390/molecules29194661
Tomkowiak K, Mazela B, Szubert Z, Perdoch W. Hydrophobic Cellulose-Based Sorbents for Oil/Water Separation. Molecules. 2024; 29(19):4661. https://doi.org/10.3390/molecules29194661
Chicago/Turabian StyleTomkowiak, Karolina, Bartłomiej Mazela, Zuzanna Szubert, and Waldemar Perdoch. 2024. "Hydrophobic Cellulose-Based Sorbents for Oil/Water Separation" Molecules 29, no. 19: 4661. https://doi.org/10.3390/molecules29194661
APA StyleTomkowiak, K., Mazela, B., Szubert, Z., & Perdoch, W. (2024). Hydrophobic Cellulose-Based Sorbents for Oil/Water Separation. Molecules, 29(19), 4661. https://doi.org/10.3390/molecules29194661