Sweet Clover (Melilotus spp.) as a Source of Biologically Active Compounds
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Optimisation of the Extraction Process
2.2. Phenolic Compound Profile
2.3. Antioxidant Activity
2.4. Multivariate Statistical Analysis
2.4.1. Principal Component Analysis (PCA)
2.4.2. Hierarchical Clustering Analysis (HCA) and Heatmap Visualisation
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Plant Material
3.3. Extract Preparation
- Solvent type: 50% (v/v) ethanol solution, 80% (v/v) methanol solution, boiling water, and 10% NaCl (w/v) boiling solution.
- Extraction methods: grinding in a mortar (without shaking), shaking in a rotary shaker (Biosan ES-20/60, Riga, Latvia) for 30 min at 200 rpm, and ultrasound-assisted extraction using an ultrasonic bath (U-504 Ultron, Moorpark, CA, USA) at 560 W and 40 kHz for 30 min at room temperature (20 ± 2 °C).
3.4. HPLC Analysis
3.5. Analysis of Antioxidant Activity
3.6. Total Phenolic Content (TPC)
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- USDA, Agricultural Research Service, National Plant Germplasm System. Germplasm Resources Information Network (GRIN Taxonomy). National Germplasm Resources Laboratory, Beltsville, Maryland. Available online: https://grin-global.warwick.ac.uk/gringlobal/taxon/taxonomydetail?id=23994 (accessed on 4 October 2024).
- Chorepsima, S.; Tentolouris, K.; Dimitroulis, D.; Tentolouris, N. Melilotus: Contribution to wound healing in diabetic foot. J. Herb. Med. 2013, 3, 81–86. [Google Scholar] [CrossRef]
- Editors of the American Heritage Dictionaries. The American Heritage Dictionary of the English Language, 4th ed.; Houghton Mifflin Company: New York, NY, USA, 2000; p. 1094. [Google Scholar]
- Rogers, M.E.; Colmer, T.D.; Frost, K.; Henry, D.; Cornwall, D.; Hulm, E.; Deretic, J.; Hughes, S.R.; Craig, A.D. Diversity in the genus Melilotus for tolerance to salinity and waterlogging. Plant Soil. 2008, 304, 89–101. [Google Scholar] [CrossRef]
- Sowa, P.; Jarecki, W.; Dżugan, M. Nostrzyk (Melilotus)-zapomniana roślina o dużym znaczeniu gospodarczym. Zesz. Probl. Post. Nauk Roln. 2018, 593, 73–85. [Google Scholar] [CrossRef]
- Xu, P.; Meng, M.; Zhang, J. A comparative plastome approach enhances the assessment of genetic variation in the Melilotus genus. BMC Genom. 2024, 25, 556. [Google Scholar] [CrossRef]
- Di, H.; Duan, Z.; Luo, K.; Zhang, D.; Wu, F.; Zhang, J.; Liu, W.; Wang, Y. Interspecific Phylogenic Relationships within Genus Melilotus Based on Nuclear and Chloroplast DNA. PLoS ONE 2015, 14, e0225421. [Google Scholar] [CrossRef]
- Luo, K.; Wu, F.; Zhang, D.; Dong, R.; Fan, Z.; Zhang, R.; Yan, Z.; Wang, Y.; Zhang, J. Transcriptomic profiling of Melilotus albus near-isogenic lines contrasting for coumarin content. Sci. Rep. 2017, 7, 4577. [Google Scholar] [CrossRef]
- Wu, F.; Ma, J.; Meng, Y.; Zhang, D.; Pascal Muvunyi, B.; Luo, K.; Di, H.; Guo, W.; Wang, Y.; Feng, B. Potential DNA barcodes for Melilotus species based on five single loci and their combinations. PLoS ONE 2017, 12, e0182693. [Google Scholar] [CrossRef]
- Zhang, J.; Di, H.; Luo, K.; Jahufer, Z.; Wu, F.; Duan, Z.; Stewart, A.; Yan, Z.; Wang, Y. Coumarin Content, Morphological Variation, and Molecular Phylogenetics of Melilotus. Molecules 2018, 23, 810. [Google Scholar] [CrossRef]
- Ouyang, Z.; Wang, Y.; Ma, T.; Kanzana, G.; Wu, F.; Zhang, J. Genome-wide identification and development of LTR retrotransposon-based molecular markers for the Melilotus Genus. Plants 2021, 10, 890. [Google Scholar] [CrossRef]
- EMA Committee on Herbal Medicinal Products (HMPC). Assessment Report on Melilotus officinalis (L.) Lam., herba EMA/HMPC/44165/2016. Available online: https://www.fitoterapia.net/archivos/201704/wc500225876.pdf?1 (accessed on 28 December 2024).
- Derakhshan, M.A.; Nazeri, N.; Khoshnevisan, K.; Heshmat, R.; Omidfar, K. Three-layered PCL-collagen nanofibers containing melilotus officinalis extract for diabetic ulcer healing in a rat model. J. Diabetes Metab. Disord. 2022, 21, 313–321. [Google Scholar] [CrossRef]
- Tanideh, N.; Safa, O.; Kheradmand, S.; Zarshenas, M.M.; Mokhtari, M.; Hosseinabadi, O.K.; Seddighi, A.; Jamshidzadeh, A.; Yeganeh, B.S.; Omidi, M.; et al. Induced third- degree Burn in Rat: Healing by Melilotus officinalis Extract as Medicinal Plant. Trends Pharm. Sci. 2018, 4, 33–40. [Google Scholar]
- Safarpour, A.R.; Kaviyani, F.; Sepehrimanesh, M.; Ahmadi, N.; Hosseinabadi, O.K.; Tanideh, N.; Showraki, N. Antioxidant and Anti-Inflammatory Effects of Gel and Aqueous Extract of Melilotus officinalis L. in Induced Ulcerative Colitis: A Rattus norvegicus Model. Ann. Color. Res. 2015, 3, e29511. [Google Scholar] [CrossRef]
- Zhao, G.; Yuan, Y.; Chai, F.; Ji, F. Effect of Melilotus officinalis extract on the apoptosis of brain tissues by altering celebral thrombosis and inflammatory mediators in acute cerebral ischemia. Biomed. Pharmacother. 2017, 89, 1346–1352. [Google Scholar] [CrossRef] [PubMed]
- Bazazzadegan, N.; Shasaltaneh, M.N.; Saliminejad, K.; Kamali, K.; Banan, M.; Khorshid, K.S.K. The Effects of Melilotus officinalis Extract on Expression of Daxx, Nfkb and Vegf Genes in the Streptozotocin-Induced Rat Model of Sporadic Alzheimer’s Disease. Avicenna J. Med. Biotechnol. 2017, 9, 133–137. [Google Scholar]
- Witkowska-Banaszczak, E.; Szymański, M.; Działakiewicz, Ł.; Bylka, W. Ziele nostrzyka- działanie, zastosowanie, stan badań. Post. Fitoter. 2016, 2, 91–96. [Google Scholar]
- Plesca-Manea, L.; Parvu, A.E.; Parvu, M.; Taamas, M.; Buia, R.; Puia, M. Effects of Melilotus officinalis on Acute Inflammantion. Phytother. Res 2002, 16, 316–319. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Tao, Z.L.; Huang, Z.J.; Xiong, F.L.; Zhang, S.L.; Li, C.M.; Xiao, F. In vitro anti-inflammatory effects of different solution fractions of ethanol extract from Melilotus suaveolens Ledeb. Chin. Med. J. 2007, 120, 1992–1998. [Google Scholar] [CrossRef]
- Karakas, F.P.; Yildrim, A.; Turker, A. Biological screening of various medicinal plant extracts for antibacterial and antitumor activities. Turk. J. Biol. 2012, 36, 641–652. [Google Scholar] [CrossRef]
- Braga, P.C.; Sasso, M.D.; Lattuada, N.; Marabini, L.; Calò, R.; Antonacci, R.; Bertelli, A.; Falchi, M.; Verducci, P. Antioxidant activity of Melilotus officinalis extract investigated by means of the radical scavenging activity, the chemiluminescence of human neutrophil bursts and lipoperoxidation assay. J. Med. Plants Res. 2013, 7, 358–365. [Google Scholar] [CrossRef]
- Anwer, M.S.; Shamim, S.; Ahmed, S.; Hasan, M.M.; Azhar, I. Hypotensive activity of Melilotus officinalis (L.) Pallas. Eur. J. Medicine. Ser. B 2015, 3, 80–85. [Google Scholar] [CrossRef]
- Stefanović, O.D.; Tesić, J.D.; Comić, L.R. Melilotus albus and Dorycnium herbaceum extracts as source of phenolic compounds and their antimicrobial, antibiofilm, and antioxidant potentials. J. Food Drug Anal. 2015, 23, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Mladenović, K.G.; Muruzović, M.Z.; Stefanović, O.D.; Vasić, S.M.; Ljana, L.; Comić, R. Antimicrobial, antioxidant and antibiofilm activity of extracts of Melilotus officinalis (L.) Pall. J. Anim. Plant Sci. 2016, 26, 1436–1444. [Google Scholar]
- Hashim, F.J.; Hussain, S.M.; Shawkat, M.S. Separation, Characterization and Anticoagulant Activity of Coumarin and its Derivatives Extracted from Melilotus officinalis. Biosci. Biotechnol. Res. Asia 2017, 14, 13–23. [Google Scholar] [CrossRef]
- Liu, Y.T.; Gong, P.H.; Xiao, F.Q.; Shao, S.; Zhao, D.Q.; Yan, M.M.; Yang, X.W. Chemical Constituents and Antioxidant, Anti-Inflammatory and Anti-Tumor Activities of Melilotus officinalis (Linn.) Pall. Molecules 2018, 23, 271. [Google Scholar] [CrossRef]
- Borhani, G.; Mazandarani, M.; Abbaspour, H. Antioxidant, Antibacterial Activity, Ethnopharmacology, Phytochemical in Different Extracts of Melilotus officinalis L. as an Anti-infection and Anti-diabetic in Traditional Uses of Two Northern Provinces From Iran. Crescent J. Med. Biol. Sci. 2024, 2, 83–91. [Google Scholar] [CrossRef]
- Casley-Smith, J.R.; Wang, C.T.; Casley-Smith, J.R.; Zi-hai, C. Treatment of filarial lymphoedema and elephantiasis with 5,6-benzo alpha-pyrone (coumarin). BMJ 1993, 307, 1037–1041. [Google Scholar] [CrossRef]
- Casley-Smith, J.R. Benzo-pyrones in the treatment of lymphoedema. Int. Angiol. 1999, 18, 31–41. [Google Scholar]
- Perrin, M.; Ramelet, A.A. Pharmacological Treatment of Primary Chronic Venous Disease: Rationale, Results and Unanswered Questions. Eur. J. Vasc. Endovasc. Surg. 2011, 41, 117–125. [Google Scholar] [CrossRef]
- Kubrak, K.; Podgórski, R.; Stompor, M. Natural and Synthetic Coumarins and their Pharmacological Activity. Eur. J. Clin. Exp. Med. 2017, 15, 169–175. [Google Scholar] [CrossRef]
- Sowa-Borowiec, P.; Nagalievska, M.; Piechowiak, T.; Sybirna, N.; Dżugan, M. The phenolic profile of rapeseed honey enriched with Melilotus albus flowers and its inhibitory effect on rat platelet aggregation. Zywnosc Nauk. Technol. Jakosc 2023, 4, 168–183. [Google Scholar] [CrossRef]
- Lake, B.G. Coumarin: Metabolism, Toxicity and Carcinogenicity: Relevance for Human Risk Assessment. Food Chem. Toxicol. 1999, 37, 423–453. [Google Scholar] [CrossRef]
- Felter, S.P.; Vassallo, J.D.; Carlton, B.D.; Daston, G.P. A safety assessment of coumarin taking into account species-specificity of toxicokinetics. Food Chem. Toxicol. 2006, 44, 462–475. [Google Scholar] [CrossRef] [PubMed]
- Sproll, C.; Ruge, W.; Andlauer, C.; Godelmann, R.; Lachenmeier, D.W. HPLC analysis and safety assesment of coumarin in foods. Food Chem. 2008, 109, 462–469. [Google Scholar] [CrossRef] [PubMed]
- Sowa-Borowiec, P.; Jarecki, W.; Dżugan, M. The Effect of Sowing Density and Different Harvesting Stages on Yield and Some Forage Quality Characters of the White Sweet Clover (Melilotus albus). Agriculture 2022, 12, 575. [Google Scholar] [CrossRef]
- Bourgaud, F.; Poutaraud, A.; Guckert, A. Extraction of Coumarins from Plant Material (Leguminosae). Phytochem. Anal. 1994, 5, 127–132. [Google Scholar] [CrossRef]
- Celeghini, R.M.S.; Vilegas, J.H.Y.; Lanças, F.M. Extraction and Quantitative HPLC Analysis of Coumarin in Hydroalcoholic Extracts of Mikania glomerata Spreng. (“guaco”) Leaves. J. Brazil Chem. Soc. 2001, 12, 706–709. [Google Scholar] [CrossRef]
- Martino, E.; Ramaiola, I.; Urbano, M.; Bracco, F.; Collina, S. Microwave-assisted extraction of coumarin and related compounds from Melilotus officinalis (L.) Pallas as an alternative to Soxhlet and ultrasoud-assisted extraction. J. Chromatogr. A 2006, 1125, 147–151. [Google Scholar] [CrossRef]
- Maggi, F.; Barboni, L.; Caprioli, G.; Papa, F.; Ricciutelli, M.; Sagratini, G.; Vittori, S. HPLC quantification of coumarin in bastard balm (Melittis melissophyllum L., Lamiaceae). Fitoterapia 2011, 82, 1215–1221. [Google Scholar] [CrossRef]
- Savic, I.M.; Savic Gajic, I.M. Optimisation of ultrasound-assisted extraction of polyphenols from wheatgrass (Triticum aestivum L.). J. Food Sci. Technol. 2020, 57, 2809–2818. [Google Scholar] [CrossRef]
- Campos, M.G.; Markham, K.R. Structure Information from HPLC and on-Line Measured Absorption Spectra: Flavones, Flavonols and Phenolic Acids; Imprensa da Universidade de Coimbra, Coimbra; Coimbra University Press: Coimbra, Portugal, 2007. [Google Scholar]
- Lin, L.-Z.; Harnly, J.M. A Screening Method for the Identification of Glycosylated Flavonoids and Other Phenolic Compounds Using a Standard Analytical Approach for All Plant Materials. J. Agric. Food Chem. 2007, 55, 1084–1096. [Google Scholar] [CrossRef]
- Kitchen, J.L.; Mclachlan, D.; Hughes, S.; Revell, D.K. Variation in coumarin concentration between lines of Melilotus sp. Anim. Prod. 2002, 24, 318. [Google Scholar]
- Nair, R.M.; Whittal, A.; Hughes, S.J.; Craig, A.D.; Revell, D.K.; Miller, S.M.; Powell, T.; Auricht, G.C. Variation in coumarin content of Melilotus species grown in South Australia. N. Z. J. Agric. Res. 2010, 53, 201–213. [Google Scholar] [CrossRef]
- Abbasi, M.R.; Hosseini, S.; Pourakbar, L. Coumarin Variation in Iranian Biennial Melilotus Genetic Resources and its Relationship with Agro-morphophenological Traits. J. Crop Sci. Biotechnol. 2017, 20, 89–98. [Google Scholar] [CrossRef]
- Bubenchikova, V.N.; Drozdova, I.L. HPLC analysis of phenolic compounds in yellow sweet-clover. Pharm. Chem. J. 2004, 38, 195–196. [Google Scholar] [CrossRef]
- Wesołowska, M.; Dżugan, M. The Use of the PHOTOCHEM Device in Evaluation of Antioxidant Activity of Polish Honey. Food Anal. Methods 2017, 10, 1568–1574. [Google Scholar] [CrossRef]
- Pérez-Gálvez, A.; Viera, I.; Roca, M. Carotenoids and Chlorophylls as Antioxidants. Antioxidants 2020, 9, 505. [Google Scholar] [CrossRef]
- Alvarez-Parrilla, E.; de la Rosa, L.A.; Amarowicz, R.; Shahidi, F. Antioxidant Activity of Fresh and Processed Jalapeño and Serrano Peppers. J. Agric. Food Chem. 2011, 59, 163–173. [Google Scholar] [CrossRef]
- ICH Q2(R1): Validation of Analytical Procedures: Text and Methodology. International Conference on Harmonization, Geneva. 2005. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-guideline-q2r1-validation-analytical-procedures-text-methodology-step-5-first-version_en.pdf (accessed on 10 January 2025).
- Sowa, P.; Marcinčáková, D.; Miłek, M.; Sidor, E.; Legáth, J.; Dżugan, M. Analysis of Cytotoxicity of Selected Asteraceae Plant Extracts in Real Time, Their Antioxidant Properties and Polyphenolic Profile. Molecules 2020, 25, 5517. [Google Scholar] [CrossRef]
Methods | Solvent | Coumarin [mg/g] | o-Coumaric Acid [mg/g] | Melilotic Acid [mg/g] |
---|---|---|---|---|
Dried Melilotus albus flowers | ||||
Grinding in a mortar with a solvent | 50% (v/v) ethanol | 10.36 ± 0.11 a | 0.21 ± 0.01 a | 2.26 ± 0.11 a |
80% (v/v) methanol | 2.42 ± 0.19 b | 0.19 ± 0.02 a | 2.26 ± 0.20 a | |
boiling water | 12.00 ± 0.90 c | 0.19 ± 0.01 a | 1.88 ± 0.05 a,c | |
boiling 10% (w/v) NaCl | 11.32 ± 0.07 a | 0.17 ± 0.08 a | 0.99 ± 0.06 b | |
Shaking in a laboratory shaker | 50% (v/v) ethanol | 3.25 ± 0.34 b | 0.18 ± 0.02 a | 2.28 ± 0.02 a |
80% (v/v) methanol | 2.16 ± 0.07 b | 0.18 ± 0.03 a | 2.05 ± 0.02 a | |
boiling water | 2.80 ± 0.39 b | 0.17 ± 0.02 a | 1.90 ± 0.32 a | |
boiling 10% (w/v) NaCl | 2.33 ± 0.11 b | 0.19 ± 0.02 a | 1.44 ± 0.12 b,c | |
Ultrasound-assisted extraction | 50% (v/v) ethanol | 5.87 ± 0.17 d | 0.20 ± 0.02 a | 2.29 ± 0.14 a |
80% (v/v) methanol | 2.21 ± 0.04 b | 0.19 ± 0.01 a | 2.15 ± 0.05 a | |
boiling water | 3.82 ± 0.12 b | 0.18 ± 0.05 a | 1.83 ± 0.06 a,c | |
boiling 10% (w/v) NaCl | 5.64 ± 0.04 d | 0.20 ± 0.01 a | 0.98 ± 0.12 b | |
Dried Melilotus officinalis flowers | ||||
Grinding in a mortar with a solvent | 50% (v/v) ethanol | 7.94 ± 0.14 a | 0.46 ± 0.01 a | 2.67 ± 0.03 a,c |
80% (v/v) methanol | 2.18 ± 0.25 b | 0.48 ± 0.05 a | 1.29 ± 0.12 a,b | |
boiling water | 9.56 ± 0.24 c | 0.50 ± 0.04 a | 1.47 ± 0.08 a | |
boiling 10% (w/v) NaCl | 9.27 ± 0.18 c | 0.45 ± 0.04 a | 1.59 ± 0.18 a,b | |
Shaking in a laboratory shaker | 50% (v/v) ethanol | 2.89 ± 0.05 b,f | 0.44 ± 0.02 a | 1.86 ± 0.14 a |
80% (v/v) methanol | 1.99 ± 0.04 b | 0.42 ± 0.03 a | 1.28 ± 0.65 a | |
boiling water | 3.10 ± 0.02 d,f | 0.46 ± 0.03 a | 1.35 ± 0.05 a | |
boiling 10% (w/v) NaCl | 2.22 ± 0.01 b | 0.48 ± 0.01 a | 1.34 ± 0.12 a | |
Ultrasound-assisted extraction | 50% (v/v) ethanol | 5.54 ± 0.06 e | 0.45 ± 0.01 a | 1.36 ± 0.01 a |
80% (v/v) methanol | 2.10 ± 0.02 b | 0.47 ± 0.01 a | 1.30 ± 0.02 a,b | |
boiling water | 5.30 ± 0.11 e | 0.46 ± 0.02 a | 1.20 ± 0.35 a,b | |
boiling 10% (w/v) NaCl | 5.82 ± 0.05 e | 0.49 ± 0.03 a | 1.25 ± 0.24 a,b | |
Fresh Melilotus albus flowers | ||||
Grinding in a mortar with a solvent | 50% (v/v) ethanol | 18.77 ± 0.11 a | <LOQ | 0.98 ± 0.03 a,b |
80% (v/v) methanol | 19.76 ± 0.22 a | <LOQ | 1.24 ± 0.03 a | |
boiling water | 22.32 ± 0.52 b | <LOQ | 1.10 ± 0.02 a | |
boiling 10% (w/v) NaCl | 23.66 ± 0.11 c | <LOQ | 1.27 ± 0.11 a | |
Shaking in a laboratory shaker | 50% (v/v) ethanol | 18.67 ± 0.08 a | <LOQ | 1.02 ± 0.04 a |
80% (v/v) methanol | 19.76 ± 0.12 a | <LOQ | 1.43 ± 0.05 a,c | |
boiling water | 21.40 ± 0.10 b | <LOQ | 1.03 ± 0.04 a | |
boiling 10% (w/v) NaCl | 22.12 ± 0.22 b | <LOQ | 1.16 ± 0.04 a | |
Ultrasound-assisted extraction | 50% (v/v) ethanol | 18.71 ± 0.11 a | <LOQ | 0.87 ± 0.11 a,b |
80% (v/v) methanol | 19.34 ± 0.13 a | <LOQ | 1.21 ± 0.14 a | |
boiling water | 21.72 ± 0.09 b | <LOQ | 1.18 ± 0.11 a | |
boiling 10% (w/v) NaCl | 22.35 ± 0.22 b | <LOQ | 1.16 ± 0.02 a | |
Fresh Melilotus officinalis flowers | ||||
Grinding in a mortar with a solvent | 50% (v/v) ethanol | 17.67 ± 0.12 a | <LOQ | 1.46 ± 0.13 a |
80% (v/v) methanol | 17.62 ± 0.16 a | <LOQ | 1.40 ± 0.13 a | |
boiling water | 20.40 ± 0.22 b | <LOQ | 1.79 ± 0.05 a,b | |
boiling 10% (w/v) NaCl | 21.03 ± 0.15 b | <LOQ | 1.83 ± 0.05 a,b | |
Shaking in a laboratory shaker | 50% (v/v) ethanol | 16.07 ± 0.08 a | <LOQ | 1.89 ± 0.06 a,b |
80% (v/v) methanol | 17.55 ± 0.11 a | <LOQ | 1.52 ± 0.11 a | |
boiling water | 18.91 ± 0.22 a | <LOQ | 1.80 ± 0.04 a,b | |
boiling 10% (w/v) NaCl | 20.62 ± 0.66 b | <LOQ | 1.56 ± 0.02 a | |
Ultrasound-assisted extraction | 50% (v/v) ethanol | 16.49 ± 0.14 a | <LOQ | 1.05 ± 0.02 a,c |
80% (v/v) methanol | 17.75 ± 0.34 a | <LOQ | 1.53 ± 0.18 a | |
boiling water | 19.98 ± 0.22 b | <LOQ | 1.87 ± 0.14 a,b | |
boiling 10% (w/v) NaCl | 20.76 ± 0.54 b | <LOQ | 1.77 ± 0.05 a,b |
Sample No. | Coumarin [mg/g] | Umbelliferone [mg/g] | Melilotic Acid [mg/g] | o-Coumaric Acid [mg/g] | o-Coumaric Acid Glycoside [mg/g] | p-Coumaric Acid [mg/g] | |
---|---|---|---|---|---|---|---|
M. albus | |||||||
1 | dried | 9.64 ± 0.00 | 0.15 ± 0.03 | 1.55 ± 0.02 | 0.40 ± 0.00 | 5.02 ± 0.11 | 0.29 ± 0.00 |
fresh | 23.66 ± 2.58 | <LOQ | 1.38 ± 0.04 | <LOQ | 6.04 ± 0.19 | 0.19 ± 0.03 | |
2 | dried | 9.74 ± 0.10 | 0.13 ± 0.00 | 2.58 ± 0.02 | 0.36 ± 0.00 | 5.06 ± 0.06 | 0.20 ± 0.01 |
fresh | 24.89 ± 0.68 | <LOQ | 1.26 ± 0.03 | <LOQ | 5.13 ± 0.05 | 0.11 ± 0.01 | |
3 | dried | 7.71 ± 0.01 | 0.18 ± 0.00 | 2.89 ± 0.04 | 0.43 ± 0.00 | 3.46 ± 0.02 | 0.16 ± 0.00 |
fresh | 19.56 ± 0.10 | <LOQ | 1.77 ± 0.01 | <LOQ | 4.07 ± 0.01 | 0.08 ± 0.01 | |
4 | dried | 8.54 ± 0.01 | 0.19 ± 0.02 | 3.24 ± 0.11 | 0.35 ± 0.01 | 3.72 ± 0.02 | 0.14 ± 0.01 |
fresh | 25.05 ± 0.04 | <LOQ | 1.41 ± 0.09 | <LOQ | 4.67 ± 0.01 | 0.13 ± 0.01 | |
5 | dried | 9.32 ± 0.06 | 0.16 ± 0.02 | 3.32 ± 0.02 | 0.29 ± 0.05 | 4.01 ± 0.02 | 0.10 ± 0.00 |
fresh | 24.76 ± 0.06 | <LOQ | 2.86 ± 0.06 | <LOQ | 4.23 ± 0.01 | 0.18 ± 0.03 | |
6 | dried | 5.31 ± 0.05 | 0.13 ± 0.05 | 2.39 ± 0.02 | 0.27 ± 0.00 | 5.98 ± 0.05 | 0.17 ± 0.08 |
fresh | 12.36 ± 0.05 | <LOQ | 1.55 ± 0.17 | <LOQ | 5.95 ± 0.06 | 0.09 ± 0.01 | |
7 | dried | 5.85 ± 0.02 | 0.19 ± 0.00 | 2.41 ± 0.11 | 0.21 ± 0.00 | 4.31 ± 0.03 | 0.10 ± 0.00 |
fresh | 19.68 ± 0.89 | <LOQ | 0.84 ± 0.00 | <LOQ | 4.04 ± 0.06 | 0.13 ± 0.00 | |
M. officinalis | |||||||
8 | dried | 8.24 ± 0.14 | 0.10 ± 0.01 | 2.28 ± 0.00 | 0.98 ± 0.00 | 3.46 ± 0.03 | 0.08 ± 0.01 |
fresh | 26.30 ± 0.17 | <LOQ | 2.18 ± 0.02 | <LOQ | 3.67 ± 0.01 | 0.06 ± 0.00 | |
9 | dried | 5.84 ± 0.01 | 0.15 ± 0.01 | 3.97 ± 0.00 | 1.11 ± 0.00 | 3.18 ± 0.08 | 0.13 ± 0.03 |
fresh | 11.31 ± 0.05 | <LOQ | 1.60 ± 0.01 | <LOQ | 3.73 ± 0.03 | 0.06 ± 0.00 | |
10 | dried | 7.95 ± 0.05 | 0.11 ± 0.01 | 2.94 ± 0.02 | 0.90 ± 0.00 | 6.01 ± 0.00 | 0.14 ± 0.00 |
fresh | 18.30 ± 0.02 | <LOQ | 2.20 ± 0.01 | <LOQ | 5.25 ± 0.08 | 0.09 ± 0.00 |
Sample No. | Hyperoside [mg/g] | Quercetin [mg/g] | Quercetin Glycoside [mg/g] | Luteolin [mg/g] | Kaempferol Glycoside [mg/g] | |
---|---|---|---|---|---|---|
M. albus | ||||||
1 | dried | 14.88 ± 0.01 | 1.21 ± 0.01 | 2.77 ± 0.00 | 0.85 ± 0.02 | <LOD |
fresh | 16.94 ± 0.57 | 1.15 ± 0.01 | 1.32 ± 0.04 | 0.42 ± 0.01 | <LOD | |
2 | dried | 14.77 ± 0.14 | 1.53 ± 0.22 | 2.78 ± 0.03 | 1.31 ± 0.00 | <LOD |
fresh | 15.49 ± 0.60 | 1.46 ± 0.05 | 1.44 ± 0.03 | 0.79 ± 0.05 | <LOD | |
3 | dried | 13.83 ± 0.03 | 1.28 ± 0.02 | 1.96 ± 0.01 | 1.11 ± 0.14 | <LOD |
fresh | 14.33 ± 0.02 | 1.14 ± 0.05 | 0.65 ± 0.08 | 0.75 ± 0.00 | <LOD | |
4 | dried | 14.77 ± 0.06 | 0.88 ± 0.00 | 1.80 ± 0.00 | 1.00 ± 0.96 | <LOD |
fresh | 17.38 ± 0.03 | 0.76 ± 0.19 | 0.46 ± 0.01 | 0.65 ± 0.01 | <LOD | |
5 | dried | 14.23 ± 0.01 | 1.71 ± 0.05 | 1.90 ± 0.04 | 0.77 ± 0.00 | <LOD |
fresh | 15.77 ± 0.20 | 1.25 ± 0.20 | 0.52 ± 0.00 | 0.41 ± 0.00 | <LOD | |
6 | dried | 10.58 ± 0.30 | 1.44 ± 0.01 | 3.06 ± 0.17 | 0.69 ± 0.01 | <LOD |
fresh | 13.70 ± 0.01 | 1.09 ± 0.01 | 1.69 ± 0.00 | 0.42 ± 0.01 | <LOD | |
7 | dried | 20.36 ± 0.30 | 1.37 ± 0.22 | 3.11 ± 0.04 | 0.53 ± 0.01 | <LOD |
fresh | 19.02 ± 0.50 | 1.38 ± 0.06 | 1.95 ± 0.05 | 0.49 ± 0.02 | <LOD | |
M. officinalis | ||||||
8 | dried | 2.20 ± 0.05 | 1.47 ± 0.03 | 3.58 ± 0.06 | 0.74 ± 0.01 | 1.39 ± 0.91 |
fresh | 3.02 ± 0.04 | 1.50 ± 0.00 | 1.45 ± 0.06 | 0.57 ± 0.01 | 0.10 ± 0.00 | |
9 | dried | 2.19 ± 0.30 | 1.71 ± 0.06 | 2.61 ± 0.22 | 1.09 ± 0.24 | 1.03 ± 0.00 |
fresh | 1.44 ± 0.01 | 1.30 ± 0.27 | 1.63 ± 0.02 | 0.73 ± 0.00 | 0.31 ± 0.00 | |
10 | dried | 2.81 ± 0.00 | 1.62 ± 0.02 | 2.53 ± 0.05 | 0.88 ± 0.00 | 1.32 ± 0.02 |
fresh | 2.07 ± 0.02 | 1.52 ± 0.10 | 1.46 ± 0.03 | 0.78 ± 0.01 | 0.09 ± 0.00 |
Sample No. | Coumarin [mg/g] | Umbelliferone [mg/g] | Melilotic Acid [mg/g] | o-Coumaric Acid [mg/g] | o-Coumaric Acid Glycoside [mg/g] | p-Coumaric Acid [mg/g] | |
---|---|---|---|---|---|---|---|
M. albus | |||||||
1 | dried | 3.24 ± 0.03 | 0.37 ± 0.02 | 4.76 ± 0.05 | 0.08 ± 0.01 | 1.17 ± 0.01 | 0.05 ± 0.00 |
fresh | 11.65 ± 0.08 | 0.26 ± 0.01 | 14.93 ± 0.37 | <LOQ | 2.09 ± 0.02 | <LOQ | |
2 | dried | 1.60 ± 0.02 | 0.59 ± 0.05 | 6.35 ± 0.05 | 0.07 ± 0.000 | 1.26 ± 0.02 | 0.05 ± 0.01 |
fresh | 6.60 ± 0.18 | 0.46 ± 0.03 | 19.76 ± 0.11 | <LOQ | 1.07 ± 0.02 | <LOQ | |
3 | dried | 1.78 ± 0.00 | 0.61 ± 0.07 | 9.22 ± 0.04 | 0.13 ± 0.00 | 1.38 ± 0.00 | 0.04 ± 0.01 |
fresh | 7.25 ± 0.01 | 0.37 ± 0.01 | 13.13 ± 0.25 | <LOQ | 1.96 ± 0.03 | <LOQ | |
4 | dried | 1.30 ± 0.05 | 0.41 ± 0.04 | 8.17 ± 0.05 | 0.11 ± 0.00 | 1.36 ± 0.02 | 0.05 ± 0.00 |
fresh | 9.86 ± 0.17 | 0.45 ± 0.05 | 13.54 ± 0.18 | <LOQ | 1.25 ± 0.03 | <LOQ | |
5 | dried | 1.28 ± 0.06 | 0.23 ± 0.01 | 6.53 ± 0.31 | 0.08 ± 0.00 | 1.09 ± 0.11 | 0.05 ± 0.00 |
fresh | 9.77 ± 0.16 | 0.26 ± 0.00 | 11.65 ± 0.03 | <LOQ | 1.34 ± 0.02 | <LOQ | |
6 | dried | 1.62 ± 0.01 | 0.27 ± 0.00 | 3.60 ± 0.01 | 0.17 ± 0.00 | 2.01 ± 0.00 | 0.06 ± 0.00 |
fresh | 9.57 ± 0.02 | 0.38 ± 0.00 | 6.27 ± 0.01 | <LOQ | 2.96 ± 0.03 | <LOQ | |
7 | dried | 0.80 ± 0.01 | 0.51 ± 0.04 | 1.23 ± 0.00 | 0.02 ± 0.00 | 0.61 ± 0.00 | 0.03 ± 0.00 |
fresh | 6.76 ± 0.08 | 0.44 ± 0.05 | 2.32 ± 0.01 | <LOQ | 0.49 ± 0.00 | <LOQ | |
M. officinalis | |||||||
8 | dried | 1.36 ± 0.01 | 0.52 ± 0.01 | 3.60 ± 0.00 | 0.05 ± 0.00 | 0.67 ± 0.00 | 0.04 ± 0.00 |
fresh | 7.33 ± 0.02 | 0.51 ± 0.00 | 7.03 ± 0.00 | <LOQ | 1.36 ± 0.00 | <LOQ | |
9 | dried | 1.34 ± 0.01 | 0.23 ± 0.01 | 9.21 ± 0.02 | 0.21 ± 0.00 | 1.10 ± 0.11 | 0.03 ± 0.00 |
fresh | 6.44 ± 0.12 | 0.43 ± 0.02 | 9.31 ± 0.17 | <LOQ | 0.99 ± 0.02 | <LOQ | |
10 | dried | 1.95 ± 0.02 | 0.27 ± 0.00 | 3.68 ± 0.01 | 0.42 ± 0.00 | 0.58 ± 0.00 | 0.05 ± 0.00 |
fresh | 9.83 ± 0.01 | 0.40 ± 0.01 | 8.06 ± 0.02 | <LOQ | 1.30 ± 0.02 | <LOQ |
Sample No. | Hyperoside [mg/g] | Quercetin [mg/g] | Quercetin Glycoside [mg/g] | Luteolin [mg/g] | Kaempferol Glycoside [mg/g] | |
---|---|---|---|---|---|---|
M. albus | ||||||
1 | dried | 3.84 ± 0.05 | 0.12 ± 0.02 | 0.39 ± 0.00 | 0.15 ± 0.01 | <LOD |
fresh | 4.75 ± 0.11 | 0.10 ± 0.02 | 0.35 ± 0.01 | 0.11 ± 0.00 | <LOD | |
2 | dried | 7.15 ± 0.07 | 0.10 ± 0.00 | 0.55 ± 0.01 | 0.10 ± 0.00 | <LOD |
fresh | 5.01 ± 0.11 | 0.07 ± 0.00 | 0.46 ± 0.01 | 0.07 ± 0.00 | <LOD | |
3 | dried | 3.47 ± 0.01 | 0.14 ± 0.00 | 0.28 ± 0.02 | 0.13 ± 0.02 | <LOD |
fresh | 5.34 ± 0.06 | 0.20 ± 0.04 | 0.20 ± 0.01 | 0.12 ± 0.01 | <LOD | |
4 | dried | 3.85 ± 0.08 | 0.20 ± 0.02 | 0.32 ± 0.00 | 0.16 ± 0.00 | <LOD |
fresh | 2.78 ± 0.15 | 0.23 ± 0.05 | 0.20 ± 0.01 | 0.14 ± 0.01 | <LOD | |
5 | dried | 3.15 ± 0.02 | 0.10 ± 0.01 | 0.23 ± 0.02 | 0.15 ± 0.02 | <LOD |
fresh | 2.42 ± 0.04 | 0.10 ± 0.03 | 0.09 ± 0.00 | 0.08 ± 0.00 | <LOD | |
6 | dried | 5.49 ± 0.00 | 0.06 ± 0.00 | 0.57 ± 0.02 | 0.09 ± 0.00 | <LOD |
fresh | 4.49 ± 0.00 | 0.07 ± 0.00 | 0.38 ± 0.01 | 0.07 ± 0.00 | <LOD | |
7 | dried | 2.93 ± 0.02 | 0.18 ± 0.00 | 0.22 ± 0.01 | 0.09 ± 0.01 | <LOD |
fresh | 2.43 ± 0.06 | 0.04 ± 0.01 | 0.17 ± 0.03 | 0.08 ± 0.03 | <LOD | |
M. officinalis | ||||||
8 | dried | 2.02 ± 0.01 | 0.10 ± 0.00 | 0.71 ± 0.00 | 0.16 ± 0.02 | 0.11 ± 0.00 |
fresh | 2.86 ± 0.01 | 0.08 ± 0.01 | 0.67 ± 0.01 | 0.13 ± 0.00 | 0.07 ± 0.00 | |
9 | dried | 3.15 ± 0.02 | 0.26 ± 0.01 | 0.45 ± 0.02 | 0.12 ± 0.01 | 0.10 ± 0.00 |
fresh | 2.53 ± 0.05 | 0.14 ± 0.00 | 0.48 ± 0.01 | 0.10 ± 0.00 | 0.07 ± 0.00 | |
10 | dried | 4.82 ± 0.00 | 0.09 ± 0.00 | 0.59 ± 0.01 | 0.08 ± 0.00 | 0.11 ± 0.00 |
fresh | 2.03 ± 0.00 | 0.07 ± 0.01 | 0.52 ± 0.01 | 0.05 ± 0.00 | 0.05 ± 0.01 |
Sample No. | FRAP [µmol TE/g] | DPPH· [µmol TE/g] | TPC [mg GAE/g] |
---|---|---|---|
M. albus flowers | |||
1 | 59.30 ± 2.75 | 56.12 ± 3.40 | 20.41 ± 0.89 |
2 | 56.62 ± 1.33 | 61.54 ± 5.02 | 24.53 ± 1.81 |
3 | 46.85 ± 0.45 | 43.06 ± 3.01 | 20.43 ± 0.16 |
4 | 43.54 ± 1.30 | 40.31 ± 0.13 | 22.27 ± 0.48 |
5 | 55.99 ± 1.63 | 41.55 ± 2.63 | 21.49 ± 1.21 |
6 | 57.88 ± 4.16 | 50.61 ± 0.38 | 21.78 ± 0.73 |
7 | 56.20 ± 3.27 | 51.06 ± 2.00 | 23.83 ± 1.97 |
M. officinalis flowers | |||
8 | 82.62 ± 1.11 | 73.53 ± 0.12 | 31.85 ± 0.38 |
9 | 82.41 ± 1.26 | 73.53 ± 0.13 | 35.41 ± 0.38 |
10 | 83.14 ± 0.22 | 72.73 ± 4.51 | 30.43 ± 0.16 |
M. albus leaves | |||
1 | 75.95 ± 0.15 | 117.48 ± 0.33 | 33.02 ± 0.83 |
2 | 67.12 ± 0.02 | 103.21 ± 0.34 | 26.13 ± 0.12 |
3 | 69.75 ± 0.30 | 114.86 ± 0.67 | 29.82 ± 0.00 |
4 | 75.42 ± 2.38 | 138.41 ± 0.34 | 31.89 ± 0.38 |
5 | 69.22 ± 2.82 | 102.25 ± 1.68 | 29.14 ± 1.47 |
6 | 74.47 ± 3.38 | 123.66 ± 2.65 | 30.72 ± 1.78 |
7 | 71.85 ± 0.59 | 104.87 ± 2.69 | 22.79 ± 0.25 |
M. officinalis leaves | |||
8 | 88.24 ± 5.05 | 173.61 ± 1.00 | 44.82 ± 0.06 |
9 | 86.55 ± 0.89 | 171.00 ± 5.70 | 39.19 ± 3.69 |
10 | 99.68 ± 4.90 | 188.36 ± 1.00 | 42.57 ± 0.96 |
Sample No. | Species | Voucher Number | Location | Altitude [m] | Year |
---|---|---|---|---|---|
1 | Melilotus albus | 2022/07/MAB1 | Borówki (49°57′07″ N, 22°09′37″ E) | 353.41 | 2022 |
2 | Melilotus albus | 2022/07MAB2 | Borówki (49°57′07″ N, 22°09′37″ E) | 353.34 | 2022 |
3 | Melilotus albus | 2022/07/MAS1 | Sonina (50°03′44″ N, 22°16′12″ E) | 196.73 | 2022 |
4 | Melilotus albus | 2022/07/MAS2 | Sietesz (49°59′16″ N, 22°20′45″ E) | 263.18 | 2022 |
5 | Melilotus albus | 2022/07/MAR1 | Rzeszów (49°58′54″ N, 21°57′41″ E) | 206.66 | 2022 |
6 | Melilotus albus | 2021/07/MAC1 | Chmielnik (49°58′43″ N, 22°08′01″ E) | 251.00 | 2021 |
7 | Melilotus albus | 2022/07/MAWR1 | Wola Rzeczycka (50°38′27″ N, 22°01′54″ E) | 150.28 | 2022 |
8 | Melilotus officinalis | 2022/07/MOB1 | Borówki (49°57′07″ N, 22°09′37″ E) | 353.32 | 2022 |
9 | Melilotus officinalis | 2022/07/MOR1 | Rzeszów (49°58′54″ N, 21°57′41″ E) | 206.54 | 2022 |
10 | Melilotus officinalis | 2021/07/MOC1 | Chmielnik (49°58′43″ N, 22°08′01″ E) | 251.27 | 2021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sowa-Borowiec, P.; Czernicka, M.; Jarecki, W.; Dżugan, M. Sweet Clover (Melilotus spp.) as a Source of Biologically Active Compounds. Molecules 2025, 30, 526. https://doi.org/10.3390/molecules30030526
Sowa-Borowiec P, Czernicka M, Jarecki W, Dżugan M. Sweet Clover (Melilotus spp.) as a Source of Biologically Active Compounds. Molecules. 2025; 30(3):526. https://doi.org/10.3390/molecules30030526
Chicago/Turabian StyleSowa-Borowiec, Patrycja, Maria Czernicka, Wacław Jarecki, and Małgorzata Dżugan. 2025. "Sweet Clover (Melilotus spp.) as a Source of Biologically Active Compounds" Molecules 30, no. 3: 526. https://doi.org/10.3390/molecules30030526
APA StyleSowa-Borowiec, P., Czernicka, M., Jarecki, W., & Dżugan, M. (2025). Sweet Clover (Melilotus spp.) as a Source of Biologically Active Compounds. Molecules, 30(3), 526. https://doi.org/10.3390/molecules30030526