Kinetic and Structural Insights into β-Cyclodextrin Complexation with Asparagine Enantiomers: An Experimental and Theoretical Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Molecular Docking Between the Enantiomeric Forms of Asparagine and β-Cyclodextrin
2.2. Ultrasonic Sensing of the Relaxation Process
2.3. Thermodynamic Evaluation of the Complexation Mechanism
2.4. Vibrational Modes—Short-Range Structure
3. Materials and Methods
3.1. Solutions and Density Measurements
3.2. Ultrasonic Relaxation Spectroscopy
3.3. Vibrational Spectroscopy
3.4. DFT and Molecular Docking Calculations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tiwari, G.; Tiwari, R.; Rai, A. Cyclodextrins in Delivery Systems: Applications. J. Pharm. Bioallied Sci. 2010, 2, 72. [Google Scholar] [CrossRef] [PubMed]
- Pathak, P.; Coutinho, E.C.; Mohanraj, K.; Martis, E.; Jain, V. Chromatographic and Computational Studies on the Chiral Recognition of Sulfated β-Cyclodextrin on Enantiomeric Separation of Milnacipran. ChemRxiv 2020. [Google Scholar] [CrossRef]
- Wu, M.-Y.; Mo, R.-J.; Chen, S.; Rafique, S.; Bian, S.-J.; Tang, Y.-J.; Li, Z.-Q.; Xia, X.-H. Beta-Cyclodextrin-Modified Covalent Organic Framework Nanochannel for Electrochemical Chiral Recognition of Amino Acids. Anal. Chem. 2024, 96, 17665–17671. [Google Scholar] [CrossRef] [PubMed]
- Scriba, G.K.E. Chiral Recognition in Separation Sciences. Part I: Polysaccharide and Cyclodextrin Selectors. TrAC Trends Anal. Chem. 2019, 120, 115639. [Google Scholar] [CrossRef]
- Du, S.; Wey, M.; Armstrong, D.W. d-Amino Acids in Biological Systems. Chirality 2023, 35, 508–534. [Google Scholar] [CrossRef] [PubMed]
- Lomelino, C.L.; Andring, J.T.; McKenna, R.; Kilberg, M.S. Asparagine Synthetase: Function, Structure, and Role in Disease. J. Biol. Chem. 2017, 292, 19952–19958. [Google Scholar] [CrossRef] [PubMed]
- Lea, P.J.; Sodek, L.; Parry, M.A.J.; Shewry, P.R.; Halford, N.G. Asparagine in Plants. Ann. Appl. Biol. 2007, 150, 1–26. [Google Scholar] [CrossRef]
- Teixeira, C.S.S.; Fernandes, H.S.; Fernandes, P.A.; Ramos, M.J.; Cerqueira, N.M.F.S.A. Cancer Therapies Based on Enzymatic Amino Acid Depletion. In Nanostructures for Cancer Therapy; Elsevier: Amsterdam, The Netherlands, 2017; pp. 623–651. ISBN 978-0-323-46144-3. [Google Scholar]
- Jiang, J.; Batra, S.; Zhang, J. Asparagine: A Metabolite to Be Targeted in Cancers. Metabolites 2021, 11, 402. [Google Scholar] [CrossRef] [PubMed]
- Brumano, L.P.; Da Silva, F.V.S.; Costa-Silva, T.A.; Apolinário, A.C.; Santos, J.H.P.M.; Kleingesinds, E.K.; Monteiro, G.; Rangel-Yagui, C.D.O.; Benyahia, B.; Junior, A.P. Development of L-Asparaginase Biobetters: Current Research Status and Review of the Desirable Quality Profiles. Front. Bioeng. Biotechnol. 2019, 6, 212. [Google Scholar] [CrossRef] [PubMed]
- Mayoral-Mariles, A.; Cruz-Revilla, C.; Vega-Manriquez, X.; Aguirre-Hernández, R.; Severiano-Pérez, P.; Aburto-Arciniega, E.; Jiménez-Mendoza, A.; Guevara-Guzmán, R. Plasma Amino Acid Levels Discriminate Between Control Subjects and Mildly Depressed Elderly Women. Arch. Med. Res. 2012, 43, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Ugawa, T.; Nishikawa, S. Kinetic Study for Molecular Recognition of Amino Acid by Cyclodextrin in Aqueous Solution. J. Phys. Chem. A 2001, 105, 4248–4251. [Google Scholar] [CrossRef]
- Mazurek, A.H.; Szeleszczuk, Ł. Current Status of Quantum Chemical Studies of Cyclodextrin Host–Guest Complexes. Molecules 2022, 27, 3874. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Kaur, N.; Kumar Chopra, H. Chiral Recognition Methods in Analytical Chemistry: Role of the Chiral Ionic Liquids. Crit. Rev. Anal. Chem. 2019, 49, 553–569. [Google Scholar] [CrossRef] [PubMed]
- Kouderis, C.; Tsigoias, S.; Siafarika, P.; Kalampounias, A.G. The Effect of Alkali Iodide Salts in the Inclusion Process of Phenolphthalein in β-Cyclodextrin: A Spectroscopic and Theoretical Study. Molecules 2023, 28, 1147. [Google Scholar] [CrossRef] [PubMed]
- Tsigoias, S.; Kouderis, C.; Mylona-Kosmas, A.; Boghosian, S.; Kalampounias, A.G. Proton-Transfer in 1,1,3,3 Tetramethyl Guanidine by Means of Ultrasonic Relaxation and Raman Spectroscopies and Molecular Orbital Calculations. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2020, 229, 117958. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, S.; Kondo, M. Kinetic Study for the Inclusion Complex of Carboxylic Acids with Cyclodextrin by the Ultrasonic Relaxation Method. J. Phys. Chem. B 2006, 110, 26143–26147. [Google Scholar] [CrossRef] [PubMed]
- Fukahori, T.; Nishikawa, S.; Yamaguchi, K. Ultrasonic Relaxation Due to Inclusion Complex of Amino Acid by β-Cyclodextrin in Aqueous Solution. J. Acoust. Soc. Am. 2004, 115, 2325–2330. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, S.; Ugawa, T. Dynamic Interaction between Cyclodextrin and Nonelectrolytes in Aqueous Solutions by Ultrasonic Relaxation Method. J. Phys. Chem. A 2000, 104, 2914–2918. [Google Scholar] [CrossRef]
- Nishikawa, S.; Yokoo, N.; Kuramoto, N. Kinetic Study for Complexation between α-Cyclodextrin and Alcohols in Water by the Ultrasonic Relaxation Method. J. Phys. Chem. B 1998, 102, 4830–4834. [Google Scholar] [CrossRef]
- Jacobson, B. Ultrasonic Velocity in Liquids and Liquid Mixtures. J. Chem. Phys. 1952, 20, 927–928. [Google Scholar] [CrossRef]
- Kouderis, C.; Tryfon, A.; Kabanos, T.A.; Kalampounias, A.G. The Identification of Structural Changes in the Lithium Hexamethyldisilazide—Toluene System via Ultrasonic Relaxation Spectroscopy and Theoretical Calculations. Molecules 2024, 29, 813. [Google Scholar] [CrossRef] [PubMed]
- Stogiannidis, G.; Tsigoias, S.; Kalampounias, A.G. Conformational Energy Barriers in Methyl Acetate—Ethanol Solutions: A Temperature-Dependent Ultrasonic Relaxation Study and Molecular Orbital Calculations. J. Mol. Liq. 2020, 302, 112519. [Google Scholar] [CrossRef]
- Fukahori, T.; Ugawa, T.; Nishikawa, S. Molecular Recognition Kinetics of Leucine and Glycyl-Leucine by β-Cyclodextrin in Aqueous Solution in Terms of Ultrasonic Relaxation. J. Phys. Chem. A 2002, 106, 9442–9445. [Google Scholar] [CrossRef]
- Sambasevam, K.; Mohamad, S.; Sarih, N.; Ismail, N. Synthesis and Characterization of the Inclusion Complex of β-Cyclodextrin and Azomethine. Int. J. Mol. Sci. 2013, 14, 3671–3682. [Google Scholar] [CrossRef] [PubMed]
- De Sousa, F.B.; Oliveira, M.F.; Lula, I.S.; Sansiviero, M.T.C.; Cortés, M.E.; Sinisterra, R.D. Study of Inclusion Compound in Solution Involving Tetracycline and β-Cyclodextrin by FTIR-ATR. Vib. Spectrosc. 2008, 46, 57–62. [Google Scholar] [CrossRef]
- Steed, J.W. Christoph A. Schalley (Editor). Analytical methods in supramolecular chemistry. Wiley–VCH, 2007, 502 pp; ISBN 978-3-527-31505-5 (hardcover). Appl. Organomet. Chem. 2007, 21, 1003. [Google Scholar] [CrossRef]
- Sylvestre, S.; Sebastian, S.; Edwin, S.; Amalanathan, M.; Ayyapan, S.; Jayavarthanan, T.; Oudayakumar, K.; Solomon, S. Vibrational Spectra (FT-IR and FT-Raman), Molecular Structure, Natural Bond Orbital, and TD-DFT Analysis of l-asparagine Monohydrate by Density Functional Theory Approach. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 133, 190–200. [Google Scholar] [CrossRef]
- Kouderis, C.; Siafarika, P.; Kalampounias, A.G. Disentangling Proton-Transfer and Segmental Motion Relaxations in Poly-Vinyl-Alcohol Aqueous Solutions by Means of Ultrasonic Relaxation Spectroscopy. Polymer 2021, 217, 123479. [Google Scholar] [CrossRef]
- Kouderis, C.; Siafarika, P.; Kalampounias, A.G. Molecular Relaxation Dynamics and Self-Association of Dexamethasone Sodium Phosphate Solutions. Chem. Pap. 2021, 75, 6115–6125. [Google Scholar] [CrossRef] [PubMed]
- Kouderis, C.; Siafarika, P.; Tryfon, A.; Banti, C.N.; Hadjikakou, S.K.; Kalampounias, A.G. Kinetic Studies of Surfactant-Aspirin Micellization by Means of Ultrasonic Relaxation Spectroscopy. Chem. Phys. 2024, 579, 112186. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09W, Revision, A. 02; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed]
- Tryfon, A.; Siafarika, P.; Kouderis, C.; Kaziannis, S.; Boghosian, S.; Kalampounias, A.G. Evidence of Self-Association and Conformational Change in Nisin Antimicrobial Polypeptide Solutions: A Combined Raman and Ultrasonic Relaxation Spectroscopic and Theoretical Study. Antibiotics 2023, 12, 221. [Google Scholar] [CrossRef]
Κ [Μ−1] | kf [mol−1Ls−1] | kb [s−1] | |
---|---|---|---|
β-CD—d-Asp | 785 | 2.19 × 1010 | 2.78 × 107 |
β-CD—l-Asp | 766 | 2.21 × 1010 | 2.89 × 107 |
ΔH* (kcal/mol) | ΔS* (cal/mol·K) | |
---|---|---|
β-CD—d-Asp | 3.99 ± 0.31 | −12.69 ± 1.09 |
β-CD—l-Asp | 3.79 ± 0.18 | −13.24 ± 2.62 |
β-CD [mM] | d-Asparagine [mM] | l-Asparagine [mM] | |
---|---|---|---|
Sample 1 | 1.0 | 5.0 | - |
Sample 2 | 5.0 | 5.0 | - |
Sample 3 | 10.0 | 5.0 | - |
Sample 4 | 15.0 | 5.0 | - |
Sample 5 | 1.0 | - | 5.0 |
Sample 6 | 5.0 | - | 5.0 |
Sample 7 | 10.0 | - | 5.0 |
Sample 8 | 15.0 | - | 5.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kouderis, C.; Tsigoias, S.; Siafarika, P.; Kalampounias, A.G. Kinetic and Structural Insights into β-Cyclodextrin Complexation with Asparagine Enantiomers: An Experimental and Theoretical Study. Molecules 2025, 30, 523. https://doi.org/10.3390/molecules30030523
Kouderis C, Tsigoias S, Siafarika P, Kalampounias AG. Kinetic and Structural Insights into β-Cyclodextrin Complexation with Asparagine Enantiomers: An Experimental and Theoretical Study. Molecules. 2025; 30(3):523. https://doi.org/10.3390/molecules30030523
Chicago/Turabian StyleKouderis, Constantine, Stefanos Tsigoias, Panagiota Siafarika, and Angelos G. Kalampounias. 2025. "Kinetic and Structural Insights into β-Cyclodextrin Complexation with Asparagine Enantiomers: An Experimental and Theoretical Study" Molecules 30, no. 3: 523. https://doi.org/10.3390/molecules30030523
APA StyleKouderis, C., Tsigoias, S., Siafarika, P., & Kalampounias, A. G. (2025). Kinetic and Structural Insights into β-Cyclodextrin Complexation with Asparagine Enantiomers: An Experimental and Theoretical Study. Molecules, 30(3), 523. https://doi.org/10.3390/molecules30030523