Application of a Strong Base Anion Exchange Resin for the Removal of Thiophenol from Aqueous Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. IR Spectroscopy
2.3. Experimental Studies of the Adsorption of Thiophenol on AmberLite®IRA402l
- (a)
- All experiments at pH 4, 7 and 9 were performed using 30 mg/L thiophenol solution;
- (b)
- A total of 100 mL of appropriate thiophenol solution were added to a vessel with 1 g of AmberLite®IRA402Cl resin (the first screening tests showed that the sorption of thiophenol is much higher at pH 7 and 9; for thiophenol solution in distilled water, 0.2 g AmberLite®IRA402Cl resin were used);
- (c)
- The samples (sorbate and sorbent) were continuously stirred on a magnetic stirrer at a speed of 100 rpm;
- (d)
- At appropriate time intervals, mixing was temporarily stopped to take 0.5 mL samples of the solutions above the resin for UV spectroscopy tests;
- (e)
- Sampling from above the sorbent surface was continued for approximately 140 min until equilibrium was achieved.
- (a)
- Each time, 100 mL of thiophenol solution (with different ionic strength and different pH values) with a concentration between 1.25 and 35.00 ppm were added to the vessels with 0.5 g of AmberLite®IRA402Cl resin (in the case of pH 7 and 9 and thiophenol solutions (without NaCl addition), the mass of the resin equals 0.2 g);
- (b)
- The prepared samples were shaken for 90 min on an orbital shaker at 120 rpm;
- (c)
- After shaking, the samples were left for another 2 h;
- (d)
- Next, the ultraviolet (UV) spectrum of the solution above the sorbent was measured.
- (a)
- After the sorption process at pH 7 as described above (0.2 g of resin, solution of thiophenol 30 ppm) the resin was separated from the solution and washed with a small amount of distilled water;
- (b)
- To the used resin (0.2 g), 100 mL of different eluents (distilled water, 4%, 9%, 18% hydrochloric acid, 10%NaCl, 10%NaOH) were added;
- (c)
- The used resin, after the adding of regenerant, was shaken on an orbital shaker (120 rpm) for 90 min;
- (d)
- The ultraviolet (UV) spectrum of the solution above the sorbent after the sorption and desorption experiments was measured.
2.4. DFT Calculations of Experimental IR Spectra of Thiophenol
3. Results and Discussion
3.1. Kinetic Experiments
3.2. Sorption Experiments
3.3. Desorption Process of Thiophenol from AmberLite®IRA402 Resin
3.4. Investigation of the Sorption Process of Thiophenol on AmberLite®IRA402 Using FT-IR Spectroscopy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El-Gendy, N.S.; Speight, J.G. Handbook of Refinery Desulfurization; Taylor & Francis: Boca Raton, FL, USA, 2015. [Google Scholar]
- Javadli, R.; de Klerk, A. Desulfurization of heavy oil. Appl. Petrochem. Res. 2012, 1–4, 3–19. [Google Scholar] [CrossRef]
- Silva, S.L.; Silva, A.M.S.; Ribeiro, J.C.; Martins, F.G.; Da Silva, F.A.; Silva, C.M. Chromatographic and spectroscopic analysis of heavy crude oil mixtures with emphasis in nuclear magnetic resonance spectroscopy: A review. Anal. Chem. Acta 2011, 707, 18–37. [Google Scholar] [CrossRef] [PubMed]
- Serjeant, E.P.; Dempsey, B. Ionisation Constants of Organic Acids in Aqueous Solution; International Union of Pure and Applied Chemistry (IUPAC). IUPAC Chemical Data Series no. 23; Pergamon Press, Inc.: New York, NY, USA, 1979; p. 165. [Google Scholar]
- Hell, T.P.; Lindsay, R.C. Toxicological properties of thio- and alkylphenols causing flavor tainting in fish from the upper Wisconsin River. J. Environ. Sci. Health B 1989, 24, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Chen, Y.; Xu, Y.; Wei, Y.; Meng, D.; Wang, B.; Zhang, Z. Monitoring thiophenols in both environmental water samples and bio-samples: A method based on a fluorescent probe with broad pH adaptation. Ecotoxicol. Environ. Saf. 2022, 233, 113340. [Google Scholar] [CrossRef] [PubMed]
- NIOSH. Centers for Disease Control and Prevention. NIOSH Pocket Guide to Chemical Hazards: Benzenethiol. 2019. Available online: https://www.cdc.gov/niosh/npg/npgd0050.html (accessed on 2 October 2024).
- Yu, D.; Huang, F.; Ding, S.; Feng, G. Near-Infrared Fluorescent Probe for Detection of Thiophenols in Water Samples and Living Cells. Anal. Chem. 2014, 86, 8835–8841. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Wang, H.; Xu, J.; Yuan, H.-Q.; Zeng, L.; Bao, G.-M. A new fluorescent chemodosimeter for ultra-sensitive determination of toxic thiophenols in environmental water samples and cancer cells. Sens. Actuators B-Chem. 2018, 254, 21–29. [Google Scholar] [CrossRef]
- Xiao, M.-M.; Ren, H.; Liu, T.-Z.; Li, Z.-Y.; Wang, J.-Z.; Miao, J.-Y.; Zhao, B.-X. Two Fluorescent Turn-on Probes for Detecting Thiophenols in Environmental Water and in Living Cell Imaging. Microchem. J. 2022, 175, 107220. [Google Scholar] [CrossRef]
- Wu, N.; Wu, D.; Shen, Y.; Liu, L.-E.; Ding, L.; Wu, Y.; Jian, N. Fast and sensitive detection of highly toxic thiophenol using β-CD modified nanofibers membrane with promoted fluorescence response. Sens. Actuators B Chem. 2023, 394, 134431. [Google Scholar] [CrossRef]
- Garrison, A.W.; Keith, L.; Shackelford, W.M. Occurrence, Registry, and Classification of Organic Pollutants in Water, with Development of a Master Scheme for their Analysis. In Aquatic Pollutants; Elsevier: Pergamon, Turkey, 1978; pp. 39–68. [Google Scholar]
- Schwarzbauer, J.; Heim, S.; Brinker, S.; Littke, R. Occurrence and alteration of organic contaminants in seepage and leakage water from a waste deposit landfill. Wat. Res. 2002, 36, 2275–2287. [Google Scholar] [CrossRef] [PubMed]
- Chruszcz-Lipska, K. Removal of Thiophenol from Water Using Sepiolite. Minerals 2024, 14, 743. [Google Scholar] [CrossRef]
- Li, G.; Shi, W.; Jia, D.; Fu, Z.; Gao, H.; Tao, J.; Guo, T.; Chen, J.; Shu, X. Review on advances in adsorption material for mercaptan removal from gasoline oil. J. Ind. Eng. Chem. 2024, 139, 36–55. [Google Scholar] [CrossRef]
- Li, Q.; Li, F.; Yang, Y.; Yan, H.; Yu, C. Adsorption mechanism of adsorbents for mercaptan foul-smelling substances: A review. Chem. Eng. Res. Des. 2024, 210, 202–211. [Google Scholar] [CrossRef]
- Antonopoulou, M.; Evgenidou, E.; Lambropoulou, D.; Konstantinou, I. A review on advanced oxidation processes for the removal of taste and odor compounds from aqueous media. Water Res. 2014, 53, 215–234. [Google Scholar] [CrossRef]
- Pino-Cortés, E.; Montalvo, S.; Huiliñir, C.; Cubillos, F.; Gacitúa, J. Characteristics and treatment of wastewater from the mercaptan oxidation process: A comprehensive review. Processes 2020, 8, 425. [Google Scholar] [CrossRef]
- Cadee, K.; O’Leary, B.; Smith, P.; Slunjski, M.; Bourke, M. World’s first magnetic ion exchange (MIEX®) water treatment plant to be installed in Western Australia. In American Water Works Association Conference Proceedings; American Water Works Association Tennessee: Louisville, KY, USA, 2001; Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=5887f94e07655ff0e30b270581d9b6c6956ccd47 (accessed on 15 October 2024).
- Dabrowski, A.; Hubicki, Z.; Podkościelny, P.; Robens, E. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 2004, 56, 91–106. [Google Scholar] [CrossRef]
- Alexandratos, S.D. Ion-Exchange Resins: A Retrospective from Industrial and Engineering Chemistry Research. Ind. Eng. Chem. Res. 2009, 48, 388–398. [Google Scholar] [CrossRef]
- Liu, C.; Dermody, D.; Harris, K.; Boomgaard, T.; Sweeney, J.; Gisch, D.; Goltz, B. Development of a high-throughput ion-exchange resin characterization workflow. ACS Comb. Sci. 2017, 19, 422–436. [Google Scholar] [CrossRef]
- Silva, R.A.; Hawboldt, K.; Zhang, Y.H. Application of resins with functional groups in the separation of metal ions/species—A review. Miner. Process. Extr. Metall. Rev. 2018, 39, 395–413. [Google Scholar] [CrossRef]
- Gu, B.H.; Ku, Y.K.; Brown, G.M. Sorption and desorption of perchlorate and U(VI) by strong-base anion-exchange resins. Environ. Sci. Technol. 2005, 39, 901–907. [Google Scholar] [CrossRef] [PubMed]
- Willison, H.; Boyer, T.H. Secondary effects of anion exchange on chloride, sulfate, and lead release: Systems approach to corrosion control. Water Res. 2012, 46, 2385–2394. [Google Scholar] [CrossRef]
- Naushad, M.; Alothman, Z.A.; Khan, M.R.; Wabaidur, S.M. Removal of bromate from water using De-Acidite FF-IP resin and determination by ultra-performance liquid chromatography-tandem mass spectrometry. CLEAN–Soil Air Water 2013, 41, 528–533. [Google Scholar] [CrossRef]
- Darracq, G.; Baron, J.; Joyeux, M. Kinetic and isotherm studies on perchlorate sorption by ion-exchange resins in drinking water treatment. J. Water Process Eng. 2014, 3, 123–131. [Google Scholar] [CrossRef]
- Çermikli, E.; Sen, F.; Altıok, E.; Wolska, J.; Cyganowski, P.; Kabay, N.; Bryjak, M.; Arda, M.; Yüksel, M. Performances of novel chelating ion exchange resins forboron and arsenic removal from saline geothermal water using adsorption-membrane filtration hybrid process. Desalination 2020, 491, 114504. [Google Scholar] [CrossRef]
- Soyluoglu, M.; Ersan, M.S.; Ateia, M.; Karanfil, T. Removal of bromide from natural waters: Bromide-selective vs. conventional ion exchange resins. Chemosphere 2020, 238, 124583. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, Z.; Huang, M. Purification of uranium-containing wastewater by adsorption: A review of research on resin materials. J. Radioanal. Nucl. Chem. 2022, 331, 3043–3075. [Google Scholar] [CrossRef]
- Liu, G.; Han, C.; Kong, M.; Abdelraheem, W.H.M.; Nadagouda, M.N.; Dionysiou, D.D. Nanoscale zero-valent iron confined in anion exchange resins to enhance selective adsorption of phosphate from wastewater. ACS ES&T Eng. 2022, 2, 1454–1464. [Google Scholar] [CrossRef]
- Bolto, B.; Dixon, D.; Eldridge, R.; King, S. Removal of THM precursors bycoagulation or ion exchange. Water Res. 2002, 36, 5066–5073. [Google Scholar] [CrossRef]
- Cornelissen, E.R.; Moreau, N.; Siegers, W.G.; Abrahamse, A.J.; Rietveld, L.C.; Grefte, A.; Dignum, M.; Amy, G.; Wessels, L.P. Selection of anionic exchange resins for removal of natural organic matter (NOM) fractions. Water Res. 2008, 42, 413–423. [Google Scholar] [CrossRef] [PubMed]
- Cornelissen, E.R.; Beerendonk, E.F.; Nederlof, M.N. Fluidized ion exchange(FIX) to control NOM fouling in ultrafiltration. Desalination 2009, 236, 334–341. [Google Scholar] [CrossRef]
- Croue, J.; Humbert, H. Performance of selected anion exchange resins for the treatment of a high DOC content surface water. Water Res. 2005, 39, 1699–1708. [Google Scholar] [CrossRef]
- Dixit, F.; Barbeau, B.; Mohseni, M. Simultaneous uptake of NOM and Microcystin-LR by anion exchange resins: Effect of inorganic ions and resin regeneration. Chemosphere 2018, 192, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Dixit, F.; Barbeau, B.; Mohseni, M. Impact of natural organic matter characteristics and inorganic anions on the performance of ion exchange resins in natural waters. Water Supply 2020, 20, 3107–3119. [Google Scholar] [CrossRef]
- Levchuk, I.; Rueda Márquez, J.J.; Sillanpää, M. Removal of natural organic matter (NOM) from water by ion exchange—A review. Chemosphere 2018, 192, 90–104. [Google Scholar] [CrossRef]
- Laforce, E.; Stals, I.; Cornelissen, E.R.; Vermeir, P.; De Clercq, J. Revealing the effect of anion exchange resin conditioning on the pH and natural organic matter model compounds removal mechanisms. J. Environ. Chem. Eng. 2022, 10, 108315. [Google Scholar] [CrossRef]
- Flowers, R.C.; Singer, P.C. Anion exchange resins as a source of nitrosamines and nitrosamine precursors. Environ. Sci. Technol. 2013, 47, 7365–7372. [Google Scholar] [CrossRef]
- Dixit, F.; Dutta, R.; Barbeau, B.; Berube, P.; Mohseni, M. PFAS removal by ion exchange resins: A review. Chemosphere 2021, 272, 129777. [Google Scholar] [CrossRef]
- Baltaeva, M.; Orlov, M.; Cha, D.K.; Ayirala, S. Sustainable Ion-Exchange Resins for Produced Water Treatment. In Proceedings of the SPE Middle East Oil and Gas Show and Conference, SPE, Manama, Bahrain, 19–21 February 2023. [Google Scholar] [CrossRef]
- Can, C.E.; Zeidan, H.; Marti, M.E. Efficient recovery of Itaconic acid usingweak and strong anion exchange resins from aqueous solutions. Ind. Eng. Chem. Res. 2024, 63, 5833–5844. [Google Scholar] [CrossRef]
- Korak, J.A.; Mungan, A.L.; Watts, L.T. Critical review of waste brine managementstrategies for drinking water treatment using strong base ion exchange. J. Hazard. Mater. 2022, 441, 129473. [Google Scholar] [CrossRef]
- Lenntech. AmberliteTM IRA402Cl Ion Exchange Resin. 2019. Available online: https://www.lenntech.com/products/DuPont-Resins/IRA402-Cl/AmberLite-IRA402-Cl-Ion-Exchange-Resin/index.html?lang=English&utm_source=google&utm_medium=cpc&utm_campaign=834679918&utm_content=149055102167&utm_term=dsa-1945500216718&matchtype=&device=c&placement=&network=g&gad_source=1&gclid=CjwKCAjwgfm3BhBeEiwAFfxrG2m2JdenLajncrbd3J3WyBbu95vG6A-D2_bjwAM-3bnht2UORGc9ERoClBgQAvD_BwE (accessed on 3 October 2024).
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.01 [Software]; Gaussian, Inc.: Wallingford, CT, USA, 2016; Available online: https://gaussian.com/gaussian16 (accessed on 15 October 2024).
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785. [Google Scholar] [CrossRef] [PubMed]
- Becke, A.D. A new mixing of Hartree–Fock and local density functional theories. J. Chem. Phys. 1993, 98, 1372–1377. [Google Scholar] [CrossRef]
- Foresman, J.B.; Frisch, A. Exploring Chemistry with Electronic Structure Methods, 2nd ed.; Gaussian, Inc.: Pittsburgh, PA, USA, 1996. [Google Scholar]
- Cances, E.; Mennucci, B.; Tomasi, J. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys. 1997, 107, 3032–3041. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef]
- Dennington, R.; Keith, T.; Millam, J. GaussView, Version 5; Semichem, Inc.: Mission, KS, USA, 2009. [Google Scholar]
- Leszczyńska, M.; Hubicki, Z. Application of weakly and strongly basic anion exchangers for the removal of brilliant yellow from aqueous solutions. Desalin. Water Treat. 2009, 2, 156–161. [Google Scholar] [CrossRef]
- Marin, N.M.; Stanculescu, I. Application of amberlite IRA 402 resin adsorption and laccase treatment for acid blue 113 removalfrom aqueous media. Polymers 2021, 13, 3991. [Google Scholar] [CrossRef]
- Dulman, V.; Simion, C.; Bârsănescu, A.; Bunia, I.; Neagu, V. Adsorption of anionic textile dye Acid Green 9 from aqueous solution onto weak or strong base anion exchangers. J. Appl. Polym. Sci. 2009, 113, 615–627. [Google Scholar] [CrossRef]
- Víctor-Ortega, M.D.; Ochando-Pulido, J.M.; Martínez-Férez, A. Phenols removal from industrial effluents through novel polymeric resins: Kinetics and equilibrium studies. Sep. Purif. Technol. 2016, 160, 136–144. [Google Scholar] [CrossRef]
- Marin, N.M.; Tiron, O.; Pascu, L.F.; Costache, M.; Nita-Lazar, M.; Badea, I.A. Synergistic methodology based on ion exchange and biodegradation mechanisms applied for metal complex dye removal from waste waters. Rev. Chim. 2018, 69, 38–44. [Google Scholar] [CrossRef]
- Wawrzkiewicz, M.; Wołowicz, A.; Hubicki, Z. Strongly basic anion exchange resin based on a cross-linked polyacrylate for simultaneous C.I. Acid Green 16, Zn(II), Cu(II), Ni(II) and phenol removal. Molecules 2022, 27, 2096. [Google Scholar] [CrossRef]
- Redlich, O.J.D.L.; Peterson, D.L. A useful adsorption isotherm. J. Phys. Chem. 1959, 63, 1024. [Google Scholar] [CrossRef]
- Shahbeig, H.; Bagheri, N.; Ghorbanian, S.A.; Hallajisani, A.; Poorkarimi, S. A new adsorption isotherm model of aqueous solutions on granular activated carbon. World J. Modell. Simul. 2013, 9, 243–254. [Google Scholar]
- Ehiomogue, P.; Ahuchaogu, I.I.; Ahaneku, I.E. Review of Adsorption Isotherms Models. Acta Tech. Corviniensis-Bull. Eng. 2021, 14, 87–96. [Google Scholar]
- Greluk, M.; Hubicki, Z.; Wołowicz, A. Sorption of the acid dyes onto strongly basic anion exchanger: Kinetic and equilibrium studies. Chall. Mod. Technol. 2011, 2, 74–78. [Google Scholar]
- Víctor-Ortega, M.D.; Ochando-Pulido, J.O.; Martínez-Férez, A. Equilibrium studies on phenol removal from industrial wastewater through polymeric resins. Chem. Eng. Trans. 2016, 47, 253–258. [Google Scholar] [CrossRef]
- Liu, Y.L.; Sun, M. Ion exchange removal and resin regeneration to treat per- and polyfluoroalkyl ether acids and other emerging PFAS in drinking water. Water Res. 2021, 207, 11778. [Google Scholar] [CrossRef]
- Available online: https://www.lenntech.com/Data-sheets/Amberlite-IRA-402-Cl-L.pdf (accessed on 15 September 2024).
- Available online: https://www.beslbd.com/wp-content/uploads/2017/04/Amberlite-IR-402-Cl.pdf (accessed on 15 September 2024).
- Available online: https://www.dupont.com/content/dam/dupont/amer/us/en/water-solutions/public/documents/en/IER-AmberLite-IRA402-Cl-PDS-45-D01251-en.pdf (accessed on 15 September 2024).
- Paulino, J.F.; Afonso, J.C. New strategies for treatment and reuse of spent sulfidic caustic stream from petroleum industry. Quím. Nova 2012, 35, 1447–1452. [Google Scholar] [CrossRef]
- Jachuła, J.; Hubicki, Z. Removal of Cr(VI) and As(V) ions from aqueous solutions by polyacrylate and polystyrene anion exchange resins. Appl. Water Sci. 2013, 3, 653–664. [Google Scholar] [CrossRef]
- Morales, D.V.; Rivas, B.L.; González, M. Poly (4-vinylbenzyl) trimethylammonium chloride) resin with removal properties for vanadium (V) and molybdenum (VI). A thermodynamic and kinetic study. J. Chil. Chem. Soc. 2021, 66, 5118–5124. [Google Scholar] [CrossRef]
- Marin, N.M.; Ficai, A.; Constantin, L.A.; Motelica, L.; Trusca, R. New Chelate Resins Prepared with Direct Red 23 for Cd2+, Ni2+, Cu2+ and Pb2+ Removal. Polymers 2022, 14, 5523. [Google Scholar] [CrossRef]
- Marin, N.M.; Dolete, G.; Motelica, L.; Trusca, R.; Oprea, O.C.; Ficai, A. Preparation of Eco-Friendly Chelating Resins and Their Applications for Water Treatment. Polymers 2023, 15, 2251. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wu, D.; Xu, X.; Gu, R. Theoretical and experimental studies on the adsorption behavior of thiophenol on gold nanoparticles. J. Raman Spectrosc. 2007, 38, 1436–1443. [Google Scholar] [CrossRef]
- Tetsassi Feugmo, C.G.; Liégeois, V. Analyzing the vibrational signatures of thiophenol adsorbed on small gold clusters by DFT calculations. ChemPhysChem 2013, 14, 1633–1645. [Google Scholar] [CrossRef]
- Tripathi, A.; Emmons, E.D.; Christesen, S.D.; Fountain, A.W., III; Guicheteau, J.A. Kinetics and reaction mechanisms of thiophenol adsorption on gold studied by surface-enhanced Raman spectroscopy. J. Phys. Chem. C 2013, 117, 22834–22842. [Google Scholar] [CrossRef]
- Holze, R. The adsorption of thiophenol on gold–a spectroelectrochemical study. Phys. Chem. Chem. Phys. 2015, 17, 21364–21372. [Google Scholar] [CrossRef]
- Steen, J.D.; Volker, A.; Duijnstee, D.R.; Sardjan, A.S.; Browne, W.R. pH-Induced changes in the SERS spectrum of thiophenol at gold electrodes during cyclic voltammetry. J. Phys. Chem. C 2022, 126, 7680–7687. [Google Scholar] [CrossRef]
- Dujardin, M.C.; Caze, C.; Vroman, I. Ion-exchange resins bearing thiol groups to remove mercury.: Part 1: Synthesis and use of polymers prepared from thioester supported resin. React. Funct. Polym. 2000, 43, 123–132. [Google Scholar] [CrossRef]
- Podkościelna, B.; Kołodyńska, D. A new type of cation-exchange polymeric microspheres with pendant methylenethiol groups. Polym. Adv. Technol. 2013, 24, 866–872. [Google Scholar] [CrossRef]
- Wan, L.J.; Terashima, M.; Noda, H.; Osawa, M. Molecular orientation and ordered structure of benzenethiol adsorbed on gold (111). J. Phys. Chem. B 2000, 104, 3563–3569. [Google Scholar] [CrossRef]
- Chruszcz-Lipska, K.; Szostak, E. A Study of the Structure of an Anion Exchange Resin with a Quaternary Ammonium Functional Group by Using Infrared Spectroscopy and DFT Calculations. Materials 2024, 17, 6132. [Google Scholar] [CrossRef]
Amberlite®IRA402Cl | |
---|---|
Type | Strong base anion Type I |
Copolymer | Styrene-divinylbenzene |
Functional Group | Trimethylammonium |
Ionic Form as Shipped | Cl− |
Total Exchange Capacity | ≥1.20 eq/L (Cl− form) |
Water Retention Capacity | 49.0–59.0% (Cl− form) |
Particle Diameter | 600–750 μm |
Particle Density | 1.07 g/mL |
Shipping Weight | 670 g/L |
pH | Solvent | Pseudo-First Order Model qt = qe(1 − ek1t) Plot qe Versus t | Pseudo-Second Order Model Plot qe Versus t | ||||||
---|---|---|---|---|---|---|---|---|---|
qe | k1 | Chi2 | RMSE | qe | k2 | Chi2 | RMSE | ||
4 | distilled water | 0.460 | 0.033 | 0.074 | 0.024 | 0.610 | 0.048 | 0.087 | 0.027 |
0.1 NaCl | 0.400 | 0.088 | 0.035 | 0.027 | 0.440 | 0.291 | 0.009 | 0.016 | |
7 | distilled water | 14.070 | 0.252 | 0.255 | 0.429 | 14.970 | 0.029 | 0.028 | 0.136 |
0.1 NaCl | 2.820 | 0.408 | 0.025 | 0.074 | 2.930 | 0.287 | 0.001 | 0.012 | |
9 | distilled water | 14.090 | 0.255 | 0.229 | 0.380 | 14.790 | 0.031 | 0.222 | 0.435 |
0.1 NaCl | 1.920 | 0.180 | 0.260 | 0.178 | 2.100 | 0.116 | 0.090 | 0.103 |
Isotherm Model | pH | Solvent | Constants | Quality of Fitting | ||
---|---|---|---|---|---|---|
KL/KF | QL/1/n | Chi2 | RMSE | |||
Langmuir plot versus | 4 | distilled water | 0.175 | 0.571 | 0.025 | 0.023 |
0.1 M NaCl | 0.104 | 0.734 | 0.121 | 0.051 | ||
7 | distilled water | 0.221 | 18.936 | 4.567 | 1.337 | |
0.1 M NaCl | 0.054 | 4.853 | 0.223 | 0.192 | ||
9 | distilled water | 0.404 | 16.351 | 6.677 | 1.966 | |
0.1 M NaCl | 0.043 | 4.684 | 0.416 | 0.226 | ||
Freundlich plot versus | 4 | distilled water | 0.148 | 0.386 | 0.033 | 0.026 |
0.1 M NaCl | 0.128 | 0.458 | 0.144 | 0.055 | ||
7 | distilled water | 4.05 | 0.454 | 10.546 | 2.193 | |
0.1 M NaCl | 0.488 | 0.542 | 0.319 | 0.227 | ||
9 | distilled water | 5.198 | 0.346 | 10.845 | 2.578 | |
0.1 M NaCl | 0.411 | 0.548 | 0.571 | 0.267 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chruszcz-Lipska, K.; Winid, B.; Solecka, U. Application of a Strong Base Anion Exchange Resin for the Removal of Thiophenol from Aqueous Solution. Molecules 2025, 30, 525. https://doi.org/10.3390/molecules30030525
Chruszcz-Lipska K, Winid B, Solecka U. Application of a Strong Base Anion Exchange Resin for the Removal of Thiophenol from Aqueous Solution. Molecules. 2025; 30(3):525. https://doi.org/10.3390/molecules30030525
Chicago/Turabian StyleChruszcz-Lipska, Katarzyna, Bogumiła Winid, and Urszula Solecka. 2025. "Application of a Strong Base Anion Exchange Resin for the Removal of Thiophenol from Aqueous Solution" Molecules 30, no. 3: 525. https://doi.org/10.3390/molecules30030525
APA StyleChruszcz-Lipska, K., Winid, B., & Solecka, U. (2025). Application of a Strong Base Anion Exchange Resin for the Removal of Thiophenol from Aqueous Solution. Molecules, 30(3), 525. https://doi.org/10.3390/molecules30030525