The Effect of Lactiplantibacillus plantarum and Lacticaseiba-cillus Rhamnosus Strains on the Reduction of Hexachlorobenzene Residues in Fermented Goat Milk During Refrigerated Storage
Abstract
:1. Introduction
Country | Material | Amount of HCB | Author |
---|---|---|---|
Egypt | Buffalo milk | <0.200 | Shaker and Elsharkawy (2015) [22] |
Mussels | <LOD 0.50 µg/g dw | Khairy et al. (2012) [23] | |
Potato tubers (skin and pulp) | 0.014, <0.026 | Soliman (2001) [24] | |
French fries | 0.006, <0.011 | Soliman (2001) [24] | |
Potato chips | 0.003, <0.006 | Soliman (2001) [24] | |
Ghana | Fish (Tilapia and Suma) | 2.10 | Adu-Kumi et al. (2010) [25] |
Tanzania | Tilapia (Oreochromis sp.) | 0.6–4.0 | Polder et al. (2014) [26] |
Tunisia | Common sole (Solea solea) | 1.27–15.1 | Ben Ameur et al. (2013) [27] |
Common Cephalus (Mugil cephalus) | 1.62–28.5 | Ben Ameur et al. (2013) [27] |
2. Results
2.1. pH and Dry Matter Content in FGM
2.2. Changes in HCB Content During Refrigerated Storage of Fermented Goat Milk
3. Discussion
4. Materials and Methods
4.1. Test Material
4.2. Analysis of pH and Dry Matter Content in FGM
4.3. Analysis of HCB Content
- ♦
- 80 °C/0.5 min, ramp rate—9 °C/min to 220 °C (12 min),
- ♦
- 220 °C/5 min, ramp rate—5 °C/min to 290 °C (9 min),
- ♦
- column warming 295 °C/5 min,
- ♦
- column hold at 295 °C/5 min.
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nayik, G.A.; Jagdale, Y.D.; Gaikwad, S.A.; Devkatte, A.N.; Dar, A.H.; Ansari, M.J. Nutritional Profile, Processing and Potential Products: A Comparative Review of Goat Milk. Dairy 2022, 3, 622–647. [Google Scholar] [CrossRef]
- Sredojević, Z.; Vujić, T.; Jevremović, M. Economic indicators of goat breeding on family holdings in the Republic of Serbia. Ekon. Poljopr. 2020, 67, 1297–1308. [Google Scholar] [CrossRef]
- Naagar, S.; Kanawjia, S.K. Recent advancements in the functionality of the components from goat milk and its products. Indian J. Dairy Sci. 2019, 72, 453–461. [Google Scholar] [CrossRef]
- Pan, J.; Yu, Z.; Dai, J.; Jiang, H.; Shi, C.; Du, Q.; Zhu, W.; Bari, L.; Fan, R.; Wang, J.; et al. Impact of Processing Methods on the Distribution of Mineral Elements in Goat Milk Fractions. J. Dairy Sci. 2024, 107, 5449–5459. [Google Scholar] [CrossRef]
- Rai, D.C.; Rathaur, A.; Yadav, A.K. Nutritional and nutraceutical properties of goat milk for human health: A review. Indian J. Dairy Sci. 2022, 75, 1–10. [Google Scholar] [CrossRef]
- Mal, G.; Singh, B.G.; Mane, B.; Sharma, V.; Sharma, R.; Bhar, R.; Dhar, J.B. Milk composition, antioxidant activities and protein profile of Gaddi goat milk. J. Food Biochem. 2018, 42, e12660. [Google Scholar] [CrossRef]
- Stergiadis, S.; Nørskov, N.P.; Purup, S.; Givens, I.; Lee, M.R.F. Comparative Nutrient Profiling of Retail Goat and Cow Milk. Nutrients 2019, 11, 2282. [Google Scholar] [CrossRef]
- Rahmatalla, S.A.; Arends, D.; Brockmann, G.A. Review: Genetic and protein variants of milk caseins in goats. Front. Genet. 2022, 13, 995349. [Google Scholar] [CrossRef]
- Mohsin, A.Z.; Sukor, R.; Selamat, J.; Hussin, A.S.M.; Ismail, I.H. Chemical and mineral composition of raw goat milk as affected by breed varieties available in Malaysia. Int. J. Food Prop. 2019, 22, 815–824. [Google Scholar] [CrossRef]
- Singh, M.; Sharma, R.S.; Ranvir, S.G.; Gandhi, K.; Mann, B. Profiling and distribution of minerals content in cow, buffalo and goat milk. Indian J. Dairy Sci. 2019, 72, 480–488. [Google Scholar] [CrossRef]
- Lauková, A.; Micenková, L.; Grešáková, Ľ.; Maďarová, M.; Simonová, M.P.; Focková, V.; Ščerbová, J. Microbiome Associated with Slovak Raw Goat Milk, Trace Minerals, and Vitamin E Content. Int. J. Food Sci. 2022, 2022, 4595473. [Google Scholar] [CrossRef] [PubMed]
- Günay, E.; Güneşer, O.; Karagül Yüceer, Y. A comparative study of amino acid, mineral and vitamin profiles of milk from Turkish Saanen, Hair and Maltese goat breeds throughout lactation. Int. J. Dairy Technol. 2021, 74, 441–452. [Google Scholar] [CrossRef]
- Cakir, B.; Tunali-Akbay, T. Potential anticarcinogenic effect of goat milk-derived bioactive peptides on HCT-116 human colorectal carcinoma cell line. Anal. Biochem. 2021, 622, 114166. [Google Scholar] [CrossRef] [PubMed]
- Mejia Palma, M.L.; Cruz Monterrosa, R.G.; Arce Vazquez, M.B.; García Garibay, M.; Jiménez Guzmán, J. Biochemical and functional characterization of milk from alpina and tog-genburg goat breeds. Agro. Product. 2024, 12, 127–134. [Google Scholar] [CrossRef]
- Liu, Y.; Cai, J.; Zhang, F. Influence of goat colostrum and mature milk on intestinal microbiota. J. Funct. Foods 2021, 86, 104704. [Google Scholar] [CrossRef]
- Thakur, R.; Biswal, P.; Sari, T.P.; Kumar, D.; Sagar, N.A.; Bhardwaj, S.; Pandey, S.O.; Chandratre, G.A.; Tarafdar, A. Therapeutic effect of goat milk and its value-addition: Current status and way forward. J. Food Sci. Technol. 2024, 61, 1621–1631. [Google Scholar] [CrossRef]
- Antony, P.; Vijayan, R. Bioactive peptides as potential nutraceuticals for diabetes therapy: A comprehensive review. Int. J. Mol. Sci. 2021, 22, 9059. [Google Scholar] [CrossRef]
- Singh, S.; Kaur, G.; Brar, R.P.S.; Preet, G.S. Goat milk composition and nutritional value: A review. J. Pharm. Innov. 2021, 10, 536–540. [Google Scholar]
- Moon, H.; Park, B.; Kim, H. Human Health Risk of Chlorobenzenes Associated with Seafood Consumption in Korea. Toxicol. Environ. Health Sci. 2009, 1, 49–55. [Google Scholar] [CrossRef]
- Czaja, K.; Ludwicki, J.K.; Góralczyk, K.; Struciński, P. Organochlorine Pesticides, HCB and PCBs in Human Milk in Poland. Bull. Contam. Toxicol. 1997, 58, 769–775. [Google Scholar] [CrossRef]
- Ntow, W.J. Organochlorine Pesticides in Water, Sediment, Crops and Human Fluid in a Farming Community in Ghana. Arch. Environ. Contam. Toxicol. 2001, 40, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Shaker, E.M.; Elsharkawy, E.E. Organochlorine and organophosphorus pesticide residues in raw buffalo milk from agroindustrial areas in Assiut, Egypt. Environ. Toxicol. Pharmacol. 2015, 39, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Khairy, M.; Kolb, M.; Mostafa, A.; EL-Fiky, A.; Bahadir, M. Risk posed by chlorinated organic compounds in Abu Qir Bay, East Alexandria, Egypt. Environ. Sci. Pollut. Res. Int. 2012, 19, 794–811. [Google Scholar] [CrossRef] [PubMed]
- Soliman, K.M. Changes in concentration of pesticide residues in potatoes during washing home preparation. Food Chem. Toxicol. 2001, 39, 887–891. [Google Scholar] [CrossRef] [PubMed]
- Adu-Kumi, S.; Kawano, M.; Shiki, Y.; Yeboah, P.O.; Carboo, D.; Pwamang, J.; Morita, M.; Suzuki, N. Organochlorine pesticides (OCPs), dioxin-like polychlorinated biphenyls (dl-PCBs), polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) in edible fish from Lake Volta, Lake Bosumtwi and Weija Lake in Ghana. Chemosphere 2010, 81, 675–684. [Google Scholar] [CrossRef]
- Polder, A.; Müller, M.B.; Lyche, J.L.; Mdegela, R.H.; Nonga, H.E.; Mabiki, F.P.; Mibise, T.J.; Skaare, J.U.; Sandvik, M.; Skjerve, E.; et al. Levels and patterns of persistent organic pollutants (POPs) in tilapia (Oreochromis sp.) from four different lakes in Tanzania: Geographical differences and implications for human health. Sci. Total Environ. 2014, 488–489, 252–260. [Google Scholar] [CrossRef]
- Ben Ameur, W.; Trabelsi, S.; El Megdiche, Y.; Ben Hassine, S.; Barhoumi, B.; Hammami, B.; Eljarrat, E.; Barceló, D.; Driss, M. Concentration of polychlorinated biphenyls and organochlorine pesticides in mullet (Mugil cephalus) and sea bass (Dicentrarchus labrax) from Bizerte Lagoon (Northern Tunisia). Chemosphere 2013, 90, 2372–2380. [Google Scholar] [CrossRef]
- Hamadamin, A.Y.; Hassan, K.I. Gas chromatography–mass spectrometry based sensitive analytical approach to detect and quantify non-polar pesticides accumulated in the fat tissues of domestic animals. Saudi J. Biol. Sci. 2020, 27, 887–893. [Google Scholar] [CrossRef]
- Dokić, M.; Nekić, T.; Varenina, I.; Varga, I.; Solomun Kolanović, B.; Sedak, M.; Čalopek, B.; Vratarić, D.; Bilandžić, N. Pesticides and Polychlorinated Biphenyls in Milk and Dairy Products in Croatia: A Health Risk Assessment. Foods 2024, 13, 1155. [Google Scholar] [CrossRef]
- Derouiche, A.; Achour, A.; Driss, M.R. Organochlorine pesticides and polychlorinated biphenyls in raw bovine milk from various dairy farms in Beja, Tunisia: Contamination status, dietary intake, and health risk assessment for the consumers. Environ. Sci. Pollut. Res. 2023, 30, 65427–65439. [Google Scholar] [CrossRef]
- Eggesbø, M.; Stigum, H.; Longnecker, M.P.; Polder, A.; Aldrin, M.; Basso, O.; Thomsen, C.; Skaare, J.U.; Becher, G.; Magnus, P. Levels of hexachlorobenzene (HCB) in breast milk in relation to birth weight in a Norwegian cohort. Environ. Res. 2009, 109, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Kuang, L.; Hou, Y.; Huang, F.; Guo, A.; Deng, W.; Sun, H.; Shen, L.; Lin, H.; Hong, H. Pesticides in human milk collected from Jinhua, China: Levels, influencing factors and health risk assessment. Ecotoxicol. Environ. Saf. 2020, 205, 111331. [Google Scholar] [CrossRef] [PubMed]
- Kumar, J.M.; Kumar, S.D.; Kubendran, D.; Kalaichelvan, P.T. Hexachlorobenzene-sources, remediation and prospects. Int. J. Curr. Res. 2013, 5, 1. [Google Scholar]
- Commission Regulation (EC) 1272/2008 of 16 December 2008 of the European Parliament and of the Council on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. Eur. J. 2008, L353, 1–1355.
- Commission Regulation (EU) 2016/1866 of 17 October 2016 amending Annexes II, III and V to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for 3-decen-2-one, acibenzolar-S-methyl and hexachlorobenzene in or on certain products. Eur. J. 2016, L286, 4–31.
- Adeola, F.O. Global Impact of Chemicals and Toxic Substances on Human Health and the Environment. In Handbook of Global Health; Haring, R., Kickbusch, I., Ganten, D., Moeti, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 2227–2256. [Google Scholar] [CrossRef]
- Dou, L.; Mou, F.; Li, J.; Wang, S. The endocrine disruptor hexachlorobenzene can cause oxidative damage in the testis of mice. Andrologia 2021, 53, e14195. [Google Scholar] [CrossRef]
- Yan, D.Z.; Mao, L.Q.; Li, C.Z.; Liu, J. Biodegradation of hexachlorobenzene by a constructed microbial consortium. World J. Microbiol. Biotechnol. 2015, 31, 371–377. [Google Scholar] [CrossRef]
- Khan, S.; Priyamvada, S.; Khan, S.A.; Khan, W.; Yusufi, A.N.K. Studies on hexachlorobenzene (HCB) induced toxicity and oxidative damage in the kidney and other rat tissues. Int. J. Drug Metab. Toxicol. 2017, 1, 1–9. [Google Scholar]
- Witczak, A.; Mituniewicz-Małek, A.; Dmytrów, I. Analysis of the Influence of Lactiplantibacillus plantarum and Lacticaseibacillus rhamnosus Strains on Changes in the Hexachlorobenzene Content in Fermented Mare Milk during Refrigerated Storage. Molecules 2024, 29, 528. [Google Scholar] [CrossRef]
- Cais-Sokolińska, D.; Danków, R.; Pikul, J. Dynamika zmian kwasowości jogurtu z dodatkiem produktów zbożowych podczas chłodniczego przechowywania. Nauka Przyr. Technol. 2009, 3, 111. [Google Scholar]
- Cais, D.; Pikul, J. Use of colour measurement to evaluate yoghurt quality during storage. Ital. J. Food Sci. 2005, 18, 63–74. [Google Scholar]
- Cueva, O.; Aryana, K.J. Quality attributes of a heart healthy yogurt. Lebensm. Wiss.Technol. 2003, 41, 537–544. [Google Scholar] [CrossRef]
- Guan, Y.; Cui, Y.; Qu, X.; Li, B.; Zhang, L. Post-acidification of fermented milk and its molecular regulatory mechanism. Int. J. Food Microbiol. 2024, 426, 110920. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zhang, C.; Li, S.; Lu, G.; Lu, G.; Li, S.; Zhou, Y. An approach to biodegradation of chlorobenzenes: Combination of Typha angustifolia and bacterial effects on hexachlorobenzene degradation in water. Water Sci. Technol. 2016, 74, 1409–1416. [Google Scholar] [CrossRef]
- Dimova, M.; Iutynska, G.; Yamborko, N.; Dordevic, D.; Kushkevych, I. Possible Processes and Mechanisms of Hexachlorobenzene Decomposition by the Selected Comamonas testosteroni Bacterial Strains. Processes 2022, 10, 2170. [Google Scholar] [CrossRef]
- Zhou, X.W.; Zhao, X.H. Susceptibility of nine organophosphorus pesticides in skimmed milk towards inoculated lactic acid bacteria and yogurt starters. J. Sci. Food Agric. 2015, 95, 260–266. [Google Scholar] [CrossRef]
- Markowiak, P.; Śliżewska, K. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients 2017, 9, 1021. [Google Scholar] [CrossRef]
- Maden, B.; Kumral, A.Y. Degradation Trends of Some Insecticides and Microbial Changes during Sauerkraut Fermentation under Laboratory Conditions. J. Agric. Food Chem. 2020, 68, 14988–14995. [Google Scholar] [CrossRef]
- Kumral, Y.A.; Kumral, N.A.; Kolcu, A.; Maden, B.; Artik, B. Simulation Study for the Degradation of Some Insecticides during Different Black Table Olive Processes. ACS Omega 2020, 5, 14164–14172. [Google Scholar] [CrossRef]
- Mohammadi, M.; Shadnoush, M.; Sohrabvandi, S.; Yousefi, M.; Khorshidian, N.; Mortazavian, A.M. Probiotics as Potential Detoxification Tools for Mitigation of Pesticides: A Mini Review. Int. J. Food Sci. Technol. 2020, 56, 2078–2087. [Google Scholar] [CrossRef]
- Sidhu, G.K.; Singh, S.; Kumar, V.; Dhanjal, D.S.; Datta, S.; Singh, J. Toxicity, monitoring and biodegradation of organophosphate pesticides: A review. Crit. Rev. Food Sci. Nutr. 2019, 49, 1135–1187. [Google Scholar] [CrossRef]
- Lili, Z.; Junyan, W.; Hongfei, Z.; Baoqing, Z.; Bolin, Z. Detoxification of cancerogenic compounds by lactic acid bacteria strains. Crit. Rev. Food Sci. Nutr. 2018, 58, 2727–2742. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Cheng, Z.; Bi, J.; Xu, Y. Residue behaviour of organochlorine pesticides during the production process of yogurt and cheese. Food Chem. 2018, 245, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Yoganandi, J.; Mehta Bhavbhut, M.; Wadhwani, K.N.; Darji, V.B.; Aparnathi, K.D. Evaluation and comparison of camel milk with cow milk and buffalo milk for gross composition. J. Camel Pract. Res. 2014, 21, 259–265. [Google Scholar] [CrossRef]
- Boci, I.; Bardahi, G.; Cakraj, R. Total solids and fat determination in milk; Interlaboratory testing. Albanian J. Agric. Sci. 2013, 12, 659–664. [Google Scholar]
Sample Variant | Storage Time (Days) | ||||
---|---|---|---|---|---|
1 | 7 | 14 | 21 | ||
pH 1 | |||||
Without added HCB | LP | 4.51 ± 0.02 aA | 4.31 ± 0.02 bA | 4.29 ± 0.01 cA | 4.29 ± 0.01 cA |
LR | 4.50 ± 0.01 aA | 4.30 ± 0.01 bA | 4.28 ± 0.01 cA | 4.28 ± 0.02 cA | |
Mix | 4.48 ± 0.01 aA | 4.28 ± 0.01 bA | 4.28 ± 0.02 bA | 4.28 ± 0.01 bA | |
With added HCB | LPHCB | 4.53 ± 0.02 aA | 4.37 ± 0.02 bB | 4.30 ± 0.02 cA | 4.27 ± 0.02 dA |
LRHCB | 4.52 ± 0.03 aA | 4.32 ± 0.01 bA | 4.30 ± 0.01 cA | 4.26 ± 0.01 dA | |
MixHCB | 4.53 ± 0.02 aB | 4.34 ± 0.02 bB | 4.30 ± 0.02 cA | 4.26 ± 0.02 dA | |
Dry matter (%) 1 | |||||
Without added HCB | LP | 10.20 ± 0.02 aA | 10.20 ± 0.03 aA | 10.20 ± 0.04 aA | 10.20 ± 0.04 aA |
LR | 9.73 ± 0.03 aA | 9.73 ± 0.03 aA | 9.73 ± 0.03 aA | 9.73 ± 0.03 aA | |
Mix | 10.13 ± 0.04 aA | 10.13 ± 0.04 aA | 10.13 ± 0.02 aA | 10.13 ± 0.04 aA | |
With added HCB | LPHCB | 10.28 ± 0.03 aB | 10.28 ± 0.02 aB | 10.28 ± 0.03 aB | 10.28 ± 0.02 aB |
LRHCB | 9.73 ± 0.02 aA | 9.73 ± 0.04 aA | 9.73 ± 0.04 aA | 9.73 ± 0.03 aA | |
MixHCB | 10.12 ± 0.02 aA | 10.12 ± 0.03 aA | 10.12 ± 0.02 aA | 10.12 ± 0.04 aA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Witczak, A.; Dmytrów, I.; Mituniewicz-Małek, A. The Effect of Lactiplantibacillus plantarum and Lacticaseiba-cillus Rhamnosus Strains on the Reduction of Hexachlorobenzene Residues in Fermented Goat Milk During Refrigerated Storage. Molecules 2024, 29, 5686. https://doi.org/10.3390/molecules29235686
Witczak A, Dmytrów I, Mituniewicz-Małek A. The Effect of Lactiplantibacillus plantarum and Lacticaseiba-cillus Rhamnosus Strains on the Reduction of Hexachlorobenzene Residues in Fermented Goat Milk During Refrigerated Storage. Molecules. 2024; 29(23):5686. https://doi.org/10.3390/molecules29235686
Chicago/Turabian StyleWitczak, Agata, Izabela Dmytrów, and Anna Mituniewicz-Małek. 2024. "The Effect of Lactiplantibacillus plantarum and Lacticaseiba-cillus Rhamnosus Strains on the Reduction of Hexachlorobenzene Residues in Fermented Goat Milk During Refrigerated Storage" Molecules 29, no. 23: 5686. https://doi.org/10.3390/molecules29235686
APA StyleWitczak, A., Dmytrów, I., & Mituniewicz-Małek, A. (2024). The Effect of Lactiplantibacillus plantarum and Lacticaseiba-cillus Rhamnosus Strains on the Reduction of Hexachlorobenzene Residues in Fermented Goat Milk During Refrigerated Storage. Molecules, 29(23), 5686. https://doi.org/10.3390/molecules29235686